1
|
Yuan C, Yu XT, Wang J, Shu B, Wang XY, Huang C, Lv X, Peng QQ, Qi WH, Zhang J, Zheng Y, Wang SJ, Liang QQ, Shi Q, Li T, Huang H, Mei ZD, Zhang HT, Xu HB, Cui J, Wang H, Zhang H, Shi BH, Sun P, Zhang H, Ma ZL, Feng Y, Chen L, Zeng T, Tang DZ, Wang YJ. Multi-modal molecular determinants of clinically relevant osteoporosis subtypes. Cell Discov 2024; 10:28. [PMID: 38472169 PMCID: PMC10933295 DOI: 10.1038/s41421-024-00652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Due to a rapidly aging global population, osteoporosis and the associated risk of bone fractures have become a wide-spread public health problem. However, osteoporosis is very heterogeneous, and the existing standard diagnostic measure is not sufficient to accurately identify all patients at risk of osteoporotic fractures and to guide therapy. Here, we constructed the first prospective multi-omics atlas of the largest osteoporosis cohort to date (longitudinal data from 366 participants at three time points), and also implemented an explainable data-intensive analysis framework (DLSF: Deep Latent Space Fusion) for an omnigenic model based on a multi-modal approach that can capture the multi-modal molecular signatures (M3S) as explicit functional representations of hidden genotypes. Accordingly, through DLSF, we identified two subtypes of the osteoporosis population in Chinese individuals with corresponding molecular phenotypes, i.e., clinical intervention relevant subtypes (CISs), in which bone mineral density benefits response to calcium supplements in 2-year follow-up samples. Many snpGenes associated with these molecular phenotypes reveal diverse candidate biological mechanisms underlying osteoporosis, with xQTL preferences of osteoporosis and its subtypes indicating an omnigenic effect on different biological domains. Finally, these two subtypes were found to have different relevance to prior fracture and different fracture risk according to 4-year follow-up data. Thus, in clinical application, M3S could help us further develop improved diagnostic and treatment strategies for osteoporosis and identify a new composite index for fracture prediction, which were remarkably validated in an independent cohort (166 participants).
Collapse
Affiliation(s)
- Chunchun Yuan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Tian Yu
- Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai, China
| | - Bing Shu
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Yun Wang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Chen Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xia Lv
- Hudong Hospital of Shanghai, Shanghai, China
| | - Qian-Qian Peng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wen-Hao Qi
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jing Zhang
- Green Valley (Shanghai) Pharmaceuticals Co., Ltd., Shanghai, China
| | - Yan Zheng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Si-Jia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian-Qian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - He Huang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Zhen-Dong Mei
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Hai-Tao Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Bin Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jiarui Cui
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hongyu Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hong Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Bin-Hao Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Pan Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hui Zhang
- Hudong Hospital of Shanghai, Shanghai, China
| | | | - Yuan Feng
- Green Valley (Shanghai) Pharmaceuticals Co., Ltd., Shanghai, China
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Tao Zeng
- Guangzhou National Laboratory, Guangzhou, China.
| | - De-Zhi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China.
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
| | - Yong-Jun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China.
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Yang T, Wang M, Liu Y, Li Y, Feng M, Zhao C. A mutation in POLR2A gene associated with body size traits in Dezhou donkeys revealed with GWAS. J Anim Sci 2024; 102:skae217. [PMID: 39079013 PMCID: PMC11362846 DOI: 10.1093/jas/skae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/27/2024] [Indexed: 08/31/2024] Open
Abstract
The Dezhou donkey is a famous local donkey breed in China. The aim of the present study was to identify the genes associated with the body size traits of the Dezhou donkey and facilitate the breeding activities of the donkeys. A total of 349 donkeys from 2 generations (113 individuals in F0 and 236 in F1) were analyzed with restriction-site-associated DNA sequencing. A genome-wide association study revealed that the region between 13.7 and 15.6 Mb of chromosome 13 is significantly associated with body sizes. Candidate genes related to body size development, including POLR2A, CHRNB1, FGF11, and ZBTB4, were identified. The results of GO and KEGG analysis indicated that the genes involved in many GO terms were related to metabolic processes and developmental processes. Additionally, a T>C mutation (Chr13:14312485) was found at intron 10 of the POLR2A gene. The association analysis showed significant differences among genotypes for the size traits. The body size of the individuals with the TT genotype was significantly higher than that with the CC genotype. The results showed that the polymorphism of POLR2A has the potential to be used as a marker in the breeding programs of the Dezhou donkeys.
Collapse
Affiliation(s)
- Tao Yang
- Equine Center, China Agricultural University, Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Min Wang
- Equine Center, China Agricultural University, Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Liu
- Equine Center, China Agricultural University, Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuanyuan Li
- Equine Center, China Agricultural University, Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mo Feng
- Equine Center, China Agricultural University, Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chunjiang Zhao
- Equine Center, China Agricultural University, Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- National Engineering Laboratory for Animal Breeding, Beijing, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Animal Genetic Improvement, Beijing, China
| |
Collapse
|
3
|
Wang Y, Wu Z, Yan G, Li S, Zhang Y, Li G, Wu C. The CREB1 inhibitor 666-15 maintains cartilage homeostasis and mitigates osteoarthritis progression. Bone Joint Res 2024; 13:4-18. [PMID: 38163445 PMCID: PMC10758301 DOI: 10.1302/2046-3758.131.bjr-2023-0016.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Aims cAMP response element binding protein (CREB1) is involved in the progression of osteoarthritis (OA). However, available findings about the role of CREB1 in OA are inconsistent. 666-15 is a potent and selective CREB1 inhibitor, but its role in OA is unclear. This study aimed to investigate the precise role of CREB1 in OA, and whether 666-15 exerts an anti-OA effect. Methods CREB1 activity and expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) in cells and tissues were measured by immunoblotting and immunohistochemical (IHC) staining. The effect of 666-15 on chondrocyte viability and apoptosis was examined by cell counting kit-8 (CCK-8) assay, JC-10, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) staining. The effect of 666-15 on the microstructure of subchondral bone, and the synthesis and catabolism of cartilage, in anterior cruciate ligament transection mice were detected by micro-CT, safranin O and fast green (S/F), immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA). Results CREB1 was hyperactive in osteoarthritic articular cartilage, interleukin (IL)-1β-treated cartilage explants, and IL-1β- or carbonyl cyanide 3-chlorophenylhydrazone (CCCP)-treated chondrocytes. 666-15 enhanced cell viability of OA-like chondrocytes and alleviated IL-1β- or CCCP-induced chondrocyte injury through inhibition of mitochondrial dysfunction-associated apoptosis. Moreover, inhibition of CREB1 by 666-15 suppressed expression of ADAMTS4. Additionally, 666-15 alleviated joint degeneration in an ACLT mouse model. Conclusion Hyperactive CREB1 played a critical role in OA development, and 666-15 exerted anti-IL-1β or anti-CCCP effects in vitro as well as joint-protective effects in vivo. 666-15 may therefore be used as a promising anti-OA drug.
Collapse
Affiliation(s)
- Ying Wang
- Department of Molecular Orthopedics, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Zhimin Wu
- Department of Molecular Orthopedics, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Guoqiang Yan
- National Center for Orthopaedics, Animal Laboratory, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Shan Li
- Department of Molecular Orthopedics, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yanzhuo Zhang
- Department of Molecular Orthopedics, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Guangping Li
- National Center for Orthopaedics, Laboratory of Bone Tissue Engineering, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Chengai Wu
- Department of Molecular Orthopedics, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Duan Y, Jin C, Wu Y, Chen Y, Zhang M, Qian J, Shuai T, Li J, Chen H, Li D. CREB1 alleviates the apoptosis and potentiates the osteogenic differentiation of zoledronic acid-treated human periodontal ligament stem cells via up-regulating VEGF. Tissue Cell 2023; 85:102223. [PMID: 37776785 DOI: 10.1016/j.tice.2023.102223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
Periodontitis represents a severe inflammatory illness in tooth supporting tissue. It has been supported that cAMP response element binding protein 1 (CREB1), a common transcription factor, extensively participates in osteogenic differentiation. Here, the current study was to look into the impacts of CREB1 on the process of periodontitis and its possible action mechanism. After human periodontal ligament stem cells (PDLSCs) were challenged with zoledronic acid (ZA), CREB1 expression was examined with RT-qPCR and western blotting. CCK-8 assay appraised cell activity. Following CREB1 elevation or/and vascular endothelial growth factor (VEGF) silencing in ZA-treated PDLSCs, CCK-8 and TUNEL assays separately estimated cell viability and apoptosis. Western blotting tested the expression of apoptosis- and osteogenic differentiation-associated proteins. ALP staining measured PDLSCs osteogenic ability and ARS staining estimated mineralized nodule formation. JASPAR predicted the potential binding of CREB1 with VEGF promoter, which was then testified by ChIP and luciferase reporter assays. RT-qPCR and western blotting tested VEGF expression. CREB1 expression was declined in ZA-exposed PDLSCs and CREB1 elevation exacerbated the viability and osteogenic differentiation while obstructed the apoptosis of PDLSCs. Additionally, CREB1 bond to VEGF promoter and transcriptionally activated VEGF expression. Further, VEGF absence partially stimulated the apoptosis while suppressed the osteogenic differentiation of CREB1-overexpressing PDLSCs treated by ZA. To be concluded, CREB1 might activate VEGF transcription to obstruct the apoptosis while contribute to the osteogenic differentiation of ZA-treated PDLSCs.
Collapse
Affiliation(s)
- Yao Duan
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Chanyuan Jin
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Yuwei Wu
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Yan Chen
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Minjuan Zhang
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Jun Qian
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Ting Shuai
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China
| | - Jian Li
- Department of Stomatology, Xiang'An Hospital of Xiamen University, Xiamen 361100, PR China
| | - Huimin Chen
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China.
| | - Dan Li
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, PR China.
| |
Collapse
|
5
|
Deng YJ, Li Z, Wang B, Li J, Ma J, Xue X, Tian X, Liu QC, Zhang Y, Yuan B. Immune-related gene IL17RA as a diagnostic marker in osteoporosis. Front Genet 2023; 14:1219894. [PMID: 37600656 PMCID: PMC10436292 DOI: 10.3389/fgene.2023.1219894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Objectives: Bone immune disorders are major contributors to osteoporosis development. This study aims to identify potential diagnostic markers and molecular targets for osteoporosis treatment from an immunological perspective. Method: We downloaded dataset GSE56116 from the Gene Expression Omnibus database, and identified differentially expressed genes (DEGs) between normal and osteoporosis groups. Subsequently, differentially expressed immune-related genes (DEIRGs) were identified, and a functional enrichment analysis was performed. A protein-protein interaction network was also constructed based on data from STRING database to identify hub genes. Following external validation using an additional dataset (GSE35959), effective biomarkers were confirmed using RT-qPCR and immunohistochemical (IHC) staining. ROC curves were constructed to validate the diagnostic values of the identified biomarkers. Finally, a ceRNA and a transcription factor network was constructed, and a Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed to explore the biological functions of these diagnostic markers. Results: In total, 307 and 31 DEGs and DEIRGs were identified, respectively. The enrichment analysis revealed that the DEIRGs are mainly associated with Gene Ontology terms of positive regulation of MAPK cascade, granulocyte chemotaxis, and cytokine receptor. protein-protein interaction network analysis revealed 10 hub genes: FGF8, KL, CCL3, FGF4, IL9, FGF9, BMP7, IL17RA, IL12RB2, CD40LG. The expression level of IL17RA was also found to be significantly high. RT-qPCR and immunohistochemical results showed that the expression of IL17RA was significantly higher in osteoporosis patients compared to the normal group, as evidenced by the area under the curve Area Under Curve of 0.802. Then, we constructed NEAT1-hsa-miR-128-3p-IL17RA, and SNHG1-hsa-miR-128-3p-IL17RA ceRNA networks in addition to ERF-IL17RA, IRF8-IL17RA, POLR2A-IL17RA and ERG-IL17RA transcriptional networks. Finally, functional enrichment analysis revealed that IL17RA was involved in the development and progression of osteoporosis by regulating local immune and inflammatory processes in bone tissue. Conclusion: This study identifies the immune-related gene IL17RA as a diagnostic marker of osteoporosis from an immunological perspective, and provides insight into its biological function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bin Yuan
- Department of Spine Surgery, Xi’an Daxing Hospital, Yanan University, Xi’an, China
| |
Collapse
|
6
|
Tønne E, Due-Tønnessen BJ, Vigeland MD, Amundsen SS, Ribarska T, Åsten PM, Sheng Y, Helseth E, Gilfillan GD, Mero IL, Heimdal KR. Whole-exome sequencing in syndromic craniosynostosis increases diagnostic yield and identifies candidate genes in osteogenic signaling pathways. Am J Med Genet A 2022; 188:1464-1475. [PMID: 35080095 DOI: 10.1002/ajmg.a.62663] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/26/2021] [Accepted: 12/26/2021] [Indexed: 11/07/2022]
Abstract
Craniosynostosis (CS) is a common congenital anomaly defined by premature fusion of one or more cranial sutures. Syndromic CS involves additional organ anomalies or neurocognitive deficits and accounts for 25%-30% of the cases. In a recent population-based study by our group, 84% of the syndromic CS cases had a genetically verified diagnosis after targeted analyses. A number of different genetic causes were detected, confirming that syndromic CS is highly heterogeneous. In this study, we performed whole-exome sequencing of 10 children and parents from the same cohort where previous genetic results were negative. We detected pathogenic, or likely pathogenic, variants in four additional genes (NFIA, EXTL3, POLR2A, and FOXP2) associated with rare conditions. In two of these (POLR2A and FOXP2), CS has not previously been reported. We further detected a rare predicted damaging variant in SH3BP4, which has not previously been related to human disease. All findings were clustered in genes involved in the pathways of osteogenesis and suture patency. We conclude that whole-exome sequencing expands the list of genes associated with syndromic CS, and provides new candidate genes in osteogenic signaling pathways.
Collapse
Affiliation(s)
- Elin Tønne
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,Norwegian National Unit for Craniofacial Surgery, Oslo University Hospital, Oslo, Norway
| | - Bernt Johan Due-Tønnessen
- Norwegian National Unit for Craniofacial Surgery, Oslo University Hospital, Oslo, Norway.,Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Magnus Dehli Vigeland
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Teodora Ribarska
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Eirik Helseth
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Gregor Duncan Gilfillan
- Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Ketil Riddervold Heimdal
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,Norwegian National Unit for Craniofacial Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Greenbaum J, Su KJ, Zhang X, Liu Y, Liu A, Zhao LJ, Luo Z, Tian Q, Shen H, Deng HW. A multiethnic whole genome sequencing study to identify novel loci for bone mineral density. Hum Mol Genet 2021; 31:1067-1081. [PMID: 34673960 PMCID: PMC8976433 DOI: 10.1093/hmg/ddab305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
At present, there have only been a few DNA sequencing-based studies to explore the genetic determinants of bone mineral density (BMD). We carried out the largest whole genome sequencing analysis to date for femoral neck and spine BMD (n = 4981), with one of the highest average sequencing depths implemented thus far at 22×, in a multiethnic sample (58% Caucasian and 42% African American) from the Louisiana Osteoporosis Study (LOS). The LOS samples were combined with summary statistics from the GEFOS consortium and several independent samples of various ethnicities to perform GWAS meta-analysis (n = 44 506). We identified 31 and 30 genomic risk loci for femoral neck and spine BMD, respectively. The findings substantiate many previously reported susceptibility loci (e.g. WNT16 and ESR1) and reveal several others that are either novel or have not been widely replicated in GWAS for BMD, including two for femoral neck (IGF2 and ZNF423) and one for spine (SIPA1). Although we were not able to uncover ethnicity specific differences in the genetic determinants of BMD, we did identify several loci which demonstrated sex-specific associations, including two for women (PDE4D and PIGN) and three for men (TRAF3IP2, NFIB and LYSMD4). Gene-based rare variant association testing detected MAML2, a regulator of the Notch signaling pathway, which has not previously been suggested, for association with spine BMD. The findings provide novel insights into the pathophysiological mechanisms of osteoporosis.
Collapse
Affiliation(s)
- Jonathan Greenbaum
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Kuan-Jui Su
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Xiao Zhang
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Yong Liu
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA,School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, PR China
| | - Anqi Liu
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Lan-Juan Zhao
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Zhe Luo
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Qing Tian
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hong-Wen Deng
- To whom correspondence should be addressed at: Section of Biomedical Informatics and Genomics, Director, Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, 1440 Canal St., RM 1619F, New Orleans, LA 70112, USA.
| |
Collapse
|