1
|
Fei X, Li N, Xu X, Zhu Y. Macrophage biology in the pathogenesis of Helicobacter pylori infection. Crit Rev Microbiol 2024:1-18. [PMID: 39086061 DOI: 10.1080/1040841x.2024.2366944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 08/02/2024]
Abstract
Infection with H. pylori induces chronic gastric inflammation, progressing to peptic ulcer and stomach adenocarcinoma. Macrophages function as innate immune cells and play a vital role in host immune defense against bacterial infection. However, the distinctive mechanism by which H. pylori evades phagocytosis allows it to colonize the stomach and further aggravate gastric preneoplastic pathology. H. pylori exacerbates gastric inflammation by promoting oxidative stress, resisting macrophage phagocytosis, and inducing M1 macrophage polarization. M2 macrophages facilitate the proliferation, invasion, and migration of gastric cancer cells. Various molecular mechanisms governing macrophage function in the pathogenesis of H. pylori infection have been identified. In this review, we summarize recent findings of macrophage interactions with H. pylori infection, with an emphasis on the regulatory mechanisms that determine the clinical outcome of bacterial infection.
Collapse
Affiliation(s)
- Xiao Fei
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Nianshuang Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinbo Xu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yin Zhu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Geng N, Fu J, Lv Z, Li J, Kong Y, Qu L, Guo Z, Zhao J, Zhu L, Wang F, Zhao C, Liu S, Hu Z, Li N. M1 polarization of chicken macrophage HD11 can be activated by duck Tembusu virus via MyD88-NF-κB-mediated signaling pathway. Vet Microbiol 2023; 285:109867. [PMID: 37639898 DOI: 10.1016/j.vetmic.2023.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Duck Tembusu virus (DTMUV) has caused significant economic losses to the global duck industry since its outbreak in 2010. The macrophages act as the key immune cell, and its polarization in different functional states is very important for host's immune responses and microbial infections. Avian macrophages are the main target cells of DTMUV, its polarization induced by DTMUV and the underlying mechanisms were explored in this study. Through quantitative real-time PCR, nitrite assay, and flow cytometry analysis, we found that DTMUV caused severe inflammatory responses in chicken macrophage line HD11 by reprogramming the expression of M1- and M2-associated genes, leading to the polarization of HD11 macrophage to M1-type. In term of mechanism, transcriptomics was performed to analyze the M1-type polarization triggered by DTMUV, it was found that most differential genes were implicated in biological processes, and DTMUV infection significantly activated innate immune signaling pathways, including cytokine-cytokine receptor interaction, MAPK signaling pathway. Moreover, transcription factors NF-κB and AP1 also be activated after viral infection. However, further validation analysis by inhibitors and siRNAs of NF-κB and AP1 showed that NF-κB molecule was essential for DTMUV-induced M1 polarization in HD11 cell, but not AP1. Additionally, the inhibiting assays targeting MyD88 and TRIF molecules were conducted to determine their effect on NF-κB and M1-associated genes upregulated by DTMUV. The results showed that although the inhibition of both MyD88 and TRIF significantly downregulated the mRNA level of NF-κB, but the expression of M1-associated genes such as CD86 was lower in MyD88 inhibition group than in the other group, indicating that the role of MyD88 in mediating M1 polarization induced by DTMUV was more important. Overall, these results demonstrated that DTMUV infection induces M1-type polarization in chicken macrophage HD11 through MyD88-NF-κB signaling pathways. This finding will lay the foundation for further study the pathogenesis of DTMUV, and provide new insights into the prevention and control of this disease.
Collapse
Affiliation(s)
- Ningwei Geng
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018 Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China
| | - Ji Fu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018 Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China
| | - Zehao Lv
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018 Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China
| | - Jing Li
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018 Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China
| | - Yuxin Kong
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018 Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China
| | - Lei Qu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018 Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China
| | - Zhiyun Guo
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018 Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China
| | - Jun Zhao
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018 Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China
| | - Liya Zhu
- Animal Husbandry and Veterinary Service Centre of Linshu, Linyi, 276700 Shandong Province, China
| | - Feng Wang
- Taian City Research Center of Animal Disease Control and Prevention, 8 Hushan East Road, Taian City, 271000 Shandong Province, China
| | - Cui Zhao
- Taian City Research Center of Animal Disease Control and Prevention, 8 Hushan East Road, Taian City, 271000 Shandong Province, China
| | - Sidang Liu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018 Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China
| | - Zhiyong Hu
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018 Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China.
| | - Ning Li
- College of Animal Science and Technology, Shandong Agricultural University, 61 Daizong Road, Taian City, 271018 Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China; Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Agricultural University, 61 Daizong Street, Taian City, 271018 Shandong Province, China.
| |
Collapse
|
3
|
Anand PK, Saini V, Kaur J, Kumar A, Kaur J. Cell wall and immune modulation by Rv1800 (PPE28) helps M. smegmatis to evade intracellular killing. Int J Biol Macromol 2023; 247:125837. [PMID: 37455004 DOI: 10.1016/j.ijbiomac.2023.125837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Rv1800 is predicted as PPE family protein found in pathogenic mycobacteria only. Under acidic stress, the rv1800 gene was expressed in M. tuberculosis H37Ra. In-silico study showed lipase/esterase activity in C-terminus PE-PPE domain having pentapeptide motif with catalytic Ser-Asp-His residue. Full-length Rv1800 and C-terminus PE-PPE domain proteins showed esterase activity with pNP-C4 at the optimum temperature of 40 °C and pH 8.0. However, the N-terminus PPE domain showed no esterase activity, but involved in thermostability of Rv1800 full-length protein. M. smegmatis expressing rv1800 (MS_Rv1800) showed altered colony morphology and a significant resistance to numerous environmental stresses, antibiotics and higher lipid content. In extracellular and membrane fraction, Rv1800 protein was detected, while C terminus PE-PPE was present in cytoplasm, suggesting the role of N-terminus PPE domain in transportation of protein. MS_Rv1800 infected macrophage showed higher intracellular survival and low production of ROS, NO and expression levels of iNOS and pro-inflammatory cytokines, while induced expression of the anti-inflammatory cytokines. The Rv1800, PPE and PE-PPE showed antibody-mediated immunity in MDR-TB and PTB patients. Overall, these results confirmed the esterase activity in the C-terminus and function of N-terminus in thermostabilization and transportation; predicting the role of Rv1800 in immune/lipid modulation to support intracellular mycobacterium survival.
Collapse
Affiliation(s)
- Pradeep Kumar Anand
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India
| | - Varinder Saini
- Department of Pulmonary Medicine, Government Medical College and Hospital, Chandigarh, India
| | - Jasbinder Kaur
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, India
| | - Arbind Kumar
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
4
|
Mouratidis I, Chan CY, Chantzi N, Tsiatsianis G, Hemberg M, Ahituv N, Georgakopoulos-Soares I. Quasi-prime peptides: identification of the shortest peptide sequences unique to a species. NAR Genom Bioinform 2023; 5:lqad039. [PMID: 37101657 PMCID: PMC10124967 DOI: 10.1093/nargab/lqad039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/02/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
Determining the organisms present in a biosample has many important applications in agriculture, wildlife conservation, and healthcare. Here, we develop a universal fingerprint based on the identification of short peptides that are unique to a specific organism. We define quasi-prime peptides as sequences that are found in only one species, and we analyzed proteomes from 21 875 species, from viruses to humans, and annotated the smallest peptide kmer sequences that are unique to a species and absent from all other proteomes. We also perform simulations across all reference proteomes and observe a lower than expected number of peptide kmers across species and taxonomies, indicating an enrichment for nullpeptides, sequences absent from a proteome. For humans, we find that quasi-primes are found in genes enriched for specific gene ontology terms, including proteasome and ATP and GTP catalysis. We also provide a set of quasi-prime peptides for a number of human pathogens and model organisms and further showcase its utility via two case studies for Mycobacterium tuberculosis and Vibrio cholerae, where we identify quasi-prime peptides in two transmembrane and extracellular proteins with relevance for pathogen detection. Our catalog of quasi-prime peptides provides the smallest unit of information that is specific to a single organism at the protein level, providing a versatile tool for species identification.
Collapse
Affiliation(s)
- Ioannis Mouratidis
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
- Department of Engineering Science, KU Leuven, Leuven, Belgium
| | - Candace S Y Chan
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Nikol Chantzi
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Georgios Christos Tsiatsianis
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
- National Technical University of Athens, School of Electrical and Computer Engineering, Athens, Greece
| | - Martin Hemberg
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
5
|
Wang L, Xiong Y, Fu B, Guo D, Zaky MY, Lin X, Wu H. MicroRNAs as immune regulators and biomarkers in tuberculosis. Front Immunol 2022; 13:1027472. [PMID: 36389769 PMCID: PMC9647078 DOI: 10.3389/fimmu.2022.1027472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 07/26/2023] Open
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), is one of the most lethal infectious disease worldwide, and it greatly affects human health. Some diagnostic and therapeutic methods are available to effectively prevent and treat TB; however, only a few systematic studies have described the roles of microRNAs (miRNAs) in TB. Combining multiple clinical datasets and previous studies on Mtb and miRNAs, we state that pathogens can exploit interactions between miRNAs and other biomolecules to avoid host mechanisms of immune-mediated clearance and survive in host cells for a long time. During the interaction between Mtb and host cells, miRNA expression levels are altered, resulting in the changes in the miRNA-mediated regulation of host cell metabolism, inflammatory responses, apoptosis, and autophagy. In addition, differential miRNA expression can be used to distinguish healthy individuals, patients with TB, and patients with latent TB. This review summarizes the roles of miRNAs in immune regulation and their application as biomarkers in TB. These findings could provide new opportunities for the diagnosis and treatment of TB.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yan Xiong
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Beibei Fu
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Dong Guo
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Mohamed Y. Zaky
- Department of Zoology, Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Xiaoyuan Lin
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Haibo Wu
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|