1
|
Kong X, Qin Y, Pei W, Zhou G. Recent progresses on space life science research in China. LIFE SCIENCES IN SPACE RESEARCH 2024; 43:35-42. [PMID: 39521492 DOI: 10.1016/j.lssr.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 11/16/2024]
Abstract
In the past decades, China has made significant progress on space life science research. Since completing the construction of the China Space Station (CSS) at the end of 2022, space life science research in China has entered a new era. Through carrying out numerous experiments on space life sciences, space medicine, and space agriculture conducted aboard the Shenzhou series, the CSS, and ground-based space environment simulation platforms, Chinese scientists have uncovered the effects of the space environment on the physiological and molecular mechanisms of live organisms. These findings provide essential theoretical support for long-term manned space exploration. In this article, we review the new discoveries made by Chinese researchers, focusing on the impacts of both actual and simulated space environment on cells, microorganisms, plants, animals, and human health.
Collapse
Affiliation(s)
- Xiangyu Kong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yuhao Qin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Weiwei Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Liu C, Xue Q, Zhang Y, Zhang D, Li Y. Anti-hypertensive effect and potential mechanism of gastrodia-uncaria granules based on network pharmacology and experimental validation. J Clin Hypertens (Greenwich) 2024; 26:1024-1038. [PMID: 38990083 PMCID: PMC11488320 DOI: 10.1111/jch.14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 05/05/2024] [Indexed: 07/12/2024]
Abstract
Hypertension has become a major contributor to the morbidity and mortality of cardiovascular diseases worldwide. Despite the evidence of the anti-hypertensive effect of gastrodia-uncaria granules (GUG) in hypertensive patients, little is known about its potential therapeutic targets as well as the underlying mechanism. GUG components were sourced from TCMSP and HERB, with bioactive ingredients screened. Hypertension-related targets were gathered from DisGeNET, OMIM, GeneCards, CTD, and GEO. The STRING database constructed a protein-protein interaction network, visualized by Cytoscape 3.7.1. Core targets were analyzed via GO and KEGG using R package ClusterProfiler. Molecular docking with AutodockVina 1.2.2 revealed favorable binding affinities. In vivo studies on hypertensive mice and rats validated network pharmacology findings. GUG yielded 228 active ingredients and 1190 targets, intersecting with 373 hypertension-related genes. PPI network analysis identified five core genes: AKT1, TNF-α, GAPDH, IL-6, and ALB. Top enriched GO terms and KEGG pathways associated with the anti-hypertensive properties of GUG were documented. Molecular docking indicated stable binding of core components to targets. In vivo study showed that GUG could improve vascular relaxation, alleviate vascular remodeling, and lower blood pressure in hypertensive animal models possibly through inhibiting inflammatory factors such as AKT1, mTOR, and CCND1. Integrated network pharmacology and in vivo experiment showed that GUG may exert anti-hypertensive effects by inhibiting inflammation response, which provides some clues for understanding the effect and mechanisms of GUG in the treatment of hypertension.
Collapse
Affiliation(s)
- Chu‐Hao Liu
- Department of Cardiovascular MedicineShanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Qi‐Qi Xue
- Department of Cardiovascular MedicineShanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Yi‐Qing Zhang
- Department of Cardiovascular MedicineShanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Dong‐Yan Zhang
- Department of Cardiovascular MedicineShanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| | - Yan Li
- Department of Cardiovascular MedicineShanghai Institute of Hypertension, Shanghai Key Laboratory of Hypertension, National Research Centre for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
3
|
Tiberio F, Coda ARD, Tosi DD, Luzi D, Polito L, Liso A, Lattanzi W. Mechanobiology and Primary Cilium in the Pathophysiology of Bone Marrow Myeloproliferative Diseases. Int J Mol Sci 2024; 25:8860. [PMID: 39201546 PMCID: PMC11354938 DOI: 10.3390/ijms25168860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Philadelphia-Negative Myeloproliferative neoplasms (MPNs) are a diverse group of blood cancers leading to excessive production of mature blood cells. These chronic diseases, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), can significantly impact patient quality of life and are still incurable in the vast majority of the cases. This review examines the mechanobiology within a bone marrow niche, emphasizing the role of mechanical cues and the primary cilium in the pathophysiology of MPNs. It discusses the influence of extracellular matrix components, cell-cell and cell-matrix interactions, and mechanosensitive structures on hematopoietic stem cell (HSC) behavior and disease progression. Additionally, the potential implications of the primary cilium as a chemo- and mechanosensory organelle in bone marrow cells are explored, highlighting its involvement in signaling pathways crucial for hematopoietic regulation. This review proposes future research directions to better understand the dysregulated bone marrow niche in MPNs and to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Federica Tiberio
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Domiziano Dario Tosi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
| | - Debora Luzi
- S.C. Oncoematologia, Azienda Ospedaliera di Terni, 05100 Terni, Italy;
| | - Luca Polito
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
| | - Arcangelo Liso
- Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Wanda Lattanzi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
4
|
Yang Q, Tian L, Wang W, Chen X, Tao J. Post-fertilization 2-ethylhexyl-4-methoxycinnamate (EHMC) exposure affects axonal growth, muscle fiber length, and motor behavior in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116053. [PMID: 38306815 DOI: 10.1016/j.ecoenv.2024.116053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/04/2024]
Abstract
Organic UV filters, which are often found in the environment, have been the focus of much public health concern. 2-ethylhexyl-4-methoxycinnamate (EHMC) is one of the most common organic UV filters present in the environment. However, few studies have investigated its developmental neurotoxic (DNT) effects and the underlying molecular mechanisms. In the present study, zebrafish embryos were exposed to low concentration of EHMC (0, 0.01, 0.1, 1 mg/L) in static water starting from 6 h post-fertilization (hpf). Results showed that EHMC exposure caused a reduction in somite count at 13 hpf, a diminishment in head-trunk angle at 30 hpf, a delay in hatching at 48 hpf, and a decrease in head depth and head length at both 30 and 48 hpf. Additionally, EHMC led to abnormal motor behaviors at various developmental stages including altered spontaneous movement at both 23 and 24 hpf, and decreased touch response at 30 hpf. Consistent with these morphological changes and motor behavior deficits, EHMC inhibited axonal growth of primary motor neurons at 30 and 48 hpf, and yielded subtle changes in muscle fiber length at 48 hpf, suggesting the functional relevance of structural changes. Moreover, EHMC exposure induced excessive cell apoptosis in the head and spinal cord regions, increased the production of reactive oxygen species (ROS) and malondialdehyde (MDA), and reduced the level of glutathione (GSH). Defects of lateral line system neuromasts were also observed, but no structural deformity of blood vessels was seen in developing zebrafish. Abnormal expression of axonal growth-related genes (gap43, mbp, shha, and α1-tubulin) and apoptosis-related genes (bax/bcl-2 and caspase-3) revealed potential molecular mechanisms regarding the defective motor behaviors and aberrant phenotype. In summary, our findings indicate that EHMC induced developmental neurotoxicity in zebrafish, making it essential to assess its risks and provide warnings regarding EHMC exposure.
Collapse
Affiliation(s)
- Qinyuan Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Linxuan Tian
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Weiwei Wang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Xiong Chen
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Junyan Tao
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou 561113, China.
| |
Collapse
|