1
|
Liu X, Enoki Y, Taguchi K, Matsumoto K. Development of a pharmacokinetic/pharmacodynamic evaluation model for osteomyelitis and usefulness of tedizolid as an alternative to vancomycin against MRSA osteomyelitis. J Pharm Pharmacol 2025; 77:291-298. [PMID: 39504578 DOI: 10.1093/jpp/rgae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVES This study aimed to develop a suitable osteomyelitis model for pharmacokinetic/pharmacodynamic (PK/PD) evaluation and to investigate the target PK/PD values of vancomycin and tedizolid against methicillin-resistant Staphylococcus aureus (MRSA) osteomyelitis. METHODS An osteomyelitis model was established by implanting an MRSA-exposed sterilized suture in the tibia of normal mice and mice with cyclophosphamide-induced neutropenia. The suitability of the osteomyelitis mouse model for PK/PD evaluation was assessed using vancomycin as an indicator. The target PK/PD values for tedizolid were determined using this model. KEY FINDINGS In neutropenic mice, to achieve a static effect and 1 log10 kill against MRSA, the ratios of the area under the free drug concentration-time curve for 24 h to the minimum inhibitory concentration (fAUC24/MIC) of vancomycin were 91.29 and 430.03, respectively, confirming the validity of the osteomyelitis model for PK/PD evaluation. In immunocompetent mice, the target fAUC24/MIC values of tedizolid for achieving a static effect and 1 log10 kill against MRSA were 2.40 and 49.20, respectively. Additionally, only a 0.28 log10 kill was achieved in neutropenic mice with 20 times the human equivalent dose of tedizolid. CONCLUSIONS In patients with restored immunity, tedizolid can potentially be used as an alternative to intravenous vancomycin therapy.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shiba koen, Minato-ku, Tokyo 105-8512, Japan
| | - Yuki Enoki
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shiba koen, Minato-ku, Tokyo 105-8512, Japan
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shiba koen, Minato-ku, Tokyo 105-8512, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shiba koen, Minato-ku, Tokyo 105-8512, Japan
| |
Collapse
|
2
|
Ren F, Li S, Liu Y, Li X, Wu X, Zhang Z. Clinical Efficacy and Safety of Vancomycin Based on Unbound Vancomycin Concentration Monitoring. Ther Drug Monit 2024:00007691-990000000-00297. [PMID: 39661116 DOI: 10.1097/ftd.0000000000001292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/12/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVE To monitor total trough concentration (Cmin_total) and unbound trough concentration (Cmin_free) of vancomycin in clinical samples and analyze the factors influencing them, and to assess their correlation with clinical efficacy and acute kidney injury (AKI). METHODS Plasma samples were processed by protein precipitation, followed by hollow-fiber centrifugal ultrafiltration to separate unbound vancomycin from plasma. Thereafter, Cmin_total and Cmin_free were determined using high-performance liquid chromatography. Clinical data of patients were collected. Factors affecting vancomycin Cmin_total, Cmin_free, and their correlation with clinical efficacy and nephrotoxicity were investigated. RESULTS A total of 146 samples from 105 included patients were collected. Cmin_total and Cmin_free of vancomycin ranged from 0.62 to 56.08 mcg·mL-1 and 0.61-38.51 mcg·mL-1, respectively. Cmin_total and Cmin_free were correlated (r = 0.8899), influenced by basal creatinine and cystatin C. Higher level of Cmin_free (˃8.6 mcg·mL-1) and nephrotoxic drugs concomitant were risk factors of vancomycin-associated AKI (P < 0.05); Cmin_total and Cmin_free thresholds of vancomycin-associated AKI were 15.35 and 6.83 mcg·mL-1, respectively. CONCLUSIONS vancomycin Cmin_total and Cmin_free, higher Cmin_total and Cmin_free were correlated and higher concentrations of both may increase the risk of AKI.
Collapse
Affiliation(s)
- Fefei Ren
- The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | |
Collapse
|
3
|
Cao A, Li Q, Han M, Liu Q, Liang H, Tan L, Guan Y. Physiologically Based Pharmacokinetic Modeling of Vancomycin and its Comparison with Population Pharmacokinetic Model in Neonates. J Clin Pharmacol 2024. [PMID: 39223982 DOI: 10.1002/jcph.6126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Vancomycin has a narrow therapeutic window and a high inter-individual pharmacokinetic variability, especially in neonates with fast maturational and pathophysiological changes, that needs individualized dosing. Physiologically based pharmacokinetic (PBPK) model and population pharmacokinetic (PopPK) model are both useful tools in model-informed precision dosing, while the former is under research in application of vancomycin in neonates. This study aimed to develop a PBPK model of vancomycin in adult and pediatric population, and compared it with published PopPK model (priori or Bayesian method) in predicting vancomycin concentration in 230 neonatal patients (postmenstrual age, PMA, 25-45 weeks). The developed PBPK model showed a good fit between predictions and observations. PBPK model and PopPK model are complementary in different clinical scenarios of vancomycin application. The physiological-change description of PBPK model showed a superior advantage in initial dosing optimization. As for subsequent dose optimization, PopPK Bayesian forecasting performed better than the PBPK estimation in neonates. However, initial precision dosing tools for early neonates (with PMA < 36 weeks) still need further exploitation.
Collapse
Affiliation(s)
- Ailing Cao
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qiaoxi Li
- Department of Pharmacy, The First People's Hospital of Foshan, Foshan, China
| | - Minzhen Han
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Qian Liu
- Department of Pharmacy, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Heng Liang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lu Tan
- Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yanping Guan
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Lier C, Dejaco A, Kratzer A, Kees MG, Kees F, Dorn C. Free serum concentrations of antibiotics determined by ultrafiltration: extensive evaluation of experimental variables. Bioanalysis 2024; 16:747-756. [PMID: 39041640 PMCID: PMC11389746 DOI: 10.1080/17576180.2024.2365526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024] Open
Abstract
Aim: To assess the impact of experimental conditions on free serum concentrations as determined by ultrafiltration and HPLC-DAD analysis in a wide range of antibiotics.Materials & methods: Relative centrifugation force (RCF), temperature, pH and buffer were varied and the results compared with the standard protocol (phosphate buffer pH 7.4, 37°C, 1000 × g).Results: Generally, at 10,000 × g the unbound fraction (fu) decreased with increasing molecular weight, and was lower at 22°C. In unbuffered serum, the fu of flucloxacillin or valproic acid was increased, that of basic or amphoteric drugs considerably decreased. Comparable results were obtained using phosphate or HEPES buffer except for drugs which form metal chelate complexes.Conclusion: Maintaining a physiological pH is more important than strictly maintaining body temperature.
Collapse
Affiliation(s)
- Constantin Lier
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| | - Alexander Dejaco
- Department of Anaesthesiology, University Hospital Regensburg, Regensburg, Germany
| | - Alexander Kratzer
- Hospital Pharmacy, University Hospital Regensburg, Regensburg, Germany
| | - Martin G Kees
- Department of Anaesthesiology, University Hospital Regensburg, Regensburg, Germany
| | - Frieder Kees
- Department of Pharmacology, University of Regensburg, Regensburg, Germany
| | - Christoph Dorn
- Institute of Pharmacy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Brozmanová H, Šištík P, Ďuricová J, Kacířová I, Kaňková K, Kolek M. Liquid chromatography-tandem mass spectrometry methods for quantification of total and free antibiotic concentrations in serum and exudate from patients with post-sternotomy deep sternal wound infection receiving negative pressure wound therapy. Clin Chim Acta 2024; 554:117704. [PMID: 38185284 DOI: 10.1016/j.cca.2023.117704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Systemically administered antibiotics are thought to penetrate the wounds more effectively during negative pressure wound therapy (NPWT).To test this hypothesis total and free antibiotic concentrations were quantified in serum and wound exudate. METHODS UHPLC-MS/MS methods were developed and validated for the determination of ceftazidime, cefepime, cefotaxime, cefuroxime, cefazolin, meropenem, oxacillin, piperacillin with tazobactam, clindamycin, ciprofloxacin, sulfamethoxazole/trimethoprim (cotrimoxazole), gentamicin, vancomycin, and linezolid. The unbound antibiotic fraction was obtained by ultrafiltration using a Millipore Microcon-30kda Centrifugal Filter Unit. Analysis was performed on a 1.7-µm Acquity UPLC BEH C18 2.1 × 100-mm column with a gradient elution. RESULTS The validation was performed for serum, exudates and free fractions. For all matrices, requirements were met regarding linearity, precision, accuracy, limit of quantitation, and matrix effect. The coefficient of variation was in the range of 1.2-13.6%.and the recovery 87.6-115.6%, respectively. Among the 29 applications of antibiotics thus far, including vancomycin, clindamycin, ciprofloxacin, oxacillin, cefepime, cefotaxime, cotrimoxazole, and gentamicin, total and free antibiotic concentrations in serum and exudate were correlated. CONCLUSION This method can accurately quantify the total and free concentrations of 16 antibiotics. Comparison of concentration ratios between serum and exudates allows for monitoring individual antibiotics' penetration capacity in patients receiving NPWT.
Collapse
Affiliation(s)
- Hana Brozmanová
- Department of Clinical Pharmacology, Institute of Laboratory Medicine, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic; Department of Clinical Pharmacology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
| | - Pavel Šištík
- Department of Clinical Pharmacology, Institute of Laboratory Medicine, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic; Department of Clinical Pharmacology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic.
| | - Jana Ďuricová
- Department of Clinical Pharmacology, Institute of Laboratory Medicine, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic; Department of Clinical Pharmacology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
| | - Ivana Kacířová
- Department of Clinical Pharmacology, Institute of Laboratory Medicine, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic; Department of Clinical Pharmacology, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
| | - Klára Kaňková
- Department of Cardiac Surgery, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic
| | - Martin Kolek
- Department of Cardiac Surgery, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava, Czech Republic; Department of Clinic Subjects, Faculty of Medicine, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic
| |
Collapse
|
6
|
Viertel K, Feles E, Schulte M, Annecke T, Mattner F. Serum concentration of continuously administered vancomycin influences efficacy and safety in critically ill adults: a systematic review. Int J Antimicrob Agents 2023; 62:107005. [PMID: 37839714 DOI: 10.1016/j.ijantimicag.2023.107005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVES Vancomycin is used to treat Gram-positive infections in critically ill adults. For vancomycin administered by continuous infusion (CI), various target ranges have been used, ranging from 15-20 mg/L to 30-40 mg/L. This systematic literature review was conducted to investigate the impact of steady-state serum concentration (Css) of CI on safety and efficacy of therapy in critically ill adults. METHODS Relevant literature was identified by searching two electronic databases (PubMed, Cochrane Library) and Google Scholar from inception until July 2023, focusing on studies reporting measured Css and treatment outcomes (e.g. mortality, nephrotoxicity) with CI. Due to study heterogeneity, a narrative synthesis of the evidence was performed. RESULTS Twenty-one publications were included with a total of 2949 patients. Mortality was higher (two studies, n = 388 patients) and clinical cure was lower (one study, n = 40 patients) with Css < 15 mg/L measured 24 h after initiation of CI (C24). An adequate loading dose appeared most important for maintaining higher C24. Generally, higher Css was associated with higher rates of acute kidney injury (AKI) (15 studies, n = 2331 patients). It was calculated that Css < 25 mg/L (versus ≥25 mg/L) was preferable for reducing nephrotoxicity (three studies, n = 515 patients). CONCLUSIONS Despite sparse data availability, the target range of 15-25 mg/L in CI may increase clinical cure and reduce mortality and AKI. In future research, vancomycin Css cohorts should be formed to allow evaluation of the impact of Css of CI on treatment outcomes.
Collapse
Affiliation(s)
- Katrin Viertel
- Central Pharmacy, Cologne Merheim Medical Centre, University Hospital of Witten/Herdecke, Ostmerheimer Str. 200, 51109 Cologne, Germany; Institute of Hygiene, Cologne Merheim Medical Centre, University Hospital of Witten/Herdecke, Ostmerheimer Str. 200, 51109 Cologne, Germany; Division of Hygiene and Environmental Medicine, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Alfred-Herrhausen-Straße 50, 58455 Witten, Germany.
| | - Elisabeth Feles
- Central Pharmacy, Cologne Merheim Medical Centre, University Hospital of Witten/Herdecke, Ostmerheimer Str. 200, 51109 Cologne, Germany; Institute of Hygiene, Cologne Merheim Medical Centre, University Hospital of Witten/Herdecke, Ostmerheimer Str. 200, 51109 Cologne, Germany; Division of Hygiene and Environmental Medicine, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Alfred-Herrhausen-Straße 50, 58455 Witten, Germany
| | - Melanie Schulte
- Central Pharmacy, Cologne Merheim Medical Centre, University Hospital of Witten/Herdecke, Ostmerheimer Str. 200, 51109 Cologne, Germany
| | - Thorsten Annecke
- Department of Anaesthesiology and Intensive Care Medicine, Cologne Merheim Medical Centre, University Hospital of Witten/Herdecke, Ostmerheimer Str. 200, 51109 Cologne, Germany
| | - Frauke Mattner
- Institute of Hygiene, Cologne Merheim Medical Centre, University Hospital of Witten/Herdecke, Ostmerheimer Str. 200, 51109 Cologne, Germany; Division of Hygiene and Environmental Medicine, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Alfred-Herrhausen-Straße 50, 58455 Witten, Germany
| |
Collapse
|
7
|
Oda K, Jono H, Saito H. Model-Informed Precision Dosing of Vancomycin in Adult Patients Undergoing Hemodialysis. Antimicrob Agents Chemother 2023; 67:e0008923. [PMID: 37195225 PMCID: PMC10286780 DOI: 10.1128/aac.00089-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023] Open
Abstract
Model-informed precision dosing (MIPD) maximizes the probability of successful dosing in patients undergoing hemodialysis. In these patients, area under the concentration-time curve (AUC)-guided dosing is recommended for vancomycin. However, this model is yet to be developed. The purpose of this study was to address this issue. The overall mass transfer-area coefficient (KoA) was used for the estimation of vancomycin hemodialysis clearance. A population pharmacokinetic (popPK) model was developed, resulting in a fixed-effect parameter for nonhemodialysis clearance of 0.316 liters/h. This popPK model was externally evaluated, with a resulting mean absolute error of 13.4% and mean prediction error of -0.17%. KoA-predicted hemodialysis clearance was prospectively evaluated for vancomycin (n = 10) and meropenem (n = 10), with a correlation equation being obtained (slope of 1.099, intercept of 1.642; r = 0.927, P < 0.001). An experimental evaluation using an in vitro hemodialysis circuit validated the developed model of KoA-predicted hemodialysis clearance using vancomycin, meropenem, vitamin B6, and inulin in 12 hemodialysis settings. This popPK model indicated a maximum a priori dosing for vancomycin-a loading dose of 30 mg/kg, which achieves the target AUC for 24 h after first dose with a probability of 93.0%, ensured by a predialysis concentration of >15 μg/mL. Maintenance doses of 12 mg/kg after every hemodialysis session could achieve the required exposure, with a probability of 80.6%. In conclusion, this study demonstrated that KoA-predicted hemodialysis clearance may lead to an upgrade from conventional dosing to MIPD for vancomycin in patients undergoing hemodialysis.
Collapse
Affiliation(s)
- Kazutaka Oda
- Department of Pharmacy, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan
| | - Hirofumi Jono
- Department of Pharmacy, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Hideyuki Saito
- Department of Pharmacy, Kumamoto University Hospital, Chuo-ku, Kumamoto, Japan
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| |
Collapse
|
8
|
Hypoalbuminemia and Pharmacokinetics: When the Misunderstanding of a Fundamental Concept Leads to Repeated Errors over Decades. Antibiotics (Basel) 2023; 12:antibiotics12030515. [PMID: 36978382 PMCID: PMC10044130 DOI: 10.3390/antibiotics12030515] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Surprisingly, misinterpretation of the influence of hypoalbuminemia on pharmacokinetics and the clinical effects of drugs seems to be a current problem, even though hypoalbuminemia has no impact on the pharmacologically active exposure. Exceptions to this fact are highly protein-bound anaesthetics with high elimination capacity (i.e., <5 drugs on the market). To assess the frequency of misinterpretation of the influence of hypoalbuminemia on pharmacokinetics and the clinical effects of drugs between 1975 and 2021, a PubMed literature review was conducted. Each paragraph on albumin binding was classified as correct, ambiguous or incorrect, creating two acceptable categories: (1) content without any errors, and (2) content containing some incorrect and/or ambiguous statements. The analyses of these articles showed that fewer than 11% of articles contained no interpretation errors. In order to contain this misinterpretation, several measures are proposed: (1) Make the message accessible to a wide audience by offering a simplified and didactic video representation of the lack of impact of albumin binding to drugs. (2) Precise terminology (unbound/free form/concentration) should be used for highly bound drugs. (3) Unbound/free forms should be systematically quantified for highly plasma protein bound drugs for clinical trials as well as for therapeutic drug monitoring.
Collapse
|
9
|
Ren F, Liu Y, Li S, Li X, Wu X, Li Y, Zhang Z. Therapeutic drug monitoring of free vancomycin concentration in practice: A new analytical technique based on the HFCF-UF sample separation method. Biomed Chromatogr 2023; 37:e5559. [PMID: 36478261 DOI: 10.1002/bmc.5559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
The aim of this study was to establish a method for free vancomycin concentration determination in human plasma and apply it to clinical therapeutic drug monitoring (TDM). The unbound vancomycin in plasma was separated by the hollow fiber centrifugal ultrafiltration (HFCF-UF) technique and analyzed by HPLC. Chromatographic conditions were optimized, the specificity, linearity, precision, recovery and stability of the method were examined, and plasma samples of patients were measured. The standard curve for free vancomycin is y = 0.0277x - 0.0080 with good linearity within 0.25-50 μg·mL-1 . The relative and absolute recovery rates for vancomycin were 98.63-101.0% and 88.41-101.2%, respectively. The intraday and interday precision RSDs were <10%. Plasma was stable under several conditions. The TDM value of the free vancomycin concentration of 20 patients was 0.99-38.51 μg·mL-1 , and the correlation between the free and total concentrations was not significant. The unbound fraction of vancomycin ranged from 25.5 to 84.8%, with large variation. The operation of free vancomycin separation by HFCF-UF was simple and suitable for TDM in practice. The unbound fraction of vancomycin in clinical samples varied significantly between individuals. It is recommended to perform free concentration TDM in critically ill patients.
Collapse
Affiliation(s)
- Feifei Ren
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yixin Liu
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shan Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangchen Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xikun Wu
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaqian Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiqing Zhang
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Bulman ZP, Wicha SG, Nielsen EI, Lenhard JR, Nation RL, Theuretzbacher U, Derendorf H, Tängdén T, Zeitlinger M, Landersdorfer CB, Bulitta JB, Friberg LE, Li J, Tsuji BT. Research priorities towards precision antibiotic therapy to improve patient care. THE LANCET. MICROBE 2022; 3:e795-e802. [PMID: 35777386 DOI: 10.1016/s2666-5247(22)00121-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/04/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022]
Abstract
Antibiotic resistance presents an incessant threat to our drug armamentarium that necessitates novel approaches to therapy. Over the past several decades, investigation of pharmacokinetic and pharmacodynamic (PKPD) principles has substantially improved our understanding of the relationships between the antibiotic, pathogen, and infected patient. However, crucial gaps in our understanding of the pharmacology of antibacterials and their optimal use in the care of patients continue to exist; simply attaining antibiotic exposures that are considered adequate based on traditional targets can still result in treatment being unsuccessful and resistance proliferation for some infections. It is this salient paradox that points to key future directions for research in antibiotic therapeutics. This Personal View discusses six priority areas for antibiotic pharmacology research: (1) antibiotic-pathogen interactions, (2) antibiotic targets for combination therapy, (3) mechanistic models that describe the time-course of treatment response, (4) understanding and modelling of host response to infection, (5) personalised medicine through therapeutic drug management, and (6) application of these principles to support development of novel therapies. Innovative approaches that enhance our understanding of antibiotic pharmacology and facilitate more accurate predictions of treatment success, coupled with traditional pharmacology research, can be applied at the population level and to individual patients to improve outcomes.
Collapse
Affiliation(s)
- Zackery P Bulman
- Department of Pharmacy Practice, University of Illinois Chicago, Chicago, IL, USA.
| | - Sebastian G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | | | - Justin R Lenhard
- Department of Clinical and Administrative Sciences, California Northstate University College of Pharmacy, Elk Grove, CA, USA
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | | | - Hartmut Derendorf
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Thomas Tängdén
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Cornelia B Landersdorfer
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Jürgen B Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, FL, USA
| | - Lena E Friberg
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Jian Li
- Monash Biomedicine Discovery Institute, Infection and Immunity Program and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Brian T Tsuji
- Department of Pharmacy Practice, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
11
|
Does Monitoring Total and Free Polymyxin B1 Plasma Concentrations Predict Polymyxin B-Induced Nephrotoxicity? A Retrospective Study in Critically Ill Patients. Infect Dis Ther 2022; 11:1591-1608. [PMID: 35689791 PMCID: PMC9334479 DOI: 10.1007/s40121-022-00655-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/04/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION The correlation between total and free polymyxin B (PMB including PMB1 and PMB2) exposure in vivo and acute kidney injury (AKI) remains obscure. This study explores the relationships between plasma exposure of PMB1 and PMB2 and nephrotoxicity, and investigates the risk factors for PMB-induced acute kidney injury (AKI) in critically ill patients. METHODS Critically ill patients who used PMB and met the criteria were enrolled. The total plasma concentration and plasma binding of PMB1 and PMB2 were analysed by liquid chromatography-tandem mass spectrometry and equilibrium dialysis. RESULTS A total of 89 patients were finally included, and AKI developed in 28.1% of them. The peak concentration of PMB1 (Cmax (B1)) (adjusted odds ratio (AOR) = 1.68, 95% CI 1.08-2.62, p = 0.023), baseline BUN level (AOR = 1.08, 95% CI 1.01-1.16, p = 0.039) and hypertension (AOR = 3.73, 95% CI 1.21-11.54, p = 0.022) were independent risk factors for PMB-induced AKI. The area under the ROC curve of the model was 0.799. When Cmax (B1) was 5.23 μg/ml or more, the probability of AKI was higher than 50%. The ratio of PMB1/PMB2 decreased after PMB preparation entered into the body. The protein binding rate in critically ill patients indicated significant individual differences. Free Cmax (B) and free Cmax (B1) levels in the AKI group were significantly (p < 0.05) higher than those in the non-AKI group. Total and free concentrations of PMB in patients showed a positive correlation. CONCLUSIONS Both the ROC curve and logistic regression model showed that Cmax (B1) was a good predictor for the probability of PMB-induced AKI. Early therapeutic drug monitoring (TDM) of PMB should be considered in critically ill patients. Compared with Cmin (B), Cmax (B) and Cmax (B1) may be helpful for the early prediction of PMB-induced AKI in critically ill patients.
Collapse
|
12
|
Bian X, Qu X, Zhang J, Nang SC, Bergen PJ, Tony Zhou Q, Chan HK, Feng M, Li J. Pharmacokinetics and pharmacodynamics of peptide antibiotics. Adv Drug Deliv Rev 2022; 183:114171. [PMID: 35189264 PMCID: PMC10019944 DOI: 10.1016/j.addr.2022.114171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/23/2022] [Accepted: 02/16/2022] [Indexed: 01/05/2023]
Abstract
Antimicrobial resistance is a major global health challenge. As few new efficacious antibiotics will become available in the near future, peptide antibiotics continue to be major therapeutic options for treating infections caused by multidrug-resistant pathogens. Rational use of antibiotics requires optimisation of the pharmacokinetics and pharmacodynamics for the treatment of different types of infections. Toxicodynamics must also be considered to improve the safety of antibiotic use and, where appropriate, to guide therapeutic drug monitoring. This review focuses on the pharmacokinetics/pharmacodynamics/toxicodynamics of peptide antibiotics against multidrug-resistant Gram-negative and Gram-positive pathogens. Optimising antibiotic exposure at the infection site is essential for improving their efficacy and minimising emergence of resistance.
Collapse
Affiliation(s)
- Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; School of Pharmacy, Fudan University, Shanghai, China
| | - Xingyi Qu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; School of Pharmacy, Fudan University, Shanghai, China; Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Phillip J Bergen
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Meiqing Feng
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia.
| |
Collapse
|
13
|
Kim HY, Byashalira KC, Heysell SK, Märtson AG, Mpagama SG, Rao P, Sturkenboom MG, Alffenaar JWC. Therapeutic Drug Monitoring of Anti-infective Drugs: Implementation Strategies for 3 Different Scenarios. Ther Drug Monit 2022; 44:3-10. [PMID: 34686647 PMCID: PMC8755585 DOI: 10.1097/ftd.0000000000000936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/14/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) supports personalized treatment. For successful implementation, TDM must have a turnaround time suited to the clinical needs of patients and their health care settings. Here, the authors share their views of how a TDM strategy can be tailored to specific settings and patient groups. METHODS The authors selected distinct scenarios for TDM: high-risk, complex, and/or critically ill patient population; outpatients; and settings with limited laboratory resources. In addition to the TDM scenario approach, they explored potential issues with the legal framework governing dose escalation. RESULTS The most important issues identified in the different scenarios are that critically ill patients require rapid turnaround time, outpatients require an easy sampling procedure for the sample matrix and sample collection times, settings with limited laboratory resources necessitate setting-specific analytic techniques, and all scenarios warrant a legal framework to capture the use of escalated dosages, ideally with the use of trackable dosing software. CONCLUSIONS To benefit patients, TDM strategies need to be tailored to the intended population. Strategies can be adapted for rapid turnaround time for critically ill patients, convenient sampling for outpatients, and feasibility for those in settings with limited laboratory resources.
Collapse
Affiliation(s)
- Hannah Yejin Kim
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
- Westmead Hospital, Sydney, NSW 2145, Australia
- Marie Bashir Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Scott K. Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Virginia, USA
| | - Anne-Grete Märtson
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | | | - Prakruti Rao
- Division of Infectious Diseases and International Health, University of Virginia, Virginia, USA
| | - Marieke G.G. Sturkenboom
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | - Jan-Willem C. Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
- Westmead Hospital, Sydney, NSW 2145, Australia
- Marie Bashir Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
14
|
Resztak M, Sobiak J, Czyrski A. Recent Advances in Therapeutic Drug Monitoring of Voriconazole, Mycophenolic Acid, and Vancomycin: A Literature Review of Pediatric Studies. Pharmaceutics 2021; 13:1991. [PMID: 34959272 PMCID: PMC8707246 DOI: 10.3390/pharmaceutics13121991] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/02/2021] [Accepted: 11/18/2021] [Indexed: 01/05/2023] Open
Abstract
The review includes studies dated 2011-2021 presenting the newest information on voriconazole (VCZ), mycophenolic acid (MPA), and vancomycin (VAN) therapeutic drug monitoring (TDM) in children. The need of TDM in pediatric patients has been emphasized by providing the information on the differences in the drugs pharmacokinetics. TDM of VCZ should be mandatory for all pediatric patients with invasive fungal infections (IFIs). Wide inter- and intrapatient variability in VCZ pharmacokinetics cause achieving and maintaining therapeutic concentration during therapy challenging in this population. Demonstrated studies showed, in most cases, VCZ plasma concentrations to be subtherapeutic, despite the updated dosages recommendations. Only repeated TDM can predict drug exposure and individualizing dosing in antifungal therapy in children. In children treated with mycophenolate mofetil (MMF), similarly as in adult patients, the role of TDM for MMF active form, MPA, has not been well established and is undergoing continued debate. Studies on the MPA TDM have been carried out in children after renal transplantation, other organ transplantation such as heart, liver, or intestine, in children after hematopoietic stem cell transplantation or cord blood transplantation, and in children with lupus, nephrotic syndrome, Henoch-Schönlein purpura, and other autoimmune diseases. MPA TDM is based on the area under the concentration-time curve; however, the proposed values differ according to the treatment indication, and other approaches such as pharmacodynamic and pharmacogenetic biomarkers have been proposed. VAN is a bactericidal agent that requires TDM to prevent an acute kidney disease. The particular group of patients is the pediatric one. For this group, the general recommendations of the dosing may not be valid due to the change of the elimination rate and volume of distribution between the subjects. The other factor is the variability among patients that concerns the free fraction of the drug. It may be caused by both the patients' population and sample preconditioning. Although VCZ, MMF, and VAN have been applied in pediatric patients for many years, there are still few issues to be solve regarding TDM of these drugs to ensure safe and effective treatment. Except for pharmacokinetic approach, pharmacodynamics and pharmacogenetics have been more often proposed for TDM.
Collapse
Affiliation(s)
- Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781 Poznań, Poland; (J.S.); (A.C.)
| | | | | |
Collapse
|
15
|
Li X, Xu W, Li R, Guo Q, Li X, Sun J, Sun S, Li J. Prediction of Unbound Vancomycin Levels in Intensive Care Unit and Nonintensive Care Unit Patients: Total Bilirubin May Play an Important Role. Infect Drug Resist 2021; 14:2543-2554. [PMID: 34239310 PMCID: PMC8259942 DOI: 10.2147/idr.s311231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022] Open
Abstract
Background The mean unbound vancomycin fraction and whether the unbound vancomycin level could be predicted from the total vancomycin level are still controversial, especially for patients in different groups, such as intensive care unit (ICU) versus non-ICU patients. Other relevant potential patient characteristics that may predict unbound vancomycin levels have yet to be clearly determined. Methods We enrolled a relatively large study population and included widely comprehensive potential covariates to evaluate the unbound vancomycin fractions in a cohort of ICU (n=117 samples) and non-ICU patients (n=73 samples) by using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Results The mean unbound vancomycin fraction was 45.80% ± 18.69% (median, 46.01%; range: 2.13–99.45%) in the samples from the total population. No significant differences in the unbound vancomycin fraction were found between the ICU patients and the non-ICU patients (P=0.359). A significant correlation was established between the unbound and total vancomycin levels. The unbound vancomycin level can be predicted with the following equations: unbound vancomycin level=0.395×total vancomycin level+0.019×total bilirubin level+0.468 (R2=0.771) for the ICU patients and unbound vancomycin level=0.526×total vancomycin level-0.527 (R2=0.749) for the non-ICU patients. Overall, the observed-versus-predicted plots were acceptable. Conclusion A significant correlation between the total and unbound vancomycin levels was found, and measurement of the unbound vancomycin level seems to have no added value over measurement of the total vancomycin level. The study developed parsimonious equations for predicting the unbound vancomycin level and provides a reference for clinicians to predict the unbound vancomycin level in adult populations.
Collapse
Affiliation(s)
- Xiao Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Wen Xu
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Ran Li
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Xiangpeng Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Jialin Sun
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Shuhong Sun
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| | - Jing Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, People's Republic of China
| |
Collapse
|
16
|
Preterm Physiologically Based Pharmacokinetic Model. Part II: Applications of the Model to Predict Drug Pharmacokinetics in the Preterm Population. Clin Pharmacokinet 2021; 59:501-518. [PMID: 31587145 DOI: 10.1007/s40262-019-00827-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Preterm neonates are usually not part of a traditional drug development programme, however they are frequently administered medicines. Developing modelling and simulation tools, such as physiologically based pharmacokinetic (PBPK) models that incorporate developmental physiology and maturation of drug metabolism, can be used to predict drug exposure in this group of patients, and may help to optimize drug dose adjustment. OBJECTIVE The aim of this study was to assess and verify the predictability of a preterm PBPK model using compounds that undergo diverse renal and/or hepatic clearance based on the knowledge of their disposition in adults. METHODS A PBPK model was developed in the Simcyp Simulator V17 to predict the pharmacokinetics (PK) of drugs in preterm neonates. Drug parameters for alfentanil, midazolam, caffeine, ibuprofen, gentamicin and vancomycin were collated from the literature. Predicted PK parameters and profiles were compared against the observed data. RESULTS The preterm PBPK model predicted the PK changes of the six compounds using ontogeny functions for cytochrome P450 (CYP) 1A2, CYP2C9 and CYP3A4 after oral and intravenous administrations. For gentamicin and vancomycin, the maturation of renal function was able to predict the exposure of these two compounds after intravenous administration. All PK parameter predictions were within a twofold error criteria. CONCLUSION While the developed preterm model for the prediction of PK behaviour in preterm patients is not intended to replace clinical studies, it can potentially help with deciding on first-time dosing in this population and study design in the absence of clinical data.
Collapse
|
17
|
A systematic review on chromatography-based method validation for quantification of vancomycin in biological matrices. Bioanalysis 2020; 12:1767-1786. [PMID: 33275028 DOI: 10.4155/bio-2020-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A fully validated bioanalytical methods are prerequisite for pharmacokinetic and bioequivalence studies as well as for therapeutic drug monitoring. Due to high pharmacokinetic variability and narrow therapeutic index, vancomycin requires reliable quantification methods for therapeutic drug monitoring. To identify published chromatographic based bioanalytical methods for vancomycin in current systematic review, PubMed and ScienceDirect databases were searched. The selected records were evaluated against the method validation criteria derived from international guidelines for critical assessment. The major deficiencies were identified in method validation parameters specifically for accuracy, precision and number of calibration and validation standards, which compromised the reliability of the validated bioanalytical methods. The systematic review enacts to adapt the recommended international guidelines for suggested validation parameters to make bioanalysis reliable.
Collapse
|
18
|
Metsu D, Lanot T, Fraissinet F, Concordet D, Gayrard V, Averseng M, Ressault A, Martin-Blondel G, Levade T, Février F, Chatelut E, Delobel P, Gandia P. Comparing ultrafiltration and equilibrium dialysis to measure unbound plasma dolutegravir concentrations based on a design of experiment approach. Sci Rep 2020; 10:12265. [PMID: 32703975 PMCID: PMC7378073 DOI: 10.1038/s41598-020-69102-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 06/30/2020] [Indexed: 11/30/2022] Open
Abstract
Dolutegravir therapeutic drug monitoring (TDM) could be improved by measuring the unbound dolutegravir plasma concentration (Cu), particularly in patients experiencing virological failure or toxicity despite achieving appropriate DTG total plasma concentrations. Equilibrium dialysis (ED) is the gold standard to measure Cu, but ED is time consuming, precluding its use in clinical practice. In contrast, ultrafiltration is applicable to TDM, but is sensitive to numerous analytical conditions. In order to evaluate measurements of Cu by ultrafiltration, ultrafiltration conditions were validated by comparison with ED. DTG concentrations were measured by LC–MS/MS. Three ultrafiltration factors (temperature, duration and relative centrifugal force [RCF]) were evaluated and compared to ED (25/37 °C), using a design of experiment strategy. Temperature was found to influence Cu results by ED (p = 0.036) and UF (p = 0.002) when results were analysed with ANOVA. Relative centrifugal force (2000 g) and time (20 min) interacted to influence Cu (p = 0.006), while individually they did not influence Cu (p = 0.88 and p = 0.42 for RCF and time). Ultrafiltration conditions which yielded the most comparable results to ED were 37 °C, 1000 g for 20 min. Ultrafiltration results greatly depended on analytical conditions, confirming the need to validate the method by comparison with ED in order to correctly interpret DTG Cu.
Collapse
Affiliation(s)
- David Metsu
- Department of Pharmacokinetics and Toxicology, Toulouse University Hospital, Toulouse, France.,INSERM, CRCT, Toulouse University, UPS, Toulouse, France
| | - Thomas Lanot
- Department of Pharmacokinetics and Toxicology, Toulouse University Hospital, Toulouse, France
| | - François Fraissinet
- Department of Pharmacokinetics and Toxicology, Toulouse University Hospital, Toulouse, France
| | | | | | - Manon Averseng
- Department of Pharmacokinetics and Toxicology, Toulouse University Hospital, Toulouse, France
| | - Alice Ressault
- Department of Pharmacokinetics and Toxicology, Toulouse University Hospital, Toulouse, France
| | - Guillaume Martin-Blondel
- Department of Infectious Diseases, University Hospital of Toulouse, Toulouse, France.,Inserm U1043 - CNRS UMR 5282, Toulouse-Purpan Pathophysiology Center, 31173, Toulouse Cedex, France
| | - Thierry Levade
- Department of Biochemistry, Toulouse University Hospital, Toulouse, France.,INSERM UMR1037, CRCT (Cancer Research Centre of Toulouse), Toulouse University, UPS, Toulouse, France
| | - Frédéric Février
- Department of Laboratory Medicine, GCS Ingres-Quercy, Montauban Hospital, Montauban, France
| | - Etienne Chatelut
- INSERM, CRCT, Toulouse University, UPS, Toulouse, France.,Institut Claudius-Regaud, IUCT-Oncopole, Toulouse, France
| | - Pierre Delobel
- Department of Infectious Diseases, University Hospital of Toulouse, Toulouse, France.,Inserm U1043 - CNRS UMR 5282, Toulouse-Purpan Pathophysiology Center, 31173, Toulouse Cedex, France
| | - Peggy Gandia
- Department of Pharmacokinetics and Toxicology, Toulouse University Hospital, Toulouse, France. .,INTHERES, INRA, ENVT, Toulouse University, Toulouse, France. .,Laboratoire de Pharmacocinétique Et Toxicologie (Pharmacokinetics and Toxicology Laboratory), Centre Hospitalo-Universitaire Purpan (Purpan University Medical Centre), 330 avenue de Grande-Bretagne, 31059, Toulouse, France.
| |
Collapse
|
19
|
Development of Vancomycin Dose Individualization Strategy by Bayesian Prediction in Patients Receiving Continuous Renal Replacement Therapy. Pharm Res 2020; 37:108. [PMID: 32468340 DOI: 10.1007/s11095-020-02820-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/07/2020] [Indexed: 01/31/2023]
Abstract
PURPOSE Vancomycin (VCM) concentration is often out of therapeutic range (10-20 μg/ml) in patients receiving continuous renal replacement therapy (CRRT). The purposes of this study were to develop a practical VCM population pharmacokinetic (PPK) model and to evaluate the potential of Bayesian prediction-based therapeutic drug monitoring (Bayes-TDM) in VCM dose individualization for patients receiving CRRT. METHODS We developed a VCM PPK model using 80 therapeutic concentrations in 17 patients receiving CRRT. Bayes-TDM with the VCM PPK model was evaluated in 23 patients after PPK modeling. RESULTS We identified the covariates reduced urine output (RUO, <0.5 ml/kg/h) and effluent flow rate of CRRT for the VCM PPK model. The mean VCM non CRRT clearance (CLnonCRRT) was 2.12 l/h. RUO lowered CLnonCRRT to 0.34 l/h. The volume of distribution was 91.3 l/70 kg. The target concentration attainment rate by Bayes-TDM was higher (87.0%) than that by the PPK modeling period (53.8%, P = 0.046). The variance of the second measured concentrations by the Bayes-TDM was lower (11.5, standard deviation: 3.4 μg/ml) than that by the PPK modeling period (50.5, standard deviation: 7.1 μg/ml, P = 0.003). CONCLUSIONS Bayes-TDM could be a useful tool for VCM dose individualization in patients receiving CRRT.
Collapse
|
20
|
Märtson AG, Sturkenboom MGG, Stojanova J, Cattaneo D, Hope W, Marriott D, Patanwala AE, Peloquin CA, Wicha SG, van der Werf TS, Tängdén T, Roberts JA, Neely MN, Alffenaar JWC. How to design a study to evaluate therapeutic drug monitoring in infectious diseases? Clin Microbiol Infect 2020; 26:1008-1016. [PMID: 32205294 DOI: 10.1016/j.cmi.2020.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) is a tool to personalize and optimize dosing by measuring the drug concentration and subsequently adjusting the dose to reach a target concentration or exposure. The evidence to support TDM is however often ranked as expert opinion. Limitations in study design and sample size have hampered definitive conclusions of the potential added value of TDM. OBJECTIVES We aim to give expert opinion and discuss the main points and limitations of available data from antibiotic TDM trials and emphasize key elements for consideration in design of future clinical studies to quantify the benefits of TDM. SOURCES The sources were peer-reviewed publications, guidelines and expert opinions from the field of TDM. CONTENT This review focuses on key aspects of antimicrobial TDM study design: describing the rationale for a TDM study, assessing the exposure of a drug, assessing susceptibility of pathogens and selecting appropriate clinical endpoints. Moreover we provide guidance on appropriate study design. IMPLICATIONS This is an overview of different aspects relevant for the conduct of a TDM study. We believe that this paper will help researchers and clinicians to design and conduct high-quality TDM studies.
Collapse
Affiliation(s)
- A-G Märtson
- University of Groningen, University Medical Centre Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | - M G G Sturkenboom
- University of Groningen, University Medical Centre Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | - J Stojanova
- Interdisciplinary Centre for Health Studies (CIESAL), Universidad de Valparaíso, Valparaíso, Chile
| | - D Cattaneo
- ASST Fatebenefratelli Sacco University Hospital, Unit of Clinical Pharmacology, Department of Laboratory Medicine, Milan, Italy
| | - W Hope
- University of Liverpool, Antimicrobial Pharmacodynamics and Therapeutics, Liverpool, UK; Royal Liverpool Broadgreen University Hospital Trust, Liverpool, United Kingdom
| | - D Marriott
- St Vincent's Hospital, Sydney, Australia
| | - A E Patanwala
- The University of Sydney, Sydney Pharmacy School, Sydney, New South Wales, Australia; Royal Prince Alfred Hospital, Sydney, Australia
| | - C A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - S G Wicha
- University of Hamburg, Department of Clinical Pharmacy, Institute of Pharmacy, Hamburg, Germany
| | - T S van der Werf
- University of Groningen, University Medical Centre Groningen, Department of Pulmonary Diseases and Tuberculosis, Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Department of Internal Medicine, Groningen, the Netherlands
| | - T Tängdén
- Uppsala University, Department of Medical Sciences, Uppsala, Sweden
| | - J A Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine & Centre for Translational Anti-infective Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Australia; Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia; Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - M N Neely
- Children's Hospital of Los Angeles, Laboratory of Applied Pharmacokinetics and Bioinformatics, Los Angeles, CA, USA
| | - J-W C Alffenaar
- University of Groningen, University Medical Centre Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands; The University of Sydney, Sydney Pharmacy School, Sydney, New South Wales, Australia; Westmead Hospital, Sydney, Australia; Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia.
| |
Collapse
|
21
|
Measuring Unbound Versus Total Piperacillin Concentrations in Plasma of Critically Ill Patients: Methodological Issues and Relevance. Ther Drug Monit 2020; 41:325-330. [PMID: 30633089 DOI: 10.1097/ftd.0000000000000602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Piperacillin is considered a moderately protein-bound antibiotic (20%-40%), with albumin being an important binding protein. Although infrequently used in practice, different methods to measure the fraction unbound (fu) are available, but uncertainty remains as to what the most appropriate method is. The main goal of this study was to estimate the impact of the methodology used to measure unbound piperacillin in plasma on the fu of piperacillin; we compared ultrafiltration (UF) at 4°C and 37°C with the reference method, equilibrium dialysis. In addition, we analyzed the impact of other proteins on the fu. METHODS Anonymized left-over Li-heparin plasma samples (n = 41) from 30 critically ill patients who were treated with piperacillin were used for the analyses. RESULTS We found that the piperacillin fu, determined by UF, is on average 8% higher at 37°C (91%) than at 4°C (83%). There were no systematic or proportional differences between UF at 4°C and equilibrium dialysis at 4°C. This emphasizes the importance of the temperature during UF, which should therefore be clearly stated in publications that report on the methodology of UF. No significant impact of the albumin-, IgA-, total protein-, or α1-acid glycoprotein concentration on the fu was found. The fu found in this study was higher than the generally assumed fu value of 60%-80%. A possible explanation lies in the studied population or in the temperature used. Based on our results, routine monitoring of unbound piperacillin in intensive care unit patients is not recommended. CONCLUSIONS Based on the prediction model, we can state that in intensive care patients the fu of piperacillin is 91% (SD 7%), determined with UF at 37°C.
Collapse
|
22
|
Schulz J, Kluwe F, Mikus G, Michelet R, Kloft C. Novel insights into the complex pharmacokinetics of voriconazole: a review of its metabolism. Drug Metab Rev 2019; 51:247-265. [PMID: 31215810 DOI: 10.1080/03602532.2019.1632888] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Voriconazole, a second-generation triazole frequently used for the prophylaxis and treatment of invasive fungal infections, undergoes complex metabolism mainly involving various (polymorphic) cytochrome P450 enzymes in humans. Although high inter- and intraindividual variability in voriconazole pharmacokinetics have been observed and the therapeutic range for this compound is relatively narrow, the metabolism of voriconazole has not been fully elucidated yet. The available literature data investigating the multiple different pathways and metabolites are extremely unbalanced and thus the absolute or relative contribution of the different pathways and enzymes involved in the metabolism of voriconazole remains uncertain. Furthermore, other factors such as nonlinear pharmacokinetics caused by auto-inhibition or -induction and polymorphisms of the metabolizing enzymes hinder safe and effective voriconazole dosing in clinical practice and have not yet been studied sufficiently. This review aimed at amalgamating the available literature on the pharmacokinetics of voriconazole in vitro and in vivo, with a special focus on metabolism in adults and children, in order to congregate an overall landscape of the current body of knowledge and identify knowledge gaps, opening the way towards further research in order to foster the understanding, towards better therapeutic dosing decisions.
Collapse
Affiliation(s)
- Josefine Schulz
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin , Berlin , Germany
| | - Franziska Kluwe
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin , Berlin , Germany.,Graduate Research Training Program PharMetrX , Berlin/Potsdam , Germany
| | - Gerd Mikus
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg , Heidelberg , Germany
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin , Berlin , Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin , Berlin , Germany
| |
Collapse
|
23
|
van der Mast JE, Nijsten MW, Alffenaar JC, Touw DJ, Bult W. In vitro evaluation of an intravenous microdialysis catheter for therapeutic drug monitoring of gentamicin and vancomycin. Pharmacol Res Perspect 2019; 7:e00483. [PMID: 31333845 PMCID: PMC6594919 DOI: 10.1002/prp2.483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/14/2019] [Accepted: 03/31/2019] [Indexed: 01/06/2023] Open
Abstract
A central venous catheter with a built-in microdialysis membrane is available for continuous lactate and glucose monitoring in the intensive care unit (ICU). As this catheter might also be suitable for repeated measurements of unbound drug levels, we studied in vitro the feasibility of monitoring unbound antibiotic concentrations. The catheter was placed in various media at 37°C spiked with gentamicin or vancomycin. Dialysate fractions were repeatedly collected over 3 hours with a NaCl 0.9% perfusate flow of 5 μL/min. Total and unbound drug concentrations in medium and perfusate were measured by immunoassay. After 60 minutes stable recovery for both drugs was observed, with mean ±SD relative recoveries of vancomycin and gentamicin in human serum of 64% ±0.4% and 73% ±3%. The recoveries of the unbound concentrations were 91% ±3% and 91% ±4%. This intravenous microdialysis system may be a very useful platform for therapeutic drug monitoring in the ICU.
Collapse
Affiliation(s)
- Jackelien E. van der Mast
- Department of Clinical Pharmacy and PharmacologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
- Department of Clinical PharmacyMáxima Medical CenterVeldhovenThe Netherlands
| | - Maarten W. Nijsten
- Department of Critical CareUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Jan‐Willem C. Alffenaar
- Department of Clinical Pharmacy and PharmacologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Daan J. Touw
- Department of Clinical Pharmacy and PharmacologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
- Department of Pharmacy, section Pharmacokinetics, toxicology and targetingUniversity of GroningenGroningenThe Netherlands
| | - Wouter Bult
- Department of Clinical Pharmacy and PharmacologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
- Department of Critical CareUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
24
|
Comment on “Target-Controlled Continuous Infusion for Antibiotic Dosing: Proof-of-Principle in an In-silico Vancomycin Trial in Intensive Care Unit Patients”. Clin Pharmacokinet 2019; 58:981-982. [DOI: 10.1007/s40262-019-00768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Oesterreicher Z, Eberl S, Nussbaumer-Proell A, Peilensteiner T, Zeitlinger M. Impact of different pathophysiological conditions on antimicrobial activity of glycopeptides in vitro. Clin Microbiol Infect 2019; 25:759.e1-759.e7. [DOI: 10.1016/j.cmi.2018.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/06/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022]
|
26
|
Wicha SG, Mundkowski RG, Klock A, Hopt UT, Drewelow B, Kloft C, Wellner UF, Keck T, Wittel UA. Is Moxifloxacin a Treatment Option for Pancreatic Infections? A Pharmacometric Analysis of Serum and Pancreatic Juice. J Clin Pharmacol 2019; 59:1405-1414. [PMID: 31111505 DOI: 10.1002/jcph.1445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/30/2019] [Indexed: 01/09/2023]
Abstract
Postoperative local infection is a major complication after pancreatic surgery. The aim of this prospective clinical trial was to assess the potential of moxifloxacin (MXF) to treat pancreatic infections from a pharmacokinetic (PK)/pharmacodynamic (PD) perspective. The PK of MXF in serum and pancreatic juice, via an inserted tube in the pancreatic duct, was determined in 19 patients up to day 7 after pancreatoduodenectomy. PK data in both specimens was analyzed with NONMEM 7.3. Intraoperative swipes were performed for microbiological examination. PK/PD target attainment was assessed in both matrices using unbound area under the plasma concentration-time curve/minimum inhibitory concentration (MIC) targets of ≥30 and ≥100, for gram-positive and gram-negative pathogens, respectively. A 2-compartment population PK model in which the measurements in pancreatic juice were assigned to a scaled peripheral compartment best described the PK in both specimens simultaneously. Median (10th-90th percentile) area under the plasma concentration-time curve values after the third dose were 28.9 mg · h/L (18.6-42.0) in serum and 55.8 mg · h/L (23.7-81.4) in pancreatic juice. Target attainment rate for the intraoperatively isolated bacterial strains was ≥0.88 after the third MXF dose. For gram-negatives, high probability of target attainment ≥0.84 was observed in serum for MIC ≤ 0.125 mg/L and in pancreatic juice for MIC ≤ 0.25 mg/L. For gram-positives, the probability of target attainment was 0.84-1 in serum for MIC ≤ 0.5 mg/L and in pancreatic juice for MIC ≤ 1 mg/L. In conclusion, penetration of MXF into pancreatic juice was substantial. The PK/PD analysis indicated that treatment of pancreatic infections by isolates with MIC ≤ 0.25 mg/L (gram-negative) and ≤1 mg/L (gram-positive) should be evaluated in further studies.
Collapse
Affiliation(s)
- Sebastian G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany.,Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ralf G Mundkowski
- Institute of Clinical Pharmacology, University Medical Center, Rostock, Germany
| | - Andrea Klock
- Department of General and Visceral Surgery, University of Freiburg Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Ulrich T Hopt
- Department of General and Visceral Surgery, University of Freiburg Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Bernd Drewelow
- Institute of Clinical Pharmacology, University Medical Center, Rostock, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ulrich F Wellner
- Clinic of Surgery, University Hospital Schleswig Holstein, Campus Lübeck, Germany
| | - Tobias Keck
- Clinic of Surgery, University Hospital Schleswig Holstein, Campus Lübeck, Germany
| | - Uwe A Wittel
- Department of General and Visceral Surgery, University of Freiburg Medical Center, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
27
|
Broeker A, Nardecchia M, Klinker KP, Derendorf H, Day RO, Marriott DJ, Carland JE, Stocker SL, Wicha SG. Towards precision dosing of vancomycin: a systematic evaluation of pharmacometric models for Bayesian forecasting. Clin Microbiol Infect 2019; 25:1286.e1-1286.e7. [PMID: 30872102 DOI: 10.1016/j.cmi.2019.02.029] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Vancomycin is a vital treatment option for patients suffering from critical infections, and therapeutic drug monitoring is recommended. Bayesian forecasting is reported to improve trough concentration monitoring for dose adjustment. However, the predictive performance of pharmacokinetic models that are utilized for Bayesian forecasting has not been systematically evaluated. METHOD Thirty-one published population pharmacokinetic models for vancomycin were encoded in NONMEM®7.4. Data from 292 hospitalized patients were used to evaluate the predictive performance (forecasting bias and precision, visual predictive checks) of the models to forecast vancomycin concentrations and area under the curve (AUC) by (a) a priori prediction, i.e., solely by patient characteristics, and (b) also including measured vancomycin concentrations from previous dosing occasions using Bayesian forecasting. RESULTS A priori prediction varied substantially-relative bias (rBias): -122.7-67.96%, relative root mean squared error (rRMSE) 44.3-136.8%, respectively-and was best for models which included body weight and creatinine clearance as covariates. The model by Goti et al. displayed the best predictive performance with an rBias of -4.41% and an rRMSE of 44.3%, as well as the most accurate visual predictive checks and AUC predictions. Models with less accurate predictive performance provided distorted AUC predictions which may lead to inappropriate dosing decisions. CONCLUSION There is a diverse landscape of population pharmacokinetic models for vancomycin with varied predictive performance in Bayesian forecasting. Our study revealed the Goti model as suitable for improving precision dosing in hospitalized patients. Therefore, it should be used to drive vancomycin dosing decisions, and studies to link this finding to clinical outcomes are warranted.
Collapse
Affiliation(s)
- A Broeker
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Germany
| | - M Nardecchia
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Germany
| | - K P Klinker
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - H Derendorf
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - R O Day
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia; Department of Clinical Pharmacology & Toxicology, St Vincent's Hospital, Sydney, Australia
| | - D J Marriott
- Department of Clinical Microbiology & Infectious Diseases, St Vincent's Hospital, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - J E Carland
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia; Department of Clinical Pharmacology & Toxicology, St Vincent's Hospital, Sydney, Australia
| | - S L Stocker
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia; Department of Clinical Pharmacology & Toxicology, St Vincent's Hospital, Sydney, Australia
| | - S G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Germany.
| |
Collapse
|
28
|
Janković SM. Clinical Application of Pharmacokinetics: Basis for Rational Dose Selection in a Critically Ill Patient on Renal Replacement Therapy. Eur J Drug Metab Pharmacokinet 2018; 44:433-436. [PMID: 30426361 DOI: 10.1007/s13318-018-0524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Individualizing drug dosing regimens in critically ill patients on renal replacement therapy is a challenge to clinicians as guidelines are often imprecise and specific-validated pharmacokinetic software is unavailable. OBJECTIVE A case of a septic patient on hemodialysis is presented, where a quick solution for antibiotic dose adjustment based on the application of pharmacokinetic principles was found. METHODS The dose adjustment was made in two steps-the first step was to calculate total antibiotic clearance (using the formula: total drug clearance = dialysate flow rate × fraction of unbound drug in plasma + extrarenal clearance), and the second step was to calculate maintenance dose based on target plasma concentrations in steady-state (using the formula: maintenance dose = target plasma concentration × total drug clearance × dose interval). RESULTS After the doses of antibiotics were adjusted, the patient's condition gradually improved, with a drop in body temperature to normal values, a decrease in plasma levels of inflammatory parameters, and the emergence of spontaneous diuresis. The plasma concentration of vancomycin was within the recommended therapeutic range. CONCLUSIONS Specific pharmacokinetic software and measuring plasma concentrations of the drugs should be used for calculation of total drug clearance and dose adjustment whenever possible. However, if unavailable, basic pharmacokinetic formulas and principles could be successfully used instead to adjust the dose in critically ill patients on hemodialysis.
Collapse
Affiliation(s)
- Slobodan M Janković
- Pharmacology and Toxicology Department, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića Street, 69, 34000, Kragujevac, Serbia.
| |
Collapse
|
29
|
Factors impacting unbound vancomycin concentrations in neonates and young infants. Eur J Clin Microbiol Infect Dis 2018; 37:1503-1510. [DOI: 10.1007/s10096-018-3277-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/09/2018] [Indexed: 01/19/2023]
|
30
|
Development of a Physiologically Based Pharmacokinetic Modelling Approach to Predict the Pharmacokinetics of Vancomycin in Critically Ill Septic Patients. Clin Pharmacokinet 2018; 56:759-779. [PMID: 28039606 DOI: 10.1007/s40262-016-0475-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Sepsis is characterised by an excessive release of inflammatory mediators substantially affecting body composition and physiology, which can be further affected by intensive care management. Consequently, drug pharmacokinetics can be substantially altered. This study aimed to extend a whole-body physiologically based pharmacokinetic (PBPK) model for healthy adults based on disease-related physiological changes of critically ill septic patients and to evaluate the accuracy of this PBPK model using vancomycin as a clinically relevant drug. METHODS The literature was searched for relevant information on physiological changes in critically ill patients with sepsis, severe sepsis and septic shock. Consolidated information was incorporated into a validated PBPK vancomycin model for healthy adults. In addition, the model was further individualised based on patient data from a study including ten septic patients treated with intravenous vancomycin. Models were evaluated comparing predicted concentrations with observed patient concentration-time data. RESULTS The literature-based PBPK model correctly predicted pharmacokinetic changes and observed plasma concentrations especially for the distribution phase as a result of a consideration of interstitial water accumulation. Incorporation of disease-related changes improved the model prediction from 55 to 88% within a threshold of 30% variability of predicted vs. observed concentrations. In particular, the consideration of individualised creatinine clearance data, which were highly variable in this patient population, had an influence on model performance. CONCLUSION PBPK modelling incorporating literature data and individual patient data is able to correctly predict vancomycin pharmacokinetics in septic patients. This study therefore provides essential key parameters for further development of PBPK models and dose optimisation strategies in critically ill patients with sepsis.
Collapse
|
31
|
Variable Linezolid Exposure in Intensive Care Unit Patients-Possible Role of Drug-Drug Interactions. Ther Drug Monit 2017; 38:573-8. [PMID: 27631464 DOI: 10.1097/ftd.0000000000000324] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Standard doses of linezolid may not be suitable for all patient groups. Intensive care unit (ICU) patients in particular may be at risk of inadequate concentrations. This study investigated variability of drug exposure and its potential sources in this population. METHODS Plasma concentrations of linezolid were determined by high-performance liquid chromatography in a convenience sample of 20 ICU patients treated with intravenous linezolid 600 mg twice daily. Ultrafiltration applying physiological conditions (pH 7.4/37°C) was used to determine the unbound fraction. Individual pharmacokinetic (PK) parameters were estimated by population PK modeling. As measures of exposure to linezolid, area under the concentration-time curve (AUC) and trough concentrations (Cmin) were calculated and compared with published therapeutic ranges (AUC 200-400 mg*h/L, Cmin 2-10 mg/L). Coadministered inhibitors or inducers of cytochrome P450 and/or P-glycoprotein were noted. RESULTS Data from 18 patients were included into the PK evaluation. Drug exposure was highly variable (median, range: AUC 185, 48-618 mg*h/L, calculated Cmin 2.92, 0.0062-18.9 mg/L), and only a minority of patients had values within the target ranges (6 and 7, respectively). AUC and Cmin were linearly correlated (R = 0.98), and classification of patients (underexposed/within therapeutic range/overexposed) according to AUC or Cmin was concordant in 15 cases. Coadministration of inhibitors was associated with a trend to higher drug exposure, whereas 3 patients treated with levothyroxine showed exceedingly low drug exposure (AUC ∼60 mg*h/L, Cmin <0.4 mg/L). The median unbound fraction in all 20 patients was 90.9%. CONCLUSIONS Drug exposure after standard doses of linezolid is highly variable and difficult to predict in ICU patients, and therapeutic drug monitoring seems advisable. PK drug-drug interactions might partly be responsible and should be further investigated; protein binding appears to be stable and irrelevant.
Collapse
|
32
|
De Cock PAJG, Desmet S, De Jaeger A, Biarent D, Dhont E, Herck I, Vens D, Colman S, Stove V, Commeyne S, Vande Walle J, De Paepe P. Impact of vancomycin protein binding on target attainment in critically ill children: back to the drawing board? J Antimicrob Chemother 2017; 72:801-804. [PMID: 27999035 DOI: 10.1093/jac/dkw495] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/18/2016] [Indexed: 11/14/2022] Open
Abstract
Objectives The objectives of this observational study were to investigate plasma protein binding and to evaluate target attainment rates of vancomycin therapy in critically ill children. Patients and methods Paediatric ICU patients, in whom intravenous intermittent dosing (ID) or continuous dosing (CD) with vancomycin was indicated, were included. Covariates on unbound vancomycin fraction and concentration were tested using a linear mixed model analysis and attainment of currently used pharmacokinetic/pharmacodynamic (PK/PD) targets was evaluated. Clinicaltrials.gov: NCT02456974. Results One hundred and eighty-eight plasma samples were collected from 32 patients. The unbound vancomycin fraction (median = 71.1%; IQR = 65.4%-79.7%) was highly variable within and between patients and significantly correlated with total protein and albumin concentration, which were both decreased in our population. Total trough concentration (ID) and total concentration (CD) were within the aimed target concentrations in 8% of patients. The targets of AUC/MIC ≥400 and f AUC/MIC ≥200 were achieved in 54% and 83% of patients, respectively. Unbound vancomycin concentrations were adequately predicted using the following equation: unbound vancomycin concentration (mg/L) = 5.38 + [0.71 × total vancomycin concentration (mg/L)] - [0.085 × total protein concentration (g/L)]. This final model was externally validated using 51 samples from another six patients. Conclusions The protein binding of vancomycin in our paediatric population was lower than reported in non-critically ill adults and exhibited large variability. Higher target attainment rates were achieved when using PK/PD indices based on unbound concentrations, when compared with total concentrations. These results highlight the need for protein binding assessment in future vancomycin PK/PD research.
Collapse
Affiliation(s)
- Pieter A J G De Cock
- Department of Pharmacy, Ghent University Hospital, Ghent, Belgium.,Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium.,Department of Paediatric Intensive Care, Ghent University Hospital, Ghent, Belgium
| | - Sarah Desmet
- Department of Pharmacy, Ghent University Hospital, Ghent, Belgium.,Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium
| | - Annick De Jaeger
- Department of Paediatric Intensive Care, Ghent University Hospital, Ghent, Belgium
| | - Dominique Biarent
- Department of Paediatric Intensive Care, Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium
| | - Evelyn Dhont
- Department of Paediatric Intensive Care, Ghent University Hospital, Ghent, Belgium
| | - Ingrid Herck
- Department of Cardiac Intensive Care, Ghent University Hospital, Ghent, Belgium
| | - Daphné Vens
- Department of Paediatric Intensive Care, Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium
| | - Sofie Colman
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Veronique Stove
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Sabrina Commeyne
- Department of Pharmacy, Ghent University Hospital, Ghent, Belgium
| | - Johan Vande Walle
- Department of Paediatric Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Peter De Paepe
- Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium.,Department of Emergency Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
33
|
Dorn C, Kratzer A, Liebchen U, Schleibinger M, Murschhauser A, Schlossmann J, Kees F, Simon P, Kees MG. Impact of Experimental Variables on the Protein Binding of Tigecycline in Human Plasma as Determined by Ultrafiltration. J Pharm Sci 2017; 107:739-744. [PMID: 28927988 DOI: 10.1016/j.xphs.2017.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 11/17/2022]
Abstract
Tigecycline, a tetracycline derivative, shows atypical plasma protein binding behavior. The unbound fraction decreases with increasing concentration at therapeutic concentrations. Moreover, uncertainty exists about the magnitude of tigecyline's protein binding in man. Unbound fractions between 2.5% and 35% have been reported in plasma from healthy volunteers, and between 25% and 100% in patients, respectively. In the present study, the protein binding of tigecycline has been investigated by ultrafiltration using different experimental conditions. Whereas temperature had only a marginal influence, the unbound fraction at 0.3/3.0 mg/L was low at pH 8.2 (9.4%/1.9%) or in unbuffered pooled plasma (6.3%/1.2%), compared with plasma buffered with HEPES to pH 7.4 (65.9%/39.7%). In experiments with phosphate buffer and EDTA, the concentration dependency was markedly attenuated or abolished, which is compatible with a cooperative binding mechanism involving divalent cations such as calcium. The unbound fraction in clinical plasma samples from patients treated with tigecycline was determined to 66.3 ± 13.7% at concentrations <0.3 mg/L compared with 41.3 ± 16.0% at >1 to <5 mg/L. To summarize, tigecycline appears to be only moderately bound to plasma proteins as determined by ultrafiltration, when a physiological pH is maintained.
Collapse
Affiliation(s)
- Christoph Dorn
- Department of Clinical Pharmacy, University of Regensburg, Regensburg, Germany.
| | - Alexander Kratzer
- Hospital Pharmacy, University Hospital Regensburg, Regensburg, Germany
| | - Uwe Liebchen
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Michael Schleibinger
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | | | - Jens Schlossmann
- Department of Pharmacology, University of Regensburg, Regensburg, Germany
| | - Frieder Kees
- Department of Pharmacology, University of Regensburg, Regensburg, Germany
| | - Philipp Simon
- Department of Anesthesia and Intensive Care Medicine, University of Leipzig, Leipzig, Germany
| | - Martin G Kees
- Department of Anesthesiology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
34
|
Wicha SG, Huisinga W, Kloft C. Translational Pharmacometric Evaluation of Typical Antibiotic Broad-Spectrum Combination Therapies Against Staphylococcus Aureus Exploiting In Vitro Information. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 6:512-522. [PMID: 28378945 PMCID: PMC5572409 DOI: 10.1002/psp4.12197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 11/15/2022]
Abstract
Broad‐spectrum antibiotic combination therapy is frequently applied due to increasing resistance development of infective pathogens. The objective of the present study was to evaluate two common empiric broad‐spectrum combination therapies consisting of either linezolid (LZD) or vancomycin (VAN) combined with meropenem (MER) against Staphylococcus aureus (S. aureus) as the most frequent causative pathogen of severe infections. A semimechanistic pharmacokinetic‐pharmacodynamic (PK‐PD) model mimicking a simplified bacterial life‐cycle of S. aureus was developed upon time‐kill curve data to describe the effects of LZD, VAN, and MER alone and in dual combinations. The PK‐PD model was successfully (i) evaluated with external data from two clinical S. aureus isolates and further drug combinations and (ii) challenged to predict common clinical PK‐PD indices and breakpoints. Finally, clinical trial simulations were performed that revealed that the combination of VAN‐MER might be favorable over LZD‐MER due to an unfavorable antagonistic interaction between LZD and MER.
Collapse
Affiliation(s)
- S G Wicha
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - W Huisinga
- Institute of Mathematics, University of Potsdam, Potsdam-Golm, Germany
| | - C Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
35
|
An LC-MS/MS method to determine vancomycin in plasma (total and unbound), urine and renal replacement therapy effluent. Bioanalysis 2017; 9:911-924. [PMID: 28617036 DOI: 10.4155/bio-2017-0019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Critical illness and medical interventions, such as renal replacement therapy, can cause changes to vancomycin pharmacokinetics and lead to suboptimal dosing. To comprehensively characterize vancomycin pharmacokinetic a method must measure vancomycin in a range of clinical matrices. RESULTS A LC-MS/MS method was developed using hydrophilic interaction liquid chromatography and microsample volumes, where possible. For all matrices, the linear concentration range was 1-100 μg/ml, interassay accuracy and precision was within 15%, and recovery above 80%. No matrix effects were observed. Calibration equivalence may be applied for some matrix combinations. CONCLUSION A method for the analysis of vancomycin in plasma (total, unbound), urine and renal replacement therapy effluent, suitable for use in any patient pharmacokinetic study, has been developed and validated.
Collapse
|
36
|
Pharmacokinetic/pharmacodynamic considerations for the optimization of antimicrobial delivery in the critically ill. Curr Opin Crit Care 2016; 21:412-20. [PMID: 26348420 DOI: 10.1097/mcc.0000000000000229] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Antimicrobials are very commonly used drugs in the intensive care setting. Extensive research has been conducted in recent years to describe their pharmacokinetics/pharmacodynamics in order to maximize the pharmacological benefit and patient outcome. Translating these new findings into clinical practice is encouraged. RECENT FINDINGS This article will discuss mechanistic data on factors causing changes in antimicrobial pharmacokinetics in critically ill patients, such as the phenomena of augmented renal clearance as well as the effects of hypoalbuminemia, renal replacement therapy, and extracorporeal membrane oxygenation. Failure to achieve clinical cure has been correlated with pharmacokinetics/pharmacodynamics target nonattainment, and a recent meta-analysis suggests an association between dosing strategies aimed at optimizing antimicrobial pharmacokinetics/pharmacodynamics with improvement in clinical cure and survival. Novel dosing strategies including therapeutic drug monitoring are also now being tested to address challenges in the optimization of antimicrobial pharmacokinetics/pharmacodynamics. SUMMARY Optimization of antimicrobial dosing in accordance with pharmacokinetics/pharmacodynamics targets can improve survival and clinical cure. Dosing regimens for critically ill patients should aim for pharmacokinetics/pharmacodynamics target attainment by utilizing altered dosing strategies including adaptive feedback using therapeutic drug monitoring.
Collapse
|
37
|
Measuring unbound versus total vancomycin concentrations in serum and plasma: methodological issues and relevance. Ther Drug Monit 2015; 37:180-7. [PMID: 25072945 DOI: 10.1097/ftd.0000000000000122] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Studies on the unbound fraction (fu) of vancomycin report highly variable results. Great controversy also exists about the correlation between unbound and total vancomycin concentrations. As differences in (pre-)analytic techniques may explain these findings, we investigated the impact of the procedure used to isolate unbound vancomycin in serum/plasma on fu and the correlation between total and unbound concentrations. METHODS Patient samples (n = 39) were analyzed for total and unbound vancomycin concentrations after ultrafiltration (UF, Centrifree at 4°C and 37°C) or equilibrium dialysis (ED, using a Fast Micro-Equilibrium Dialyzer at 37°C) on an Architect i2000SR. To investigate correlations with potential binding proteins, total protein, albumin, alpha-1-acid glycoprotein, and IgA concentrations were also measured. RESULTS The median fu after ED was 72.5% [interquartile range (IQR), 68.7%-75.0%]. Ultrafiltration at 4°C and 37°C resulted in a median fu of 51.6% (IQR, 48.6%-54.8%) and 75.2% (IQR, 69.3%-78.6%), respectively, with no significant difference between unbound vancomycin concentrations after ED and UF at 37°C (P = 0.13). Unbound concentrations obtained through ED and UF correlated linearly (4°C: r = 0.9457; 37°C: r = 0.9478; both P < 0.0001). Linear mixed-model regression showed that total vancomycin as such was the predominant determinant for the unbound concentration, allowing a reliable prediction (mean bias ± SD, 5.0% ± 7.6%). The studied protein concentrations were of no added value in predicting the unbound concentration. CONCLUSIONS Vancomycin fu after UF at 4°C was on average 30.6% lower than that after UF at 37°C, demonstrating the importance of temperature during UF. Ultrafiltration at 37°C resulted in unbound vancomycin concentrations equivalent with ED. As the unbound concentration could be reliably predicted based on total vancomycin concentrations as such, measurement of unbound vancomycin concentrations has little added value over measurements of total vancomycin concentrations.
Collapse
|
38
|
Javorska L, Krcmova LK, Solichova D, Solich P, Kaska M. Modern methods for vancomycin determination in biological fluids by methods based on high-performance liquid chromatography - A review. J Sep Sci 2015; 39:6-20. [DOI: 10.1002/jssc.201500600] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Lenka Javorska
- Charles University, Faculty of Pharmacy; Department of Analytical Chemistry; Hradec Kralove Czech Republic
- University Hospital; 3 Internal Gerontometabolic Clinic; Hradec Kralove Czech Republic
| | - Lenka Kujovska Krcmova
- Charles University, Faculty of Pharmacy; Department of Analytical Chemistry; Hradec Kralove Czech Republic
- University Hospital; 3 Internal Gerontometabolic Clinic; Hradec Kralove Czech Republic
| | - Dagmar Solichova
- University Hospital; 3 Internal Gerontometabolic Clinic; Hradec Kralove Czech Republic
| | - Petr Solich
- Charles University, Faculty of Pharmacy; Department of Analytical Chemistry; Hradec Kralove Czech Republic
| | - Milan Kaska
- Charles University and University Hospital, Medical Faculty, Surgical Department; Academic Department of Surgery; Hradec Kralove Czech Republic
| |
Collapse
|
39
|
Exploring Protein Binding of Uremic Toxins in Patients with Different Stages of Chronic Kidney Disease and during Hemodialysis. Toxins (Basel) 2015; 7:3933-46. [PMID: 26426048 PMCID: PMC4626712 DOI: 10.3390/toxins7103933] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 12/12/2022] Open
Abstract
As protein binding of uremic toxins is not well understood, neither in chronic kidney disease (CKD) progression, nor during a hemodialysis (HD) session, we studied protein binding in two cross-sectional studies. Ninety-five CKD 2 to 5 patients and ten stable hemodialysis patients were included. Blood samples were taken either during the routine ambulatory visit (CKD patients) or from blood inlet and outlet line during dialysis (HD patients). Total (CT) and free concentrations were determined of p-cresylglucuronide (pCG), hippuric acid (HA), indole-3-acetic acid (IAA), indoxyl sulfate (IS) and p-cresylsulfate (pCS), and their percentage protein binding (%PB) was calculated. In CKD patients, %PB/CT resulted in a positive correlation (all p < 0.001) with renal function for all five uremic toxins. In HD patients, %PB was increased after 120 min of dialysis for HA and at the dialysis end for the stronger (IAA) and the highly-bound (IS and pCS) solutes. During one passage through the dialyzer at 120 min, %PB was increased for HA (borderline), IAA, IS and pCS. These findings explain why protein-bound solutes are difficult to remove by dialysis: a combination of the fact that (i) only the free fraction can pass the filter and (ii) the equilibrium, as it was pre-dialysis, cannot be restored during the dialysis session, as it is continuously disturbed.
Collapse
|
40
|
Factors impacting unbound vancomycin concentrations in different patient populations. Antimicrob Agents Chemother 2015; 59:7073-9. [PMID: 26349820 DOI: 10.1128/aac.01185-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/29/2015] [Indexed: 11/20/2022] Open
Abstract
The unbound drug hypothesis states that only unbound drug concentrations are active and available for clearance, and highly variable results regarding unbound vancomycin fractions have been reported in the literature. We have determined the unbound vancomycin fractions in four different patient groups by a liquid chromatography tandem mass spectrometry (LC-MS/MS) method and identified factors that modulate vancomycin binding. We have further developed and validated a prediction model to estimate unbound vancomycin concentrations. Vancomycin (unbound and total) concentrations were measured in 90 patients in four different hospital wards (hematology [n = 33 samples], intensive care unit [ICU] [n = 51], orthopedics [n = 44], and pediatrics [age range, 6 months to 14 years; n = 18]) by a validated LC-MS/MS method. Multiple linear mixed model analysis was performed to identify patient variables that were predictive of unbound vancomycin fractions and concentrations. The variables included in the model were patient age, ward, number of coadministered drugs with high protein binding, kidney function (estimated glomerular filtration rate [determined by Chronic Kidney Disease Epidemiology Collaboration formula]), alpha-1-acid glycoprotein, albumin, total bilirubin, IgA, IgM, urea, and total vancomycin concentrations. In the pediatric cohort, the median unbound vancomycin fraction was 81.3% (range, 61.9 to 95.9%), which was significantly higher (P < 0.01) than the unbound fraction found in the three adult patient cohorts (hematology, 60.6% [48.7 to 90.6%]; ICU, 61.7% [47.0 to 87.6%]; orthopedics, 56.4% [45.9 to 78.0%]). The strongest significant predictor of the unbound vancomycin concentration was the total drug concentration, completed by albumin in the pediatric cohort and albumin and IgA in the adult cohorts. Validation of our model was performed with data from 13 adult patients. A mean difference of 0.3 mg/liter (95% confidence interval [CI], -1.3 to 0.7 mg/liter; R(2) = 0.99 [95% CI, 0.95 to 0.99]) between measured and calculated unbound vancomycin concentrations demonstrated that the predictive performance of our model was favorable. Unbound vancomycin fractions vary significantly between pediatric and adult patients. We developed a formula to estimate the unbound fraction derived from total vancomycin, albumin, and IgA concentrations in adult patients.
Collapse
|
41
|
Carlier M, Stove V, Wallis SC, De Waele JJ, Verstraete AG, Lipman J, Roberts JA. Assays for therapeutic drug monitoring of β-lactam antibiotics: A structured review. Int J Antimicrob Agents 2015; 46:367-75. [PMID: 26271599 DOI: 10.1016/j.ijantimicag.2015.06.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/04/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
In some patient groups, including critically ill patients, the pharmacokinetics of β-lactam antibiotics may be profoundly disturbed due to pathophysiological changes in distribution and elimination. Therapeutic drug monitoring (TDM) is a strategy that may help to optimise dosing. The aim of this review was to identify and analyse the published literature on the methods used for β-lactam quantification in TDM programmes. Sixteen reports described methods for the simultaneous determination of three or more β-lactam antibiotics in plasma/serum. Measurement of these antibiotics, due to low frequency of usage relative to some other tests, is generally limited to in-house chromatographic methods coupled to ultraviolet or mass spectrometric detection. Although many published methods state they are fit for TDM, they are inconvenient because of intensive sample preparation and/or long run times. Ideally, methods used for routine TDM should have a short turnaround time (fast run-time and fast sample preparation), a low limit of quantification and a sufficiently high upper limit of quantification. The published assays included a median of 6 analytes [interquartile range (IQR) 4-10], with meropenem and piperacillin being the most frequently measured β-lactam antibiotics. The median run time was 8 min (IQR 5.9-21.3 min). There is also a growing number of methods measuring free concentrations. An assay that measures antibiotics without any sample preparation would be the next step towards real-time monitoring; no such method is currently available.
Collapse
Affiliation(s)
- Mieke Carlier
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium; Department of Critical Care Medicine, Ghent University, Ghent, Belgium.
| | - Veronique Stove
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Steven C Wallis
- Burns, Trauma and Critical Care Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Jan J De Waele
- Department of Critical Care Medicine, Ghent University, Ghent, Belgium
| | - Alain G Verstraete
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Jeffrey Lipman
- Burns, Trauma and Critical Care Research Centre, University of Queensland, Brisbane, Queensland, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Jason A Roberts
- Burns, Trauma and Critical Care Research Centre, University of Queensland, Brisbane, Queensland, Australia; Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
42
|
Schleibinger M, Steinbach CL, Töpper C, Kratzer A, Liebchen U, Kees F, Salzberger B, Kees MG. Protein binding characteristics and pharmacokinetics of ceftriaxone in intensive care unit patients. Br J Clin Pharmacol 2015; 80:525-33. [PMID: 25808018 DOI: 10.1111/bcp.12636] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 11/29/2022] Open
Abstract
AIMS The aim of the present study was to assess the pharmacokinetics of total and unbound ceftriaxone in intensive care unit (ICU) patients and its protein binding characteristics. METHODS Twenty patients (m/f 15/5, age 25-86 years, body weight 60-121 kg, APACHE II 7-40, estimated glomerular filtration rate 19-157 ml min(-1) , albumin 11.7-30.1 g l(-1) , total bilirubin <0.1-36.1 mg dl(-1) ) treated with intravenous ceftriaxone were recruited from two ICUs. Timed plasma samples were obtained using an opportunistic study protocol. Ceftriaxone concentrations were determined by high-performance liquid chromatography; unbound concentrations were determined after ultrafiltration using a new method which maintains physiological pH and temperature. The pharmacokinetics was described by a one-compartment model, the protein-binding characteristics by Michaelis-Menten kinetics. RESULTS For total drug, the volume of distribution was 20.2 l (median; interquartile range 15.6-24.5 l), the half-life 14.5 h (10.0-25.5 h) and the clearance 0.96 l h(-1) (0.55-1.28 l h(-1) ). The clearance of unbound drug was 1.91 l h(-1) (1.46-6.20 l h(-1) ) and linearly correlated with estimated glomerular filtration rate (slope 0.85, y-intercept 0.24 l h(-1) , r(2) = 0.70). The unbound fraction was higher in ICU patients (33.0%; 20.2-44.5%) than reported in healthy volunteers, particularly when renal impairment or severe hyperbilirubinaemia was present. In all patients, unbound concentrations during treatment with ceftriaxone 2 g once daily remained above the EUCAST susceptibility breakpoint (≤1 mg l(-1) ) throughout the whole dosing interval. CONCLUSIONS Protein binding of ceftriaxone is reduced and variable in ICU patients due to hypoalbuminaemia, but also to altered binding characteristics. Despite these changes, the pharmacokinetics of unbound ceftriaxone is governed by renal function. For patients with normal or reduced renal function, standard doses are sufficient.
Collapse
Affiliation(s)
- Michael Schleibinger
- Department of Internal Medicine I, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Germany
| | - Cathérine L Steinbach
- Department of Anaesthesiology and Intensive Care, Charité Universitätsmedizin Berlin - Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Christoph Töpper
- Department of Anaesthesiology and Intensive Care, Charité Universitätsmedizin Berlin - Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Alexander Kratzer
- Hospital Pharmacy, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Germany.,Department of Pharmaceutical Biology, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Uwe Liebchen
- Department of Internal Medicine I, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Germany
| | - Frieder Kees
- Department of Pharmacology, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Bernd Salzberger
- Department of Internal Medicine I, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Germany
| | - Martin G Kees
- Department of Anaesthesiology and Intensive Care, Charité Universitätsmedizin Berlin - Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany.,Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstr. 31, 12169, Berlin, Germany
| |
Collapse
|
43
|
Mangin O, Urien S, Mainardi JL, Fagon JY, Faisy C. Vancomycin pharmacokinetic and pharmacodynamic models for critically ill patients with post-sternotomy mediastinitis. Clin Pharmacokinet 2015; 53:849-61. [PMID: 25117184 DOI: 10.1007/s40262-014-0164-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Vancomycin is commonly used to treat serious methicillin-resistant staphylococcal infections, especially post-sternotomy mediastinitis (PSM). However, information on pharmacokinetics and pharmacodynamics in intensive care unit (ICU) patients remains scarce. We conducted vancomycin pharmacokinetic-pharmacodynamic modeling for ICU patients with PSM. METHODS This cohort study included 30 consecutive patients who received multiple vancomycin doses during primary closed drainage of PSM with Redon catheters, targeting serum drug trough concentrations of 25-35 mg/L, and generating 359 serum vancomycin concentration-time values for analysis. Population pharmacodynamics served to describe the withdrawal of Redon catheters, i.e., the probability of in-ICU cure. RESULTS Vancomycin pharmacokinetics corresponded to a two-compartment open model with first-order elimination kinetics. Mean [between-subject variability] population estimates were 1.91 (men)/1.25 (women) [0.28] L/h for vancomycin elimination, with intercompartmental clearance of 5.71 [1.01] L/h, and respective central and peripheral distribution volumes of 21.9 and 68 [0.53] L. Vancomycin clearance increased with body weight and declined with severity at ICU admission and serum creatinine (SCr), thereby allowing the prediction of the vancomycin plateau. Intercompartmental clearance decreased with diabetes mellitus (-70 %). The probability of withdrawing all Redon catheters (patient cured) was dependent only on the area under the concentration-time curve to minimum inhibitory concentration (AUC/MIC) exposures ratio in plasma. Neither preoperative factors, antistaphylococcal co-treatments, nor the initial number of Redon catheters significantly influenced this probability. The AUC/MIC exposures ratio had no significant effect on SCr levels. CONCLUSION These modeling analysis results identified five clinically relevant covariates that influenced vancomycin pharmacokinetics and might achieve better individualization of vancomycin dosing for methicillin-resistant staphylococcal PSM in ICU patients.
Collapse
Affiliation(s)
- Olivier Mangin
- Medical Intensive Care Unit, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Université Paris Descartes Sorbonne Paris Cité, 20 rue Leblanc, 75908, Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
44
|
Exposure to total and protein-unbound rifampin is not affected by malnutrition in Indonesian tuberculosis patients. Antimicrob Agents Chemother 2015; 59:3233-9. [PMID: 25801554 DOI: 10.1128/aac.03485-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 03/14/2015] [Indexed: 01/31/2023] Open
Abstract
Nutritional status may have a profound impact on the pharmacokinetics of drugs, yet only few data are available for tuberculosis (TB) drugs. As malnutrition occurs frequently among TB patients, we assessed the effect of malnutrition on the steady-state pharmacokinetics of total and protein-unbound rifampin during the intensive phase of TB treatment. In a descriptive pharmacokinetic study in Bandung, Indonesia, patients received a fixed standard rifampin dose of 450 mg once daily during the intensive phase of TB treatment. A full pharmacokinetic curve for rifampin was recorded, and total and unbound concentrations of rifampin were analyzed in all samples. Rifampin pharmacokinetic parameters were compared between severely malnourished (BMI of <16.0 kg/m(2)), malnourished (BMI of <18.5 kg/m(2)), and well-nourished (BMI of ≥18.5 kg/m(2)) individuals. No difference in total and protein-unbound pharmacokinetic parameters between severely malnourished (n = 7), malnourished (n = 11), and well-nourished (n = 25) patients could be demonstrated. In addition, no significant correlation between BMI and exposure (area under the concentration-time curve from 0 to 24 h [AUC0-24] and maximum concentration of drug in serum [Cmax]) was found. Females had significantly higher total AUC0-24 (geometric mean, 59.2 versus 48.2 h · mg/liter; P = 0.02) and higher unbound AUC0-24 (geometric mean, 6.2 versus 4.8 h · mg/liter; P = 0.02) than males. Overall, a marked 2-fold interindividual variation in the free fraction was observed (7.6 to 15.0%; n = 36). Nutritional status and BMI do not appear to have a major effect on total and protein-unbound pharmacokinetic parameters of rifampin in Indonesian subjects. The large interindividual variability in the free fraction of rifampin suggests that protein-unbound rather than total rifampin concentrations should preferably be used to study exposure-response relationships.
Collapse
|
45
|
Li X, Wang F, Xu B, Yu X, Yang Y, Zhang L, Li H. Determination of the free and total concentrations of vancomycin by two-dimensional liquid chromatography and its application in elderly patients. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 969:181-9. [PMID: 25178192 DOI: 10.1016/j.jchromb.2014.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/28/2014] [Accepted: 08/03/2014] [Indexed: 12/25/2022]
Abstract
A robust two-dimensional liquid chromatography (2D-LC) method for determining the free and total concentrations of vancomycin in plasma was developed and validated. The 2D-LC system, which exhibited a strong capacity for inhibiting interference, comprised a unique RP1-IEX-RP2 column system and an "Assistant Flow" configuration. Ultrafiltration technology was employed to separate free vancomycin from the protein-bound fraction in human plasma. The influence of ultrafiltration conditions on the free vancomycin concentration was evaluated. The calibration curve was linear over the 0.195-49.92μg/ml range for the free and total vancomycin concentrations. The within- and between-run precision ranges were 1.5-3.9% and 2.0-4.7% for the total concentration, 1.4-3.3% and 2.4-4.0% for the free concentration, respectively. Ultrafiltration was susceptible to variations in the experimental conditions, including the centrifugation time, the centrifugal force, and the nominal molecular weight limit of the ultrafiltration membrane. A total of 101 serum samples from 84 elderly patients were analyzed by this method. The free vancomycin concentration was 5.88±3.75μg/ml (range: 0.240-16.79μg/ml), the total concentration was 12.36±5.36μg/ml (range: 2.16-27.14μg/ml), and the unbound fraction was 45.6±18.8% (range: 11.1-96.9%). There was a poor correlation between the free and total vancomycin concentrations (R(2)=0.596, p<0.05). This method appears to be sensitive, precise, selective, and suitable for use in protein-binding studies of vancomycin.
Collapse
Affiliation(s)
- Xin Li
- Clinical Pharmaceutical Research Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; The Third Hospital of Changsha, Changsha, Hunan 410015, China
| | - Feng Wang
- Clinical Pharmaceutical Research Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Bin Xu
- The Third Hospital of Changsha, Changsha, Hunan 410015, China
| | - Xiaowei Yu
- The Third Hospital of Changsha, Changsha, Hunan 410015, China
| | - Yang Yang
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Li Zhang
- The Third Hospital of Changsha, Changsha, Hunan 410015, China
| | - Huande Li
- Clinical Pharmaceutical Research Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
46
|
Liebchen U, Kratzer A, Wicha SG, Kees F, Kloft C, Kees MG. Unbound fraction of ertapenem in intensive care unit patients. J Antimicrob Chemother 2014; 69:3108-11. [PMID: 24962030 DOI: 10.1093/jac/dku226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVES To determine unbound ertapenem concentrations in plasma and to describe the pharmacokinetics of unbound ertapenem in intensive care unit (ICU) patients. PATIENTS AND METHODS For assessing the influence of experimental conditions and for development of the ultrafiltration protocol, plasma from healthy volunteers was used. Concentrations of total and unbound ertapenem were determined by HPLC in 29 plasma samples from six ICU patients treated with 1 g of ertapenem once daily. The concentration-time courses were described by a one-compartment model. Ertapenem binding to albumin was assessed by Michaelis-Menten kinetics in solutions of human serum albumin, in plasma from healthy volunteers and in plasma from ICU patients. RESULTS The unbound fraction (fu) of ertapenem was highly susceptible to pH and temperature during ultrafiltration and was ∼20% in plasma from healthy volunteers at clinically relevant concentrations. In ICU patients, fu was substantially higher (range 30.9%-53.6%). The unbound concentrations of ertapenem exceeded 2 mg/L for 72% (median; range 39%-100%) of the 24 h dosing interval and 0.25 mg/L for 100% (range 79%-100%). The number of binding sites per albumin molecule was 1.22 (95% CI 1.07-1.38) in plasma from healthy volunteers and 0.404 (95% CI 0.158-0.650) in samples from ICU patients. CONCLUSIONS Determination of unbound ertapenem by ultrafiltration is susceptible to experimental conditions. When determined at physiological pH and temperature, fu of ertapenem is 2- to 4-fold higher than previously reported and even higher in ICU patients. Binding studies indicate that hypoalbuminaemia alone does not explain these differences. This issue should be further investigated for its clinical relevance.
Collapse
Affiliation(s)
- Uwe Liebchen
- Department of Internal Medicine I, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Alexander Kratzer
- Hospital Pharmacy, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany Department of Pharmaceutical Biology, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Sebastian G Wicha
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany
| | - Frieder Kees
- Department of Pharmacology, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany
| | - Martin G Kees
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany Department of Anaesthesiology and Intensive Care, Charité University Hospital Berlin - Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| |
Collapse
|
47
|
Zhang JF, Yang XL, Zhang ZQ, Dong WC, Jiang Y. Accuracy of the analysis of free vancomycin concentration by ultrafiltration in various disease states. RSC Adv 2014. [DOI: 10.1039/c4ra06575a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The different ultrafiltrate volume results in different unbound vancomycin fractions as determined by centrifugal ultrafiltration and hollow fiber centrifugal ultrafiltration.
Collapse
Affiliation(s)
- Jin-feng Zhang
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang, China
| | - Xiu-ling Yang
- Department of Pharmacy
- The Second Hospital of Hebei Medical University
- Shijiazhuang, China
| | - Zhi-qing Zhang
- Department of Pharmacy
- The Second Hospital of Hebei Medical University
- Shijiazhuang, China
| | - Wei-chong Dong
- Department of Pharmacy
- The Second Hospital of Hebei Medical University
- Shijiazhuang, China
| | - Ye Jiang
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Hebei Medical University
- Shijiazhuang, China
| |
Collapse
|