1
|
Damnjanović I, Tsyplakova N, Stefanović N, Tošić T, Catić-Đorđević A, Karalis V. Joint use of population pharmacokinetics and machine learning for optimizing antiepileptic treatment in pediatric population. Ther Adv Drug Saf 2023; 14:20420986231181337. [PMID: 37359445 PMCID: PMC10288421 DOI: 10.1177/20420986231181337] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Purpose Unpredictable drug efficacy and safety of combined antiepileptic therapy is a major challenge during pharmacotherapy decisions in everyday clinical practice. The aim of this study was to describe the pharmacokinetics of valproic acid (VA), lamotrigine (LTG), and levetiracetam (LEV) in a pediatric population using nonlinear mixed-effect modeling, while machine learning (ML) algorithms were applied to identify any relationships among the plasma levels of the three medications and patients' characteristics, as well as to develop a predictive model for epileptic seizures. Methods The study included 71 pediatric patients of both genders, aged 2-18 years, on combined antiepileptic therapy. Population pharmacokinetic (PopPK) models were developed separately for VA, LTG, and LEV. Based on the estimated pharmacokinetic parameters and the patients' characteristics, three ML approaches were applied (principal component analysis, factor analysis of mixed data, and random forest). PopPK models and ML models were developed, allowing for greater insight into the treatment of children on antiepileptic treatment. Results Results from the PopPK model showed that the kinetics of LEV, LTG, and VA were best described by a one compartment model with first-order absorption and elimination kinetics. Reliance on random forest model is a compelling vision that shows high prediction ability for all cases. The main factor that can affect antiepileptic activity is antiepileptic drug levels, followed by body weight, while gender is irrelevant. According to our study, children's age is positively associated with LTG levels, negatively with LEV and without the influence of VA. Conclusion The application of PopPK and ML models may be useful to improve epilepsy management in vulnerable pediatric population during the period of growth and development.
Collapse
Affiliation(s)
| | - Nastia Tsyplakova
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikola Stefanović
- Department of Pharmacy, Faculty of Medicine, University of Nis, Nis, Serbia
| | - Tatjana Tošić
- Clinic of Pediatric Internal Medicine, Department of Pediatric Neurology, University Clinical Center of Nis, Nis, Serbia
| | | | - Vangelis Karalis
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Miners JO, Polasek TM, Hulin JA, Rowland A, Meech R. Drug-drug interactions that alter the exposure of glucuronidated drugs: Scope, UDP-glucuronosyltransferase (UGT) enzyme selectivity, mechanisms (inhibition and induction), and clinical significance. Pharmacol Ther 2023:108459. [PMID: 37263383 DOI: 10.1016/j.pharmthera.2023.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Drug-drug interactions (DDIs) arising from the perturbation of drug metabolising enzyme activities represent both a clinical problem and a potential economic loss for the pharmaceutical industry. DDIs involving glucuronidated drugs have historically attracted little attention and there is a perception that interactions are of minor clinical relevance. This review critically examines the scope and aetiology of DDIs that result in altered exposure of glucuronidated drugs. Interaction mechanisms, namely inhibition and induction of UDP-glucuronosyltransferase (UGT) enzymes and the potential interplay with drug transporters, are reviewed in detail, as is the clinical significance of known DDIs. Altered victim drug exposure arising from modulation of UGT enzyme activities is relatively common and, notably, the incidence and importance of UGT induction as a DDI mechanism is greater than generally believed. Numerous DDIs are clinically relevant, resulting in either loss of efficacy or an increased risk of adverse effects, necessitating dose individualisation. Several generalisations relating to the likelihood of DDIs can be drawn from the known substrate and inhibitor selectivities of UGT enzymes, highlighting the importance of comprehensive reaction phenotyping studies at an early stage of drug development. Further, rigorous assessment of the DDI liability of new chemical entities that undergo glucuronidation to a significant extent has been recommended recently by regulatory guidance. Although evidence-based approaches exist for the in vitro characterisation of UGT enzyme inhibition and induction, the availability of drugs considered appropriate for use as 'probe' substrates in clinical DDI studies is limited and this should be research priority.
Collapse
Affiliation(s)
- John O Miners
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Thomas M Polasek
- Certara, Princeton, NJ, USA; Centre for Medicines Use and Safety, Monash University, Melbourne, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Andrew Rowland
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
3
|
Li Y, Zhan H, Wu J, Yu J, Cao G, Wu X, Guo B, Liu X, Fan Y, Hu J, Li X, Wu H, Wang Y, Chen Y, Xu X, Yu P, Zhang J. Population Pharmacokinetics and Exposure-Safety of Lipophilic Conjugates Prodrug DP-VPA in Healthy Chinese Subjects for Dose Regime Exploring. Eur J Pharm Biopharm 2023:S0939-6411(23)00111-X. [PMID: 37142130 DOI: 10.1016/j.ejpb.2023.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/07/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Phospholipid-valproic acid (DP-VPA)is a prodrug for treating epilepsy. The present study explored the pharmacokinetics (PK) and exposure safety of DP-VPA to provide a basis for future studies exploring the safe dosage and therapeutic strategies for epilepsy. The study included a randomized placebo-controlled dose-escalation tolerance evaluation trial and a randomized triple crossover food-effect trial in healthy Chinese volunteers. A population pharmacokinetic (PopPK) model was established to analyze the PK of DP-VPA and active metabolite VPA. The exposure safety was assessed with the adverse drug reaction (ADR) in CNS. The PopPK of DP-VPA and metabolite VPA fitted a two-compartment model coupling one-compartment with Michaelis-Menten metabolite kinetics and first-order elimination. The absorption processes after single oral administration of DP-VPA tablet demonstrated nonlinear characteristics, including 0-order kinetic phase and time-dependent phase fitting Weibull distribution. The final model indicated that the DP-VPA PK was significantly affected by dosage and food. The exposure-safety relationship demonstrated a generalized linear regression; mild/moderate ADRs occurred in some subjects with 600 mg and all subjects with 1500 mg of DP-VPA, and no severe ADRs were reported up to 2400 mg. In conclusion, the study established a PopPK model describing the processing of DP-VPA and VPA in healthy Chinese subjects. DP-VPA showed good tolerance after a single dose of 600-2400 mg with nonlinear PK and was affected by dosage and food. Based on the association between neurological ADRs and higher exposure to DP-VPA by exposure-safety analysis, 900-1200 mg was recommended for subsequent study of safety and clinical effectiveness.
Collapse
Affiliation(s)
- Yi Li
- National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai, China; Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; China Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Huizhong Zhan
- Office of Drug Clinical Trail Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Jufang Wu
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jicheng Yu
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Guoying Cao
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaojie Wu
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Beining Guo
- National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai, China; Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; China Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Xiaofen Liu
- National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai, China; Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; China Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yaxin Fan
- National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai, China; Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; China Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Jiali Hu
- National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai, China; Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; China Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Xin Li
- National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai, China; Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; China Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Hailan Wu
- National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai, China; Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; China Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yu Wang
- National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai, China; Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; China Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yuancheng Chen
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyong Xu
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Peimin Yu
- Institute of Neurology, Huashan Hospital, Fudan University, WHO Collaborating Centre for Research and Training in Neurosciences, Shanghai, China.
| | - Jing Zhang
- Phase I Clinical Research Center, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Geriatric Diseases, Huashan Hospital, Fudan University, Shanghai, China; Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; China Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China.
| |
Collapse
|
4
|
Wang ML, Wang HX, Zhao MM, Ma YY, Zhao LM. Redefining the age-specific therapeutic ranges of lamotrigine for patients with epilepsy: A step towards optimizing treatment and increasing cost-effectiveness. Epilepsy Res 2021; 176:106728. [PMID: 34339940 DOI: 10.1016/j.eplepsyres.2021.106728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The pharmacokinetics of lamotrigine exhibits age-related characteristics. Nevertheless, current evidence regarding the therapeutic range of lamotrigine has been derived almost exclusively from studies in adult patients, and the applicability of this therapeutic range to the pediatric population remains unclear. The purpose of this study was to establish the appropriate age-specific therapeutic ranges of lamotrigine corresponding to adequate clinical responses for patients with epilepsy. METHODS This prospective cohort study of therapeutic drug monitoring included 582 Chinese epilepsy patients receiving lamotrigine monotherapy. Patients were divided into three age-related subgroups: (1) toddler and school-age group (2-12 years old, n = 168), (2) adolescent group (12-18 years old, n = 171), and (3) adult group (>18 years old, n = 243). Patients with a reduction in seizure frequency of 50 % or greater than baseline were defined as responders, and the remaining patients were non-responders. The relationship between lamotrigine serum concentrations and clinical response was assessed using multivariate logistic regression analysis. A receiver operating characteristic curve was generated to determine the representative cut-off values of lamotrigine trough levels, to distinguish responders from non-responders. The upper margin of the therapeutic range of lamotrigine was determined by developing concentration-effect curves for the three age-related subgroups. RESULTS The median trough levels of lamotrigine were significantly higher in responders than in non-responders from all three age-related groups (P < 0.0001). Results of logistic regression analysis revealed that higher serum concentrations of lamotrigine predicted a higher probability that seizure frequency would be reduced by more than 50 % compared to baseline (adjusted odds ratio: 1.228, 95 % CI: 1.137-1.327; P < 0.0001), and younger children were less likely to be responders (adjusted odds ratio: 1.027, 95 % CI: 1.012-1.043; P = 0.001). Based on a trade-off between sensitivity and specificity, the optimal cut-off values for lamotrigine trough concentrations corresponding to clinical response were 3.29 mg/L, 2.06 mg/L, and 1.61 mg/L in the toddler and school-age group, adolescent group, and adult group, respectively. By reducing interpatient variability, the results of the concentration-effect curves suggested no additional clinical benefit from a continued increase of doses for lamotrigine concentrations exceeding 9.08 mg/L, 8.43 mg/L, and 10.38 mg/L in the toddler and school-age group, adolescent group, and adult group, respectively. In conclusion, the therapeutic ranges of lamotrigine trough concentrations corresponding to adequate clinical response were 3.29-9.08 mg/L in the toddler and school-age group, 2.06-8.43 mg/L in the adolescent group, and 1.61-10.38 mg/L in the adult group. CONCLUSIONS The study determined age-specific therapeutic ranges corresponding to optimal clinical efficacy for lamotrigine. Our findings lay the foundation for catalyzing novel opportunities to optimize treatment and reduce therapeutic costs. Based on the age-specific therapeutic ranges identified in this study, individualized and cost-effective algorithms for lamotrigine treatment of epilepsy patients may be developed and validated in larger cohort studies of therapeutic drug monitoring.
Collapse
Affiliation(s)
- Ming-Lu Wang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, PR China
| | - Huan-Xin Wang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, PR China
| | - Ming-Ming Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, PR China
| | - Yi-Yi Ma
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, PR China
| | - Li-Mei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, PR China.
| |
Collapse
|