3
|
Zhu R, Vora B, Menon S, Younis I, Dwivedi G, Meng Z, Datta-Mannan A, Manchandani P, Nayak S, Tammara BK, Garhyan P, Iqbal S, Dagenais S, Chanu P, Mukherjee A, Ghobadi C. Clinical Pharmacology Applications of Real-World Data and Real-World Evidence in Drug Development and Approval-An Industry Perspective. Clin Pharmacol Ther 2023; 114:751-767. [PMID: 37393555 DOI: 10.1002/cpt.2988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
Since the 21st Century Cures Act was signed into law in 2016, real-world data (RWD) and real-world evidence (RWE) have attracted great interest from the healthcare ecosystem globally. The potential and capability of RWD/RWE to inform regulatory decisions and clinical drug development have been extensively reviewed and discussed in the literature. However, a comprehensive review of current applications of RWD/RWE in clinical pharmacology, particularly from an industry perspective, is needed to inspire new insights and identify potential future opportunities for clinical pharmacologists to utilize RWD/RWE to address key drug development questions. In this paper, we review the RWD/RWE applications relevant to clinical pharmacology based on recent publications from member companies in the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) RWD Working Group, and discuss the future direction of RWE utilization from a clinical pharmacology perspective. A comprehensive review of RWD/RWE use cases is provided and discussed in the following categories of application: drug-drug interaction assessments, dose recommendation for patients with organ impairment, pediatric plan development and study design, model-informed drug development (e.g., disease progression modeling), prognostic and predictive biomarkers/factors identification, regulatory decisions support (e.g., label expansion), and synthetic/external control generation for rare diseases. Additionally, we describe and discuss common sources of RWD to help guide appropriate data selection to address questions pertaining to clinical pharmacology in drug development and regulatory decision making.
Collapse
Affiliation(s)
- Rui Zhu
- Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA
| | - Bianca Vora
- Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA
| | - Sujatha Menon
- Clinical Pharmacology, Pfizer Inc., Groton, Connecticut, USA
| | - Islam Younis
- Clinical Pharmacology, Gilead Sciences, Inc., Foster City, California, USA
| | - Gaurav Dwivedi
- Quantitative Clinical Pharmacology, Takeda Development Center Americas, Inc., Cambridge, Massachusetts, USA
| | - Zhaoling Meng
- R&D Data and Data Science, Clinical Modeling & Evidence Integration, Sanofi, Cambridge, Massachusetts, USA
| | - Amita Datta-Mannan
- Exploratory Medicine & Pharmacology, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Pooja Manchandani
- Clinical Pharmacology and Exploratory Division, Astellas Pharma Global Development, Northbrook, Illinois, USA
| | | | | | - Parag Garhyan
- Global PK/PD/Pharmacometrics, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Shahed Iqbal
- Biomarker Sciences, Gilead Sciences, Inc., Foster City, California, USA
| | - Simon Dagenais
- Real World Evidence Center of Excellence, Pfizer, Inc., New York, New York, USA
| | - Pascal Chanu
- Clinical Pharmacology, Genentech/Roche, Inc., Lyon, France
| | - Arnab Mukherjee
- Clinical Pharmacology, Pfizer Inc., Groton, Connecticut, USA
| | - Cyrus Ghobadi
- Exploratory Medicine & Pharmacology, Eli Lilly and Company, Indianapolis, Indiana, USA
| |
Collapse
|
4
|
Takahashi RH, Malhi V, Liederer BM, Cho S, Deng Y, Dean B, Nugteren J, Yost E, Al-Sayah MA, Sane R, Kshirsagar S, Ma S, Musib L. The Absolute Bioavailability and Absorption, Metabolism, and Excretion of Ipatasertib, a Potent and Highly Selective Protein Kinase B (Akt) Inhibitor. Drug Metab Dispos 2023; 51:1332-1341. [PMID: 37524543 DOI: 10.1124/dmd.122.001175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023] Open
Abstract
Ipatasertib (GDC-0068) is a potent, highly selective, small-molecule inhibitor of protein kinase B (Akt) being developed by Genentech/Roche as a single agent and in combination with other therapies for the treatment of cancers. To fully understand the absorption, metabolism, and excretion of ipatasertib in humans, an open-label study using 14C-radiolabeled ipatasertib was completed to characterize the absolute bioavailability (period 1) and mass balance and metabolite profiling (period 2). In period 1, subjects were administered a 200 mg oral dose of ipatasertib followed by an 80 μg (800 nCi) intravenous dose of [14C]-ipatasertib. In period 2, subjects received a single oral dose containing approximately 200 mg (100 μCi) [14C]-ipatasertib. In an integrated analytical strategy, accelerator mass spectrometry was applied to measure the 14C microtracer intravenous pharmacokinetics in period 1 and fully profile plasma radioactivity in period 2. The systemic plasma clearance and steady-state volume of distribution were 98.8 L/h and 2530 L, respectively. The terminal half-lives after oral and intravenous administrations were similar (26.7 and 27.4 hours, respectively) and absolute bioavailability of ipatasertib was 34.0%. After a single oral dose of [14C]-ipatasertib, 88.3% of the administered radioactivity was recovered with approximately 69.0% and 19.3% in feces and urine, respectively. Radioactivity in feces and urine was predominantly metabolites with 24.4% and 8.26% of dose as unchanged parent, respectively; indicating that ipatasertib had been extensively absorbed and hepatic metabolism was the major route of clearance. The major metabolic pathway was N-dealkylation mediated by CYP3A, and minor pathways were oxidative by cytochromes P450 and aldehyde oxidase. SIGNIFICANCE STATEMENT: The study provided definitive information regarding the absolute bioavailability and the absorption, metabolism, and excretion pathways of ipatasertib, a potent, novel, and highly selective small-molecule inhibitor of protein kinase B (Akt). An ultrasensitive radioactive counting method, accelerator mass spectrometry was successfully applied for 14C-microtracer absolute bioavailability determination and plasma metabolite profiling.
Collapse
Affiliation(s)
- Ryan H Takahashi
- Drug Metabolism and Pharmacokinetics (R.H.T., B.M.L., S.C., Y.D., B.D., S.M.), Clinical Pharmacology (V.M., R.S., S.K., L.M.), BioAnalytical Sciences (J.N.), Small Molecule Pharmaceutics (E.Y.), and Small Molecule Analytical Chemistry (M.A.A.-S.), Genentech Inc., South San Francisco, California
| | - Vikram Malhi
- Drug Metabolism and Pharmacokinetics (R.H.T., B.M.L., S.C., Y.D., B.D., S.M.), Clinical Pharmacology (V.M., R.S., S.K., L.M.), BioAnalytical Sciences (J.N.), Small Molecule Pharmaceutics (E.Y.), and Small Molecule Analytical Chemistry (M.A.A.-S.), Genentech Inc., South San Francisco, California
| | - Bianca M Liederer
- Drug Metabolism and Pharmacokinetics (R.H.T., B.M.L., S.C., Y.D., B.D., S.M.), Clinical Pharmacology (V.M., R.S., S.K., L.M.), BioAnalytical Sciences (J.N.), Small Molecule Pharmaceutics (E.Y.), and Small Molecule Analytical Chemistry (M.A.A.-S.), Genentech Inc., South San Francisco, California
| | - Sungjoon Cho
- Drug Metabolism and Pharmacokinetics (R.H.T., B.M.L., S.C., Y.D., B.D., S.M.), Clinical Pharmacology (V.M., R.S., S.K., L.M.), BioAnalytical Sciences (J.N.), Small Molecule Pharmaceutics (E.Y.), and Small Molecule Analytical Chemistry (M.A.A.-S.), Genentech Inc., South San Francisco, California
| | - Yuzhong Deng
- Drug Metabolism and Pharmacokinetics (R.H.T., B.M.L., S.C., Y.D., B.D., S.M.), Clinical Pharmacology (V.M., R.S., S.K., L.M.), BioAnalytical Sciences (J.N.), Small Molecule Pharmaceutics (E.Y.), and Small Molecule Analytical Chemistry (M.A.A.-S.), Genentech Inc., South San Francisco, California
| | - Brian Dean
- Drug Metabolism and Pharmacokinetics (R.H.T., B.M.L., S.C., Y.D., B.D., S.M.), Clinical Pharmacology (V.M., R.S., S.K., L.M.), BioAnalytical Sciences (J.N.), Small Molecule Pharmaceutics (E.Y.), and Small Molecule Analytical Chemistry (M.A.A.-S.), Genentech Inc., South San Francisco, California
| | - James Nugteren
- Drug Metabolism and Pharmacokinetics (R.H.T., B.M.L., S.C., Y.D., B.D., S.M.), Clinical Pharmacology (V.M., R.S., S.K., L.M.), BioAnalytical Sciences (J.N.), Small Molecule Pharmaceutics (E.Y.), and Small Molecule Analytical Chemistry (M.A.A.-S.), Genentech Inc., South San Francisco, California
| | - Edward Yost
- Drug Metabolism and Pharmacokinetics (R.H.T., B.M.L., S.C., Y.D., B.D., S.M.), Clinical Pharmacology (V.M., R.S., S.K., L.M.), BioAnalytical Sciences (J.N.), Small Molecule Pharmaceutics (E.Y.), and Small Molecule Analytical Chemistry (M.A.A.-S.), Genentech Inc., South San Francisco, California
| | - Mohammad A Al-Sayah
- Drug Metabolism and Pharmacokinetics (R.H.T., B.M.L., S.C., Y.D., B.D., S.M.), Clinical Pharmacology (V.M., R.S., S.K., L.M.), BioAnalytical Sciences (J.N.), Small Molecule Pharmaceutics (E.Y.), and Small Molecule Analytical Chemistry (M.A.A.-S.), Genentech Inc., South San Francisco, California
| | - Rucha Sane
- Drug Metabolism and Pharmacokinetics (R.H.T., B.M.L., S.C., Y.D., B.D., S.M.), Clinical Pharmacology (V.M., R.S., S.K., L.M.), BioAnalytical Sciences (J.N.), Small Molecule Pharmaceutics (E.Y.), and Small Molecule Analytical Chemistry (M.A.A.-S.), Genentech Inc., South San Francisco, California
| | - Smita Kshirsagar
- Drug Metabolism and Pharmacokinetics (R.H.T., B.M.L., S.C., Y.D., B.D., S.M.), Clinical Pharmacology (V.M., R.S., S.K., L.M.), BioAnalytical Sciences (J.N.), Small Molecule Pharmaceutics (E.Y.), and Small Molecule Analytical Chemistry (M.A.A.-S.), Genentech Inc., South San Francisco, California
| | - Shuguang Ma
- Drug Metabolism and Pharmacokinetics (R.H.T., B.M.L., S.C., Y.D., B.D., S.M.), Clinical Pharmacology (V.M., R.S., S.K., L.M.), BioAnalytical Sciences (J.N.), Small Molecule Pharmaceutics (E.Y.), and Small Molecule Analytical Chemistry (M.A.A.-S.), Genentech Inc., South San Francisco, California
| | - Luna Musib
- Drug Metabolism and Pharmacokinetics (R.H.T., B.M.L., S.C., Y.D., B.D., S.M.), Clinical Pharmacology (V.M., R.S., S.K., L.M.), BioAnalytical Sciences (J.N.), Small Molecule Pharmaceutics (E.Y.), and Small Molecule Analytical Chemistry (M.A.A.-S.), Genentech Inc., South San Francisco, California
| |
Collapse
|