1
|
Wu Y, Niu LL, Ling YY, Zhou SR, Huang TM, Qi JY, Wu DN, Cai RD, Wu TQ, Xiao Y, Liu T. Drug-drug interaction of phenytoin sodium and methylprednisolone on voriconazole: a population pharmacokinetic model in children with thalassemia undergoing allogeneic hematopoietic stem cell transplantation. Eur J Clin Pharmacol 2024:10.1007/s00228-024-03795-2. [PMID: 39714727 DOI: 10.1007/s00228-024-03795-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
PURPOSE Voriconazole (VRC) is recommended for the prevention and treatment of invasive fungal infections in children undergoing hematopoietic stem cell transplantation (HSCT). It demonstrates nonlinear pharmacokinetics (PK) and exhibits substantial inter- and intraindividual variability. Phenytoin sodium (PHT) and methylprednisolone (MP) are commonly used in the early stages of HSCT to prevent epilepsy and graft-versus-host disease. Drug-drug interactions between VRC and these medications represent a significant concern in HSCT recipients. This study aims to investigate the effects of coadministration with PHT, MP, and other covariates on VRC metabolism in children with thalassemia (TM) undergoing allogeneic HSCT (Allo-HSCT) using population pharmacokinetics (PPK) and to recommend the optimal dosage regimen for this unique group. METHODS A total of 237 samples from 57 children with TM undergoing Allo-HSCT were collected. Non-linear mixed effects modeling and Monte Carlo simulation (MCS) were applied for PPK analysis and for optimizing VRC dosing, respectively. RESULTS The VRC data were characterized by a two-compartment model with linear elimination and first-order absorption. All parameters were incorporated in allometric scaling form, with PHT and MP significantly influencing VRC clearance. The MCS revealed a negative correlation between the children's body weight (ranging from 10 to 40 kg) and the required dose. When PHT was co-administered, approximately three times the regular dose of VRC was required. In contrast, when MP was administered together, the dose needed to be increased by 12.5-50%. CONCLUSION The proposed regimen improved the probability of target attainment for VRC and may serve as a reference for the individualized administration of VRC in clinical practice.
Collapse
Affiliation(s)
- Yun Wu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Lu-Lu Niu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ya-Yun Ling
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Si-Ru Zhou
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tian-Min Huang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jian-Ying Qi
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Dong-Ni Wu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rong-da Cai
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ting-Qing Wu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yang Xiao
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Taotao Liu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Shoji K, Hikino K, Saito J, Matsui T, Utano T, Takebayashi A, Tomizawa D, Kato M, Matsumoto K, Ishikawa T, Kawai T, Nakamura H, Miyairi I, Terao C, Mushiroda T. Pharmacogenetic implementation for CYP2C19 and pharmacokinetics of voriconazole in children with malignancy or inborn errors of immunity. J Infect Chemother 2024; 30:1280-1288. [PMID: 38897411 DOI: 10.1016/j.jiac.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Voriconazole pharmacokinetics (PK) are known to be affected by genetic polymorphisms of drug-metabolizing enzymes such as CYP2C19; however, such information is limited for the pediatric population. The primary aim of this study is to establish a voriconazole PK model incorporating CYP2C19 phenotypes in Japanese children with malignancy or inborn errors of immunity. METHODS CYP2C19 genotypes were assessed by whole-genome genotyping and defined as follows: *17/*17: ultrarapid metabolizer (URM), *1/*17: rapid metabolizer (RM), *1/*1:normal metabolizer (NM), *1/*2, *1/*3, *2/*17:intermediate metabolizer (IM), and *2/*2, *2/*3, *3/*3: poor metabolizer (PM). Population PK analysis was performed. The voriconazole serum concentration profile was described by a two-compartment model with first-order absorption, mixed linear and nonlinear (Michaelis-Menten) elimination. RESULTS Voriconazole concentration data were available from 60 patients with a median age of 5.3 years. The phenotypes predicted from CYP2C19 genotypes were RM in 1 (2 %), NM in 21 (35 %) patients, IM in 27 (45 %) patients, and PM in 11 (18 %) patients. Underlying diseases included 38 (63%) patients with hematological malignancy and 18 (30 %) patients with inborn errors of immunity. Among the CYP2C19 phenotypes, PM was predicted to show complete inhibition (the degree of Vmax inhibition [Vmax, inh] = 100 %; Vmax = 0). The estimated parameters of Vmax,inh were +0.8 higher in patients with gamma-glutamyl transpeptidase (γ-GTP) Grade 2 or higher and +2.7 higher when C-reactive protein (CRP) levels were 2.0 mg/dL or higher. CONCLUSION CYP2C19 genetic polymorphisms, γ-GTP, and CRP affect Vmax,inh of voriconazole in children with malignancy or inborn errors of immunity.
Collapse
Affiliation(s)
- Kensuke Shoji
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan.
| | - Keiko Hikino
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Jumpei Saito
- Department of Pharmacy, National Center for Child Health and Development, Tokyo, Japan
| | - Toshihiro Matsui
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan; Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Tomoyuki Utano
- Department of Pharmacy, National Center for Child Health and Development, Tokyo, Japan
| | - Akira Takebayashi
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Daisuke Tomizawa
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Motohiro Kato
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kimikazu Matsumoto
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Takashi Ishikawa
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Toshinao Kawai
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Hidefumi Nakamura
- Department of Research and Development Supervision, National Center for Child Health and Development, Tokyo, Japan
| | - Isao Miyairi
- Division of Infectious Diseases, Department of Medical Subspecialties, National Center for Child Health and Development, Tokyo, Japan; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Pediatrics, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Chikashi Terao
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan; The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Taisei Mushiroda
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
3
|
Ling J, Yang X, Dong L, Jiang Y, Zou S, Hu N. Influence of C-reactive protein on the pharmacokinetics of voriconazole in relation to the CYP2C19 genotype: a population pharmacokinetics analysis. Front Pharmacol 2024; 15:1455721. [PMID: 39228522 PMCID: PMC11368715 DOI: 10.3389/fphar.2024.1455721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Voriconazole is a broad-spectrum triazole antifungal agent. A number of studies have revealed that the impact of C-reactive protein (CRP) on voriconazole pharmacokinetics was associated with the CYP2C19 phenotype. However, the combined effects of CYP2C19 genetic polymorphisms and inflammation on voriconazole pharmacokinetics have not been considered in previous population pharmacokinetic (PPK) studies, especially in the Chinese population. This study aimed to analyze the impact of inflammation on the pharmacokinetics of voriconazole in patients with different CYP2C19 genotypes and optimize the dosage of administration. Data were obtained retrospectively from adult patients aged ≥16 years who received voriconazole for invasive fungal infections from October 2020 to June 2023. Plasma voriconazole levels were measured via high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). CYP2C19 genotyping was performed using the fluorescence in situ hybridization method. A PPK model was developed using the nonlinear mixed-effect model (NONMEM). The final model was validated using bootstrap, visual predictive check (VPC), and normalized prediction distribution error (NPDE). The Monte Carlo simulation was applied to evaluate and optimize the dosing regimens. A total of 232 voriconazole steady-state trough concentrations from 167 patients were included. A one-compartment model with first order and elimination adequately described the data. The typical clearance (CL) and the volume of distribution (V) of voriconazole were 3.83 L/h and 134 L, respectively. The bioavailability was 96.5%. Covariate analysis indicated that the CL of voriconazole was substantially influenced by age, albumin, gender, CRP, and CYP2C19 genetic variations. The V of voriconazole was significantly associated with body weight. An increase in the CRP concentration significantly decreased voriconazole CL in patients with the CYP2C19 normal metabolizer (NM) and intermediate metabolizer (IM), but it had no significant effect on patients with the CYP2C19 poor metabolizer (PM). The Monte Carlo simulation based on CRP levels indicated that patients with high CRP concentrations required a decreased dose to attain the therapeutic trough concentration and avoid adverse drug reactions in NM and IM patients. These results indicate that CRP affects the pharmacokinetics of voriconazole and is associated with the CYP2C19 phenotype. Clinicians dosing voriconazole should consider the patient's CRP level, especially in CYP2C19 NMs and IMs.
Collapse
Affiliation(s)
| | | | | | | | | | - Nan Hu
- Department of Pharmacy, The First People’s Hospital of Changzhou/The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
4
|
Hu L, Huang J, Li Y, He G. Clinical application of voriconazole in pediatric patients: a systematic review. Ital J Pediatr 2024; 50:113. [PMID: 38853280 PMCID: PMC11163776 DOI: 10.1186/s13052-024-01684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024] Open
Abstract
The purpose of this study was to review the literature on the clinical use of voriconazole (VRC) in pediatric patients. MEDLINE, Embase, PubMed, Web of Science, and Cochrane Library were searched from January 1, 2000, to August 15, 2023 for relevant clinical studies on VRC use in pediatric patients. Data were collected based on inclusion and exclusion criteria, and a systematic review was performed on recent research related to the use of VRC in pediatric patients. This systematic review included a total of 35 observational studies among which there were 16 studies investigating factors influencing VRC plasma trough concentrations (Ctrough) in pediatric patients, 14 studies exploring VRC maintenance doses required to achieve target range of Ctrough, and 11 studies focusing on population pharmacokinetic (PPK) research of VRC in pediatric patients. Our study found that the Ctrough of VRC were influenced by both genetic and non-genetic factors. The optimal dosing of VRC was correlated with age in pediatric patients, and younger children usually required higher VRC doses to achieve target Ctrough compared to older children. Establishing a PPK model for VRC can assist in achieving more precise individualized dosing in children.
Collapse
Affiliation(s)
- Lin Hu
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China.
| | - Juanjuan Huang
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China
| | - Yanfei Li
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China
| | - Gefei He
- Department of Pharmacy, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- Department of Pharmacy, The First Hospital of Changsha, Changsha, Hunan, China.
| |
Collapse
|
5
|
Voriconazole exposure is influenced by inflammation: A population pharmacokinetic model. Int J Antimicrob Agents 2023; 61:106750. [PMID: 36758777 DOI: 10.1016/j.ijantimicag.2023.106750] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Voriconazole is an antifungal drug used for the treatment of invasive fungal infections. Due to highly variable drug exposure, therapeutic drug monitoring (TDM) has been recommended. TDM may be helpful to predict exposure accurately, but covariates, such as severe inflammation, that influence the metabolism of voriconazole have not been included in the population pharmacokinetic (popPK) models suitable for routine TDM. OBJECTIVES To investigate whether the effect of inflammation, reflected by C-reactive protein (CRP), could improve a popPK model that can be applied in clinical care. PATIENTS AND METHODS Data from two previous studies were included in the popPK modelling. PopPK modelling was performed using Edsim++. Different popPK models were compared using Akaike Information Criterion and goodness-of-fit plots. RESULTS In total, 1060 voriconazole serum concentrations from 54 patients were included in this study. The final model was a one-compartment model with non-linear elimination. Only CRP was a significant covariate, and was included in the final model and found to affect the maximum rate of enzyme activity (Vmax). For the final popPK model, the mean volume of distribution was 145 L [coefficient of variation percentage (CV%)=61%], mean Michaelis-Menten constant was 5.7 mg/L (CV%=119%), mean Vmax was 86.4 mg/h (CV%=99%) and mean bioavailability was 0.83 (CV%=143%). Internal validation using bootstrapping resulted in median values close to the population parameter estimates. CONCLUSIONS This one-compartment model with non-linear elimination and CRP as a covariate described the pharmacokinetics of voriconazole adequately.
Collapse
|
6
|
Wu Y, Lv C, Wu D, Qi J, Cai R, Zhou S, Li C, Wei Y, Liu T. Dosage optimization of voriconazole in children with haematological malignancies based on population pharmacokinetics. J Clin Pharm Ther 2022; 47:2245-2254. [PMID: 36345158 DOI: 10.1111/jcpt.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVES Voriconazole has a complex pharmacokinetic profile and exhibits different pharmacokinetic characteristics in adults and children. Nevertheless, few studies have been conducted on the population pharmacokinetics (PPK) of voriconazole in children with haematological malignancies. This study aims to build a PPK model and propose a suitable voriconazole treatment scheme for children with haematological malignancies. METHODS We retrospectively collected 146 samples from 67 children aged from 1.08 to 17.92 years. The PPK model was established using nonlinear mixed effects modelling (NONMEM). Dosage simulations were conducted on the basis of the final model's covariates. RESULTS AND DISCUSSION Data were fully characterized by a one-compartment model with first-order absorption and elimination. The weight (WT), CYP2C19 phenotype, and Albumin (ALB) were notable covariates for clearance (CL). The typical values of CL, the volume of distribution (V), and oral bioavailability (F) were 2.29 L/h, 76 L, and 0.902, respectively. The proposed doses for different CYP2C19 genotypes were presented in this ranking: EM (extensive metabolizer) > IM (intermediate metabolizer) > PM (poor metabolizer). Furthermore, higher dosages for light WT patients were recommended while lower ALB levels required lower doses. The probability of achieving the target (PTA) for the recommended doses ranged from 72.2% to 99%. WHAT IS NEW AND CONCLUSION We successfully built a voriconazole PPK model for children with hematologic malignancies. Dosing regimens were developed for different patients based on the final model, which could enhance the rational use of voriconazole in children with haematological malignancies.
Collapse
Affiliation(s)
- Yun Wu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chunle Lv
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Dongni Wu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jianying Qi
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rongda Cai
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Siru Zhou
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chengxin Li
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yinyi Wei
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Taotao Liu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
7
|
Jiang Z, Wei Y, Huang W, Li B, Zhou S, Liao L, Li T, Liang T, Yu X, Li X, Zhou C, Cao C, Liu T. Population pharmacokinetics of voriconazole and initial dosage optimization in patients with talaromycosis. Front Pharmacol 2022; 13:982981. [PMID: 36225581 PMCID: PMC9549404 DOI: 10.3389/fphar.2022.982981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/30/2022] [Indexed: 01/08/2023] Open
Abstract
The high variability and unpredictability of the plasma concentration of voriconazole (VRC) pose a major challenge for clinical administration. The aim of this study was to develop a population pharmacokinetics (PPK) model of VRC and identify the factors influencing VRC PPK in patients with talaromycosis. Medical records and VRC medication history of patients with talaromycosis who were treated with VRC as initial therapy were collected. A total of 233 blood samples from 69 patients were included in the study. A PPK model was developed using the nonlinear mixed-effects models (NONMEM). Monte Carlo simulation was applied to optimize the initial dosage regimens with a therapeutic range of 1.0–5.5 mg/L as the target plasma trough concentration. A one-compartment model with first-order absorption and elimination adequately described the data. The typical voriconazole clearance was 4.34 L/h, the volume of distribution was 97.4 L, the absorption rate constant was set at 1.1 h-1, and the bioavailability was 95.1%. Clearance was found to be significantly associated with C-reactive protein (CRP). CYP2C19 polymorphisms had no effect on voriconazole pharmacokinetic parameters. Monte Carlo simulation based on CRP levels showed that a loading dose of 250 mg/12 h and a maintenance dose of 100 mg/12 h are recommended for patients with CRP ≤ 96 mg/L, whereas a loading dose of 200 mg/12 h and a maintenance dose of 75 mg/12 h are recommended for patients with CRP > 96 mg/L. The average probability of target attainment of the optimal dosage regimen in CRP ≤ 96 mg/L and CRP > 96 mg/L groups were 61.3% and 13.6% higher than with empirical medication, and the proportion of Cmin > 5.5 mg/L decreased by 28.9%. In conclusion, the VRC PPK model for talaromycosis patients shows good robustness and predictive performance, which can provide a reference for the clinical individualization of VRC. Adjusting initial dosage regimens based on CRP may promote the rational use of VRC.
Collapse
Affiliation(s)
- Zhiwen Jiang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Yinyi Wei
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weie Huang
- Department of Infectious Diseases, Baise People’s Hospital, Baise, China
| | - Bingkun Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Siru Zhou
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liuwei Liao
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Tiantian Li
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Tianwei Liang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Xiaoshu Yu
- Department of Infectious Diseases, Baise People’s Hospital, Baise, China
| | - Xiuying Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
| | - Changjing Zhou
- Department of Infectious Diseases, Baise People’s Hospital, Baise, China
- *Correspondence: Changjing Zhou, ; Cunwei Cao, ; TaoTao Liu,
| | - Cunwei Cao
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Lab of Fungi and Mycosis Research and Prevention, Nanning, China
- *Correspondence: Changjing Zhou, ; Cunwei Cao, ; TaoTao Liu,
| | - TaoTao Liu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Changjing Zhou, ; Cunwei Cao, ; TaoTao Liu,
| |
Collapse
|