1
|
Monich AG, Bissler JJ, Barreto FC. Tuberous Sclerosis Complex and the kidneys: what nephrologists need to know. J Bras Nefrol 2024; 46:e20240013. [PMID: 38991206 PMCID: PMC11239183 DOI: 10.1590/2175-8239-jbn-2024-0013en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/24/2024] [Indexed: 07/13/2024] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disease characterized by the development of hamartomas in the central nervous system, heart, skin, lungs, and kidneys and other manifestations including seizures, cortical tubers, radial migration lines, autism and cognitive disability. The disease is associated with pathogenic variants in the TSC1 or TSC2 genes, resulting in the hyperactivation of the mTOR pathway, a key regulator of cell growth and metabolism. Consequently, the hyperactivation of the mTOR pathway leads to abnormal tissue proliferation and the development of solid tumors. Kidney involvement in TSC is characterized by the development of cystic lesions, renal cell carcinoma and renal angiomyolipomas, which may progress and cause pain, bleeding, and loss of kidney function. Over the past years, there has been a notable shift in the therapeutic approach to TSC, particularly in addressing renal manifestations. mTOR inhibitors have emerged as the primary therapeutic option, whereas surgical interventions like nephrectomy and embolization being reserved primarily for complications unresponsive to clinical treatment, such as severe renal hemorrhage. This review focuses on the main clinical characteristics of TSC, the mechanisms underlying kidney involvement, the recent advances in therapy for kidney lesions, and the future perspectives.
Collapse
Affiliation(s)
- Aline Grosskopf Monich
- Universidade Federal do Paraná, Departamento de Clínica Médica, Programa de Pós-Graduação em Medicina Interna e Ciências da Saúde, Curitiba, PR, Brazil
- Hospital Universitário Evangélico Mackenzie, Serviço de Nefrologia, Curitiba, PR, Brazil
| | - John J. Bissler
- University of Tennessee, Health Science Center, Le Bonheur Children's Hospital, Department of Pediatrics, Memphis, TN, USA
- Le Bonheur Children's Hospital, Children's Foundation Research Institute, Memphis, TN, USA
- St. Jude Children’s Research Hospital, Pediatric Medicine Department, Memphis, TN, USA
| | - Fellype Carvalho Barreto
- Universidade Federal do Paraná, Departamento de Clínica Médica, Programa de Pós-Graduação em Medicina Interna e Ciências da Saúde, Curitiba, PR, Brazil
- Universidade Federal do Paraná, Departamento de Clínica Médica, Serviço de Nefrologia, Curitiba, PR, Brazil
| |
Collapse
|
2
|
Mekahli D, Müller RU, Marlais M, Wlodkowski T, Haeberle S, de Argumedo ML, Bergmann C, Breysem L, Fladrowski C, Henske EP, Janssens P, Jouret F, Kingswood JC, Lattouf JB, Lilien M, Maleux G, Rozenberg M, Siemer S, Devuyst O, Schaefer F, Kwiatkowski DJ, Rouvière O, Bissler J. Clinical practice recommendations for kidney involvement in tuberous sclerosis complex: a consensus statement by the ERKNet Working Group for Autosomal Dominant Structural Kidney Disorders and the ERA Genes & Kidney Working Group. Nat Rev Nephrol 2024; 20:402-420. [PMID: 38443710 DOI: 10.1038/s41581-024-00818-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by the presence of proliferative lesions throughout the body. Management of TSC is challenging because patients have a multifaceted systemic illness with prominent neurological and developmental impact as well as potentially severe kidney, heart and lung phenotypes; however, every organ system can be involved. Adequate care for patients with TSC requires a coordinated effort involving a multidisciplinary team of clinicians and support staff. This clinical practice recommendation was developed by nephrologists, urologists, paediatric radiologists, interventional radiologists, geneticists, pathologists, and patient and family group representatives, with a focus on TSC-associated kidney manifestations. Careful monitoring of kidney function and assessment of kidney structural lesions by imaging enable early interventions that can preserve kidney function through targeted approaches. Here, we summarize the current evidence and present recommendations for the multidisciplinary management of kidney involvement in TSC.
Collapse
Affiliation(s)
- Djalila Mekahli
- PKD Research Group, Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
- Department of Paediatric Nephrology, University Hospitals Leuven, Leuven, Belgium.
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Rare Diseases Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Matko Marlais
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Tanja Wlodkowski
- Division of Paediatric Nephrology, Center for Paediatrics and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Stefanie Haeberle
- Division of Paediatric Nephrology, Center for Paediatrics and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - Marta López de Argumedo
- Basque Office for Health Technology Assessment, (OSTEBA), Basque Government, Vitoria-Gasteiz, Spain
| | - Carsten Bergmann
- Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | - Luc Breysem
- Department of Radiology, University Hospital of Leuven, Leuven, Belgium
| | - Carla Fladrowski
- Associazione Sclerosi Tuberosa ASP, Rome, Italy
- European Tuberous Sclerosis Complex Association (ETSC), Oestrich-Winkel, Germany
| | - Elizabeth P Henske
- Center for LAM Research and Clinical Care, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter Janssens
- Department of Nephrology and Arterial Hypertension, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel, Brussels, Belgium
| | - François Jouret
- Division of Nephrology, Department of Internal Medicine, University of Liège Hospital, Liège, Belgium
- Interdisciplinary Group of Applied Genoproteomics, Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - John Christopher Kingswood
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Centre, St Georges University of London, London, UK
| | - Jean-Baptiste Lattouf
- Department of Surgery-Urology, CHUM-Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Marc Lilien
- Department of Paediatric Nephrology, Wilhelmina Children´s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Geert Maleux
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Micaela Rozenberg
- European Tuberous Sclerosis Complex Association (ETSC), Oestrich-Winkel, Germany
- Associação de Esclerose Tuberosa em Portugal, Lisbon, Portugal
| | - Stefan Siemer
- Department of Urology and Paediatric Urology, Saarland University, Homburg, Germany
| | - Olivier Devuyst
- Department of Physiology, Mechanisms of Inherited Kidney Disorders, University of Zurich, Zurich, Switzerland
- Institute for Rare Diseases, Saint-Luc Academic Hospital, UC Louvain, Brussels, Belgium
| | - Franz Schaefer
- Division of Paediatric Nephrology, Center for Paediatrics and Adolescent Medicine, University Hospital, Heidelberg, Germany
| | - David J Kwiatkowski
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olivier Rouvière
- Department of Radiology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
- Université Lyon 1, Lyon, France, Faculté de médecine Lyon Est, Lyon, France
| | - John Bissler
- Department of Paediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, USA.
- Children's Foundation Research Institute (CFRI), Le Bonheur Children's Hospital, Memphis, TN, USA.
- Paediatric Medicine Department, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
3
|
Tanaka Y, Amano T, Nakamura A, Yoshino F, Takebayashi A, Takahashi A, Yamanaka H, Inatomi A, Hanada T, Yoneoka Y, Tsuji S, Murakami T. Rapamycin prevents cyclophosphamide-induced ovarian follicular loss and potentially inhibits tumour proliferation in a breast cancer xenograft mouse model. Hum Reprod 2024:deae085. [PMID: 38734930 DOI: 10.1093/humrep/deae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/26/2024] [Indexed: 05/13/2024] Open
Abstract
STUDY QUESTION To what extent and via what mechanism does the concomitant administration of rapamycin (a follicle activation pathway inhibitor and antitumour agent) and cyclophosphamide (a highly toxic ovarian anticancer agent) prevent cyclophosphamide-induced ovarian reserve loss and inhibit tumour proliferation in a breast cancer xenograft mouse model? SUMMARY ANSWER Daily concomitant administration of rapamycin and a cyclic regimen of cyclophosphamide, which has sufficient antitumour effects as a single agent, suppressed cyclophosphamide-induced primordial follicle loss by inhibiting primordial follicle activation in a breast cancer xenograft mouse model, suggesting the potential of an additive inhibitory effect against tumour proliferation. WHAT IS KNOWN ALREADY Cyclophosphamide stimulates primordial follicles by activating the mammalian target of the rapamycin (mTOR) pathway, resulting in the accumulation of primary follicles, most of which undergo apoptosis. Rapamycin, an mTOR inhibitor, regulates primordial follicle activation and exhibits potential inhibitory effects against breast cancer cell proliferation. STUDY DESIGN, SIZE, DURATION To assess ovarian follicular apoptosis, 3 weeks after administering breast cancer cells, 8-week-old mice were randomized into three treatment groups: control, cyclophosphamide, and cyclophosphamide + rapamycin (Cy + Rap) (n = 5 or 6 mice/group). Mice were treated with rapamycin or vehicle control for 1 week, followed by a single dose of cyclophosphamide or vehicle control. Subsequently, the ovaries were resected 24 h after cyclophosphamide administration (short-term treatment groups). To evaluate follicle abundance and the mTOR pathway in ovaries, as well as the antitumour effects and impact on the mTOR pathway in tumours, 8-week-old xenograft breast cancer transplanted mice were randomized into three treatment groups: vehicle control, Cy, and Cy + Rap (n = 6 or 7 mice/group). Rapamycin (5 mg/kg) or the vehicle was administered daily for 29 days. Cyclophosphamide (120 mg/kg) or the vehicle was administered thrice weekly (long-term treatment groups). The tumour diameter was measured weekly. Seven days after the last cyclophosphamide treatment, the ovaries were harvested, fixed, and sectioned (for follicle counting) or frozen (for further analysis). Similarly, the tumours were resected and fixed or frozen. PARTICIPANTS/MATERIALS, SETTING, METHODS Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) was performed to examine ovarian follicular apoptosis in the short-term treatment groups. All subsequent experiments were conducted in the long-term treatment groups. Tumour growth was evaluated using the tumour volume index. The tumour volume index indicates the relative volume, compared to the volume 3 weeks after tumour cell injection (at treatment initiation) set to 100%. Tumour cell proliferation was evaluated by Ki-67 immunostaining. Activation of the mTOR pathway in tumours was assessed using the protein extracts from tumours and analysed by western blotting. Haematoxylin and eosin staining of ovaries was used to perform differential follicle counts for primordial, primary, secondary, antral, and atretic follicles. Activation of the mTOR pathway in ovaries was assessed using protein extracts from whole ovaries and analysed by western blotting. Localization of mTOR pathway activation within ovaries was assessed by performing anti-phospho-S6 kinase (downstream of mTOR pathway) immunohistochemistry. MAIN RESULTS AND THE ROLE OF CHANCE Ovaries of the short-term treatment groups were resected 24 h after cyclophosphamide administration and subjected to TUNEL staining of apoptotic cells. No TUNEL-positive primordial follicles were detected in the control, Cy, and Cy + Rap groups. Conversely, many granulosa cells of growing follicles were TUNEL positive in the Cy group but negative in the control and Cy + Rap groups. All subsequent experimental results were obtained from the long-term treatment groups. The tumour volume index stabilized at a mean of 160-200% in the Cy group and 130% in the Cy + Rap group throughout the treatment period. In contrast, tumours in the vehicle control group grew continuously with a mean tumour volume index of 600%, significantly greater than that of the two treatment groups. Based on the western blot analysis of tumours, the mTOR pathway was activated in the vehicle control group and downregulated in the Cy + Rap group when compared with the control and Cy groups. Ki-67 immunostaining of tumours showed significant inhibition of cell proliferation in the Cy + Rap group when compared with that in the control and Cy groups. The ovarian follicle count revealed that the Cy group had significantly fewer primordial follicles (P < 0.001) than the control group, whereas the Cy + Rap group had significantly higher number of primordial follicles (P < 0.001, 2.5 times) than the Cy group. The ratio of primary to primordial follicles was twice as high in the Cy group than in the control group; however, no significant difference was observed between the control group and the Cy + Rap group. Western blot analysis of ovaries revealed that the mTOR pathway was activated by cyclophosphamide and inhibited by rapamycin. The phospho-S6 kinase (pS6K)-positive primordial follicle rate was 2.7 times higher in the Cy group than in the control group. However, this effect was suppressed to a level similar to the control group in the Cy + Rap group. LARGE SCALE DATA None. LIMITATIONS, REASONS FOR CAUTION The combinatorial treatment of breast cancer tumours with rapamycin and cyclophosphamide elicited inhibitory effects on cell proliferative potential compared to cyclophosphamide monotherapy. However, no statistically significant additive effect was observed on tumour volume. Thus, the beneficial antitumour effect afforded by rapamycin administration on breast cancer could not be definitively proven. Although rapamycin has ovarian-protective effects, it does not fully counteract the ovarian toxicity of cyclophosphamide. Nevertheless, rapamycin is advantageous as an ovarian protective agent as it can be used in combination with other ovarian protective agents, such as hormonal therapy. Hence, in combination with other agents, mTOR inhibitors may be sufficiently ovario-protective against high-dose and cyclic cyclophosphamide regimens. WIDER IMPLICATIONS OF THE FINDINGS Compared with a cyclic cyclophosphamide regimen that replicates human clinical practice under breast cancer-bearing conditions, the combination with rapamycin mitigates the ovarian follicle loss of cyclophosphamide without interfering with the anticipated antitumour effects. Hence, rapamycin may represent a new non-invasive treatment option for cyclophosphamide-induced ovarian dysfunction in breast cancer patients. STUDY FUNDING/COMPETING INTEREST(S) This work was not financially supported. The authors declare that they have no conflict of interest.
Collapse
Affiliation(s)
- Yuji Tanaka
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Tsukuru Amano
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Akiko Nakamura
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Fumi Yoshino
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Akie Takebayashi
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Akimasa Takahashi
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Hiroyuki Yamanaka
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Ayako Inatomi
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Tetsuro Hanada
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Yutaka Yoneoka
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Shunichiro Tsuji
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| | - Takashi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
4
|
Shan H, Luo R, Guo X, Li R, Ye Z, Peng T, Liu F, Yang Z. Abnormal Endometrial Receptivity and Oxidative Stress in Polycystic Ovary Syndrome. Front Pharmacol 2022; 13:904942. [PMID: 35959444 PMCID: PMC9357999 DOI: 10.3389/fphar.2022.904942] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in women of childbearing age. Individual heterogeneity is evident, and the prevalence rate ranges between 6 and 15% globally. The prevalence rate of PCOS in Chinese women of childbearing age is 5.6%. The main manifestations are infertility, sparse menstruation, irregular vaginal bleeding, long-term endometrial hyperplasia, and endometrial cancer. PCOS is often associated with hyperandrogenemia, insulin resistance, hyperinsulinemia, obesity, metabolic syndrome, and intestinal flora disorder. Although there have been many studies in the past, the underlying pathophysiological mechanism of the disease is still unclear. Studies have shown that PCOS diseases and related complications are closely related to local oxidative stress imbalance in the endometrium, leading to poor endometrial receptivity and effects on pregnancy. Previous reviews have mainly focused on the abnormal mechanism of ovarian oxidative stress in women with PCOS, while reviews on endometrial receptivity and oxidative stress are relatively insufficient. This study reviews the abnormal cellular and molecular mechanisms of oxidative stress due to comorbidities in women with PCOS, leading to a downregulation of endometrial receptivity.
Collapse
Affiliation(s)
- Hongying Shan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- First Affiliated Hospital, School of Medicine, Shihezi University, Beijing, China
| | - Renxin Luo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Xuanying Guo
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- *Correspondence: Rong Li,
| | - Zhenhong Ye
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Tianliu Peng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Fenting Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Zi Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
5
|
Abstract
Hydrocephalus, the abnormal accumulation and impaired circulation/clearance of cerebrospinal fluid, occurs as a common phenotypic feature of a diverse group of genetic syndromes. In this review, we outline the genetic mutations, pathogenesis, and accompanying symptoms underlying syndromic hydrocephalus in the context of: L1 syndrome, syndromic craniosynostoses, achondroplasia, NF 1/2, Down's syndrome, tuberous sclerosis, Walker-Warburg syndrome, primary ciliary dyskinesia, and osteogenesis imperfecta. Further, we discuss emerging genetic variants associated with syndromic hydrocephalus.
Collapse
Affiliation(s)
- Kaamya Varagur
- Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Sai Anusha Sanka
- Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jennifer M. Strahle
- Department of Neurosurgery, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
6
|
Zhang Y, Zhang J, Wang S. The Role of Rapamycin in Healthspan Extension via the Delay of Organ Aging. Ageing Res Rev 2021; 70:101376. [PMID: 34089901 DOI: 10.1016/j.arr.2021.101376] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/07/2021] [Accepted: 05/30/2021] [Indexed: 12/17/2022]
Abstract
Aging can not only shorten a healthy lifespan, but can also lead to multi-organ dysfunction and failure. Anti-aging is a complex and worldwide conundrum for eliminating the various pathologies of senility. The past decade has seen great progress in the understanding of the aging-associated signaling pathways and their application for developing anti-aging approaches. Currently, some drugs can improve quality of life. The activation of mammalian target of rapamycin (mTOR) signaling is one of the core and detrimental mechanisms related to aging; rapamycin can reduce the rate of aging, improve age-related diseases by inhibiting the mTOR pathway, and prolong lifespan and healthspan effectively. However, the current evidence for rapamycin in lifespan extension and organ aging is fragmented and scattered. In this review, we summarize the efficacy and safety of rapamycin in prolonging a healthy lifespan by systematically alleviating aging in multiple organ systems, i.e., the nervous, urinary, digestive, circulatory, motor, respiratory, endocrine, reproductive, integumentary and immune systems, to provide a theoretical basis for the future clinical application of rapamycin in anti-aging.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Manor J, Patel K, Iacobas I, Margolin JF, Mahajan P. Clinical variability in multifocal lymphangioendotheliomatosis with thrombocytopenia: a review of the literature. Pediatr Hematol Oncol 2021; 38:367-377. [PMID: 33641614 DOI: 10.1080/08880018.2020.1871135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Multifocal lymphangioendotheliomatosis with thrombocytopenia (MLT) is a recently recognized disorder characterized by vascular lesions marked by distinct endothelial proliferation. Lesions affect multiple tissues, and MLT can be associated with refractory thrombocytopenia resulting in life-threatening bleeding. Diagnosing MLT may be challenging given its rarity and phenotypic variability. There is no consensus on the optimal management or treatment duration. We report a 4-month-old male who presented with multiple vascular malformations involving the gastrointestinal tract, lung, bones, choroid plexus, and spleen, with minimal cutaneous involvement and no thrombocytopenia. Wedge resection of a pulmonary nodule was strongly positive for lymphatic vessel endothelial hyaluronan receptor 1 favoring MLT despite the lack of thrombocytopenia. The patient's clinical symptoms and vascular lesions improved on sirolimus therapy. We review the literature to highlight the clinical variability of MLT and discuss the diagnostic and therapeutic options for MLT.
Collapse
Affiliation(s)
- Joshua Manor
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Kalyani Patel
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Ionela Iacobas
- Department of Pediatrics, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas, USA
| | - Judith F Margolin
- Department of Pediatrics, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas, USA
| | - Priya Mahajan
- Department of Pediatrics, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Liu C, Dong W, Xia L, Lv J, Jiang D, Wang Q, Wang M, Wu M, Miao J, Tao T, Wang D, Zheng L, Su S, Liu L, Fang Y. Safety and tolerability of a humanized rabbit monoclonal antibody (SSS07) in healthy adults: Randomized double-blind placebo-controlled single ascending dose trial. Int Immunopharmacol 2020; 91:107263. [PMID: 33383447 DOI: 10.1016/j.intimp.2020.107263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND/OBJECTIVE SSS07, a humanized rabbit monoclonal antibody, can selectively block human tumor necrosis factor-α (TNF-α). The objective of this study was to assess the safety, tolerability, and relative immunogenicity of SSS07 after multiple single subcutaneous (SC) doses in healthy volunteers. METHODS A total of 71 healthy volunteers were randomized to six sequential ascending-dose groups (5, 15, 30, 50, 75, and 100 mg), and except for the 100 mg group that only had one subject who received a placebo, all of the other groups included two placebo-control subjects. Safety, tolerability, and immunogenicity were assessed by physical examinations, vital signs, electrocardiography (ECG), clinical laboratory tests, and plasma anti-drug antibody (ADA) over 28 days for each group. Their concentrations of TNF-α were also analyzed. Only after safety and tolerance were determined in the lower-dose groups was the next dose group initiated. The dose increments did not exceed 100 mg. RESULTS No serious adverse events or dose-limited toxicity (DLT) were observed, so 100 mg was defined as the maximum tolerated dose (MTD). Overall, 71 AEs and 59 treatment-related adverse events (TRAEs) were reported in 36 (60.0%) and 30 (50.0%) volunteers, respectively, who received SSS07. All AEs and TRAEs were mild or moderate and expected based on previous results with similar types of drugs, without new safety concerns. Except for infections and administration site reactions, the frequency and intensity of the other TRAEs were similar for SSS07 and placebo. No severe acute immune reactions occurred. The lower dose's immunogenicity was stronger than the higher doses. The highest ADA titer was observed 3 to 6 months after administration. CONCLUSION SSS07 was generally safe and well tolerated in healthy Chinese volunteers. Higher immunogenicity was observed at low SSS07 concentration levels. The infections and administration site conditions might have been related to the immunogenicity and the degree of inhibition of TNF-α. However, the existence of ADA did not appear to affect the safety of the subjects throughout the follow-up period. These findings could support further investigations of treatments with humanized monoclonal antibodies.
Collapse
Affiliation(s)
- Chang Liu
- Phase I Clinical Research Unit, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, No. B24, Yinquan Road, Qingcheng District, Qingyuan City, Guangdong Province 511518, China
| | - Wenliang Dong
- Department of Pharmacy, Peking University People's Hospital, Beijing 100034, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Lin Xia
- Department of Pharmacy, Peking University People's Hospital, Beijing 100034, China; Department of Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Jie Lv
- Department of Intensive Care Units, Peking University People's Hospital, Beijing 100034, China
| | - Daoli Jiang
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221006, China
| | - Qian Wang
- Department of Pharmacy, Peking University People's Hospital, Beijing 100034, China
| | - Mei Wang
- Department of Pharmacy, Peking University People's Hospital, Beijing 100034, China
| | - Maofeng Wu
- Phase I Clinical Research Unit, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, No. B24, Yinquan Road, Qingcheng District, Qingyuan City, Guangdong Province 511518, China
| | - Jingwei Miao
- Phase I Clinical Research Unit, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, No. B24, Yinquan Road, Qingcheng District, Qingyuan City, Guangdong Province 511518, China
| | - Tao Tao
- Shenyang Sunshine Pharmaceuticals Co., Ltd., Economic and Technological Development Zone, Shenyang City, Liaoning Province 110027, China
| | - Dong Wang
- Shenyang Sunshine Pharmaceuticals Co., Ltd., Economic and Technological Development Zone, Shenyang City, Liaoning Province 110027, China
| | - Lili Zheng
- Shenyang Sunshine Pharmaceuticals Co., Ltd., Economic and Technological Development Zone, Shenyang City, Liaoning Province 110027, China
| | - Shiguang Su
- Phase I Clinical Research Unit, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, No. B24, Yinquan Road, Qingcheng District, Qingyuan City, Guangdong Province 511518, China
| | - Lizhong Liu
- Phase I Clinical Research Unit, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, No. B24, Yinquan Road, Qingcheng District, Qingyuan City, Guangdong Province 511518, China
| | - Yi Fang
- Phase I Clinical Research Unit, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, No. B24, Yinquan Road, Qingcheng District, Qingyuan City, Guangdong Province 511518, China; Department of Pharmacy, Peking University People's Hospital, Beijing 100034, China.
| |
Collapse
|
9
|
Ariceta G, Buj MJ, Furlano M, Martínez V, Matamala A, Morales M, Robles NR, Sans L, Villacampa F, Torra R. Recommendations for the management of renal involvement in the tuberous sclerosis complex. Nefrologia 2019; 40:142-151. [PMID: 31722796 DOI: 10.1016/j.nefro.2019.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/04/2019] [Accepted: 07/15/2019] [Indexed: 12/01/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare, hereditary, multisystemic disease with a broad phenotypic spectrum. Its management requires the collaboration of multiple specialists. Just as in the paediatric age, the paediatric neurologist takes on special importance; in adulthood, renal involvement is the cause of the greatest morbidity and mortality. There are several recommendations on the general management of patients with TSC but none that focuses on renal involvement. These recommendations respond to the need to provide guidelines to facilitate a better knowledge and diagnostic-therapeutic management of the renal involvement of TSC through a rational use of complementary tests and the correct use of available treatments. Their elaboration has been based on consensus within the hereditary renal diseases working group of the SEN/REDINREN (Spanish Society of Nephrology/Kidney Research Network). It has also counted on the participation of non-nephrologist specialists in TSC in order to expand the vision of the disease.
Collapse
Affiliation(s)
- Gema Ariceta
- Servicio de Nefrología Pediátrica, Hospital Valle Hebrón, REDINREN, Barcelona, España
| | - María José Buj
- Servicio de Radiología, Hospital 12 de Octubre, Madrid, España
| | - Mónica Furlano
- Enfermedades Renales Hereditarias, Servicio de Nefrología, Fundació Puigvert, IIB Sant Pau, Universitat Autónoma de Barcelona, REDINREN, Barcelona, España
| | - Víctor Martínez
- Servicio de Nefrología, Hospital Virgen de la Arrixaca, Murcia, España
| | - Anna Matamala
- Departamento de Enfermería, Fundació Puigvert, Barcelona, España
| | | | | | - Laia Sans
- Servicio de Nefrología, Hospital del Mar, REDINREN, Barcelona, España
| | - Felipe Villacampa
- Servicio de Urología, Clínica Universidad de Navarra, Madrid, España
| | - Roser Torra
- Enfermedades Renales Hereditarias, Servicio de Nefrología, Fundació Puigvert, IIB Sant Pau, Universitat Autónoma de Barcelona, REDINREN, Barcelona, España.
| |
Collapse
|
10
|
Tarasewicz A, Dębska-Ślizień A, Rutkowska B, Szurowska E, Matuszewski M. Efficacy and Safety of Mammalian Target of Rapamycin Inhibitor Use-Long-term Follow-up of First Tuberous Sclerosis Complex Patient Treated De Novo With Sirolimus After Kidney Transplantation: A Case Report. Transplant Proc 2018; 50:1904-1909. [PMID: 30056926 DOI: 10.1016/j.transproceed.2018.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/25/2018] [Accepted: 03/06/2018] [Indexed: 01/09/2023]
Abstract
Mammalian target of rapamycin inhibitors (mTORI) are increasingly used in the treatment of tuberous sclerosis complex (TSC) and as immunosuppressants after organ transplantation. In TSC patients, mTORI are the treatment of choice after kidney transplantation. It is still under debate if benefits from long-term mTORI use will not be limited by side effects. MATERIALS AND METHODS We report long-term follow-up data of the first TSC patient after kidney transplantation treated with sirolimus de novo. In 2005, a female patient was transplanted with a kidney graft after bilateral nephrectomy due to angiomyolipoma. Initial immunosuppressive treatment consisted of antithymocyte globulin, methylprednisolone, tacrolimus, and, due to TSC diagnosis, sirolimus. Creatinine level at discharge was 1.2 mg/dL. RESULTS Long-term mTORI use resulted in skin lesion regression (angiofibromas, "confetti" skin lesions, shagreen patch) and disease stabilization in brain, abdominal, and chest magnetic resonance imaging/computed tomography scans. Pulmonary function tests showed improvement in restriction and slow deterioration in obstruction and diffusion parameters. Sirolimus related adverse reactions were hyperlipidemia and hypertriglyceridemia and respiratory and urinary tract infections. No gastrointestinal or hematologic symptoms occurred. Sirolimus concentrations ranged between 1.7 and 8.2 ng/mL (mean 4.01 ± 2.09 ng/mL). Since 2009 proteinuria and slow increase in creatinine level have been observed. No biopsy was performed to establish etiology and potential association with mTORI. In 2017 creatinine level was 2.2 mg/dL. CONCLUSION The case of the patient confirms clinical effectiveness and acceptable safety of long-term mTORI treatment. Long-term mTORI use requires meticulous patient observation to optimize dosage, achieve immunosuppressive effect, and improve TSC manifestations with minimal side effects.
Collapse
Affiliation(s)
- A Tarasewicz
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland.
| | - A Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - B Rutkowska
- Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - E Szurowska
- Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - M Matuszewski
- Department of Urology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
11
|
Brakemeier S, Bachmann F, Budde K. Treatment of renal angiomyolipoma in tuberous sclerosis complex (TSC) patients. Pediatr Nephrol 2017; 32:1137-1144. [PMID: 27585680 DOI: 10.1007/s00467-016-3474-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/26/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
In adult tuberous sclerosis complex (TSC) patients, renal complications are the leading cause of death. Beginning in childhood, up to 80 % of patients develop renal angiomyolipoma characterized by a size-dependent risk of life-threatening bleeding. After discovery of the two causative genes, TSC1 and TSC2, and the role of mammalian target of rapamycin (mTOR) regulation in the pathogenesis of TSC, an increasing number of clinical studies evaluating mTOR inhibition in TSC patients have shown impressive results in many organ manifestations, such as brain, lung, and kidney. For renal angiomyolipoma, mTOR inhibitor treatment fundamentally changed the approach from preventive embolization or even partial nephrectomy to everolimus treatment in order to preserve kidney function.
Collapse
Affiliation(s)
- S Brakemeier
- Department of Internal Medicine, Division of Nephrology, Charité Campus Mitte, Berlin, Germany.
| | - F Bachmann
- Department of Internal Medicine, Division of Nephrology, Charité Campus Mitte, Berlin, Germany
| | - K Budde
- Department of Internal Medicine, Division of Nephrology, Charité Campus Mitte, Berlin, Germany
| |
Collapse
|
12
|
Mice endometrium receptivity in early pregnancy is impaired by maternal hyperinsulinemia. Mol Med Rep 2017; 15:2503-2510. [PMID: 28447735 PMCID: PMC5428841 DOI: 10.3892/mmr.2017.6322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/07/2017] [Indexed: 12/20/2022] Open
Abstract
Previous studies have investigated the lower embryo implantation rates in women with polycystic ovary syndrome, obesity and type 2 diabetes, and specifically the association between the abnormal oocyte and embryo and hyperinsulinemia. The importance of hyperinsulinemia on maternal endometrium receptivity remains to be elucidated. The present study used a hyperinsulinemic mouse model to determine whether hyperinsulinemia may affect endometrial receptivity. An insulin intervention mouse model was first established. The serum levels of insulin, progesterone and estradiol were subsequently detected by ELISA assay analysis. The number of implantation sites was recorded using Trypan blue dye and the morphology of mice uteri was investigated using hematoxylin and eosin staining. The expression levels of molecular markers associated with endometrial receptivity were detected by reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemistry analyses. Finally, the importance of mechanistic target of rapamycin (mTOR) expression following insulin treatment was determined. Mice treated with insulin developed insulin resistance and hyperinsulinemia. The number of implantation sites following insulin treatment did not differ between the control and insulin‑treated groups. Additionally, no significant morphological alterations in mice uteri between control and insulin‑treated groups were observed. However, the expression levels of estrogen receptor (Esr) 1, Esr2, progesterone receptor and homeobox A10 associated with endometrial receptivity, were imbalanced during endometrium receptivity when maternal hyperinsulinemia was induced. Western blot analysis revealed that expression levels of endometrial phosphorylated (p)‑mTOR and p‑ribosomal protein S6 kinase β‑1 were significantly greater in the insulin‑treated group. These results demonstrated that although an embryo may implant into endometrium, mice endometrium receptivity in early pregnancy may be impaired by maternal hyperinsulinemia. In addition, mTOR signaling may be involved in this process. The present study provides preliminary results demonstrating that female reproduction may be compromised during hyperinsulinemia, which requires further investigation in future studies.
Collapse
|
13
|
Abstract
Lymphangioleiomyomatosis is a rare multisystem disease predominantly affecting women that can occur sporadically or in association with tuberous sclerosis. Lung cysts progressively replace the lung parenchyma, which leads to dyspnea, recurrent pneumothorax, and in some cases respiratory failure. Patients may also have lymphatic disease in the thorax, abdomen, and pelvis, and renal angiomyolipomas. Treatment includes supportive care, bronchodilators, and for those with progressive disease, mammalian target of rapamycin (mTOR) inhibitors.
Collapse
|
14
|
Wanchoo R, Abudayyeh A, Doshi M, Edeani A, Glezerman IG, Monga D, Rosner M, Jhaveri KD. Renal Toxicities of Novel Agents Used for Treatment of Multiple Myeloma. Clin J Am Soc Nephrol 2017; 12:176-189. [PMID: 27654928 PMCID: PMC5220662 DOI: 10.2215/cjn.06100616] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Survival for patients with multiple myeloma has significantly improved in the last decade in large part due to the development of proteasome inhibitors and immunomodulatory drugs. These next generation agents with novel mechanisms of action as well as targeted therapies are being used both in the preclinical and clinical settings for patients with myeloma. These agents include monoclonal antibodies, deacetylase inhibitors, kinase inhibitors, agents affecting various signaling pathways, immune check point inhibitors, and other targeted therapies. In some cases, off target effects of these therapies can lead to unanticipated effects on the kidney that can range from electrolyte disorders to AKI. In this review, we discuss the nephrotoxicities of novel agents currently in practice as well as in development for the treatment of myeloma.
Collapse
Affiliation(s)
- Rimda Wanchoo
- Division of Nephrology, Hofstra Northwell School of Medicine, Great Neck, New York
| | - Ala Abudayyeh
- Division of Internal Medicine, Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mona Doshi
- Division of Nephrology, Wayne State University School of Medicine, Detroit, Michigan
| | - Amaka Edeani
- Kidney Diseases Branch, National Institute of Diabetes, Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland
| | - Ilya G. Glezerman
- Department of Medicine, Renal Service, Memorial Sloan Kettering Cancer Center and Department of Medicine, Weill Cornell Medical Center, New York, New York
| | - Divya Monga
- Nephrology Division, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Mitchell Rosner
- Division of Nephrology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Kenar D. Jhaveri
- Division of Nephrology, Hofstra Northwell School of Medicine, Great Neck, New York
| |
Collapse
|
15
|
Hsieh DT, Whiteway SL, Rohena LO, Thiele EA. Tuberous sclerosis complex: Five new things. Neurol Clin Pract 2016; 6:339-347. [PMID: 29443126 DOI: 10.1212/cpj.0000000000000260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Purpose of review Tuberous sclerosis complex (TSC) is a variably expressed neurocutaneous genetic disorder characterized by hamartomatous growths in multiple organ systems. Neurologic involvement often confers the most severe symptoms, and can include epilepsy, increased intracranial pressure from hydrocephalus, intellectual deficits, and autism. The purpose of this review is to provide a neurologically focused update in the diagnosis and treatment of these complications in patients with TSC. Recent findings We highlight 5 new areas of understanding in TSC: the neurobiology of TSC and its translation into clinical practice, vigabatrin in the treatment of infantile spasms, the role of tubers and epilepsy surgery, the treatment of subependymal giant cell astrocytomas, and TSC-related neuropsychiatric disorders. Summary These recent advances in diagnosis and treatment give our patients with TSC and their families hope for the future for improved care and possible preventive cures, to the end goal of improving quality of life.
Collapse
Affiliation(s)
- David T Hsieh
- Divisions of Child Neurology (DTH), Hematology/Oncology (SLW), and Medical Genetics (LOR), Department of Pediatrics, San Antonio Military Medical Center, JBSA - Ft. Sam Houston, TX; and Pediatric Epilepsy Program (EAT), Department of Neurology, Massachusetts General Hospital, Boston
| | - Susan L Whiteway
- Divisions of Child Neurology (DTH), Hematology/Oncology (SLW), and Medical Genetics (LOR), Department of Pediatrics, San Antonio Military Medical Center, JBSA - Ft. Sam Houston, TX; and Pediatric Epilepsy Program (EAT), Department of Neurology, Massachusetts General Hospital, Boston
| | - Luis O Rohena
- Divisions of Child Neurology (DTH), Hematology/Oncology (SLW), and Medical Genetics (LOR), Department of Pediatrics, San Antonio Military Medical Center, JBSA - Ft. Sam Houston, TX; and Pediatric Epilepsy Program (EAT), Department of Neurology, Massachusetts General Hospital, Boston
| | - Elizabeth A Thiele
- Divisions of Child Neurology (DTH), Hematology/Oncology (SLW), and Medical Genetics (LOR), Department of Pediatrics, San Antonio Military Medical Center, JBSA - Ft. Sam Houston, TX; and Pediatric Epilepsy Program (EAT), Department of Neurology, Massachusetts General Hospital, Boston
| |
Collapse
|
16
|
Waldner M, Fantus D, Solari M, Thomson AW. New perspectives on mTOR inhibitors (rapamycin, rapalogs and TORKinibs) in transplantation. Br J Clin Pharmacol 2016; 82:1158-1170. [PMID: 26810941 DOI: 10.1111/bcp.12893] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 02/06/2023] Open
Abstract
The macrolide rapamycin and its analogues (rapalogs) constitute the first generation of mammalian target of rapamycin (mTOR) inhibitors. Since the introduction of rapamycin as an immunosuppressant, there has been extensive progress in understanding its complex mechanisms of action. New insights into the function of mTOR in different immune cell types, vascular endothelial cells and neoplastic cells have opened new opportunities and challenges regarding mTOR as a pharmacological target. Currently, the two known mTOR complexes, mTOR complex (mTORC) 1 and mTORC2, are the subject of intense investigation, and the introduction of second-generation dual mTORC kinase inhibitors (TORKinibs) and gene knockout mice is helping to uncover the distinct roles of these complexes in different cell types. While the pharmacological profiling of rapalogs is advanced, much less is known about the properties of TORKinibs. A potential benefit of mTOR inhibition in transplantation is improved protection against transplant-associated viral infections compared with standard calcineurin inhibitor-based immunosuppression. Preclinical and clinical data also underscore the potentially favourable antitumour effects of mTOR inhibitors in regard to transplant-associated malignancies and as a novel treatment option for various other cancers. Many aspects of the mechanisms of action of mTOR inhibitors and their clinical implications remain unknown. In this brief review we discuss new findings and perspectives of mTOR inhibitors in transplantation.
Collapse
Affiliation(s)
- Matthias Waldner
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Plastic Surgery, University of Zurich, Zurich, Switzerland
| | - Daniel Fantus
- Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mario Solari
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Angus W Thomson
- Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Yates DH. mTOR treatment in lymphangioleiomyomatosis: the role of everolimus. Expert Rev Respir Med 2016; 10:249-260. [DOI: 10.1586/17476348.2016.1148603] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
18
|
Weidman DR, Pole JD, Bouffet E, Taylor MD, Bartels U. Dose-level response rates of mTor inhibition in tuberous sclerosis complex (TSC) related subependymal giant cell astrocytoma (SEGA). Pediatr Blood Cancer 2015; 62:1754-60. [PMID: 25929843 DOI: 10.1002/pbc.25573] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/25/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is an autosomal dominant multisystem disease usually diagnosed in childhood. Subependymal giant cell astrocytomas (SEGA) are benign brain lesions occurring in up to 20% of patients with TSC. Treatment with mTOR inhibitors has been proven effective in inducing SEGA shrinkage, but discontinuation results in re-growth. Evidence suggests that mTOR inhibition seems a disease-modifying treatment for TSC beyond inducing SEGA shrinkage; however concerns remain regarding negative long-term effects. METHODS Through this retrospective case series, an attempt was made to determine the minimal mTOR inhibitor dose needed to maintain radiological response of SEGA in six pediatric patients treated at The Hospital for Sick Children since 2007. This study reviews medication doses and blood levels as related to SEGA size on MRIs at 3-month intervals. Blood levels were monitored every 3 months and 2 weeks after dose adjustment. Total dose reduction by 25% was considered after SEGA shrinkage was maintained on two consecutive MRIs. RESULTS All patients demonstrated SEGA shrinkage greater than 50% when treated with mTOR inhibition at therapeutic doses (4-5 mg/m(2)). When sirolimus doses were weaned in two patients by 50%, SEGAs regrew by 84% and 32%. In two patients, responses have been maintained with 30% decrease in sirolimus dose. One patient underwent SEGA resection and one remains on therapeutic dose. CONCLUSIONS Therapeutic dose of mTOR inhibitor is effective in shrinking TSC-related SEGAs. Doses less than 2.5 mg/m(2) were insufficient to maintain response in this limited series.
Collapse
Affiliation(s)
- Danielle R Weidman
- Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada.,University of Toronto, Toronto, Canada
| | - Jason D Pole
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Canada.,Pediatric Oncology Group of Ontario, Toronto, Canada
| | - Eric Bouffet
- University of Toronto, Toronto, Canada.,Division of Haematology/Oncology, Section of Neuro-Oncology, The Hospital for Sick Children, Toronto, Canada
| | - Michael D Taylor
- University of Toronto, Toronto, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, Canada
| | - Ute Bartels
- University of Toronto, Toronto, Canada.,Division of Haematology/Oncology, Section of Neuro-Oncology, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
19
|
Malik AR, Liszewska E, Skalecka A, Urbanska M, Iyer AM, Swiech LJ, Perycz M, Parobczak K, Pietruszka P, Zarebska MM, Macias M, Kotulska K, Borkowska J, Grajkowska W, Tyburczy ME, Jozwiak S, Kwiatkowski DJ, Aronica E, Jaworski J. Tuberous sclerosis complex neuropathology requires glutamate-cysteine ligase. Acta Neuropathol Commun 2015. [PMID: 26220190 PMCID: PMC4518593 DOI: 10.1186/s40478-015-0225-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Tuberous sclerosis complex (TSC) is a genetic disease resulting from mutation in TSC1 or TSC2 and subsequent hyperactivation of mammalian Target of Rapamycin (mTOR). Common TSC features include brain lesions, such as cortical tubers and subependymal giant cell astrocytomas (SEGAs). However, the current treatment with mTOR inhibitors has critical limitations. We aimed to identify new targets for TSC pharmacotherapy. RESULTS The results of our shRNA screen point to glutamate-cysteine ligase catalytic subunit (GCLC), a key enzyme in glutathione synthesis, as a contributor to TSC-related phenotype. GCLC inhibition increased cellular stress and reduced mTOR hyperactivity in TSC2-depleted neurons and SEGA-derived cells. Moreover, patients' brain tubers showed elevated GCLC and stress markers expression. Finally, GCLC inhibition led to growth arrest and death of SEGA-derived cells. CONCLUSIONS We describe GCLC as a part of redox adaptation in TSC, needed for overgrowth and survival of mutant cells, and provide a potential novel target for SEGA treatment.
Collapse
|