1
|
Cheng F, Wang H, Li W, Zhang Y. Clinical pharmacokinetics and drug-drug interactions of tyrosine-kinase inhibitors in chronic myeloid leukemia: A clinical perspective. Crit Rev Oncol Hematol 2024; 195:104258. [PMID: 38307392 DOI: 10.1016/j.critrevonc.2024.104258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 02/04/2024] Open
Abstract
In the past decade, numerous tyrosine kinase inhibitors (TKIs) have been introduced in the treatment of chronic myeloid leukemia. Given the significant interpatient variability in TKIs pharmacokinetics, potential drug-drug interactions (DDIs) can greatly impact patient therapy. This review aims to discuss the pharmacokinetic characteristics of TKIs, specifically focusing on their absorption, distribution, metabolism, and excretion profiles. Additionally, it provides a comprehensive overview of the utilization of TKIs in special populations such as the elderly, children, and patients with liver or kidney dysfunction. We also highlight known or suspected DDIs between TKIs and other drugs, highlighting various clinically relevant interactions. Moreover, specific recommendations are provided to guide haemato-oncologists, oncologists, and clinical pharmacists in managing DDIs during TKI treatment in daily clinical practice.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Hongxiang Wang
- Department of Hematology, the Central Hospital of Wuhan, 430014, China
| | - Weiming Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China.
| |
Collapse
|
2
|
Li Y, Kazuki Y, Drabison T, Kobayashi K, Fujita KI, Xu Y, Jin Y, Ahmed E, Li J, Eisenmann ED, Baker SD, Cavaletti G, Sparreboom A, Hu S. Vincristine Disposition and Neurotoxicity Are Unchanged in Humanized CYP3A5 Mice. Drug Metab Dispos 2024; 52:80-85. [PMID: 38071551 PMCID: PMC10801630 DOI: 10.1124/dmd.123.001466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023] Open
Abstract
Previous studies have suggested that the incidence of vincristine-induced peripheral neuropathy (VIPN) is potentially linked with cytochrome P450 (CYP)3A5, a polymorphic enzyme that metabolizes vincristine in vitro, and with concurrent use of azole antifungals such as ketoconazole. The assumed mechanism for these interactions is through modulation of CYP3A-mediated metabolism, leading to decreased vincristine clearance and increased susceptibility to VIPN. Given the controversy surrounding the contribution of these mechanisms, we directly tested these hypotheses in genetically engineered mouse models with a deficiency of the entire murine Cyp3a locus [Cyp3a(-/-) mice] and in humanized transgenic animals with hepatic expression of functional and nonfunctional human CYP3A5 variants. Compared with wild-type mice, the systemic exposure to vincristine was increased by only 1.15-fold (95% confidence interval, 0.84-1.58) in Cyp3a(-/-) mice, suggesting that the clearance of vincristine in mice is largely independent of hepatic Cyp3a function. In line with these observations, we found that Cyp3a deficiency or pretreatment with the CYP3A inhibitors ketoconazole or nilotinib did not influence the severity and time course of VIPN and that exposure to vincristine was not substantially altered in humanized CYP3A5*3 mice or humanized CYP3A5*1 mice compared with Cyp3a(-/-) mice. Our study suggests that the contribution of CYP3A5-mediated metabolism to vincristine elimination and the associated drug-drug interaction potential is limited and that plasma levels of vincristine are unlikely to be strongly predictive of VIPN. SIGNIFICANCE STATEMENT: The current study suggests that CYP3A5 genotype status does not substantially influence vincristine disposition and neurotoxicity in translationally relevant murine models. These findings raise concerns about the causality of previously reported relationships between variant CYP3A5 genotypes or concomitant azole use with the incidence of vincristine neurotoxicity.
Collapse
Affiliation(s)
- Yang Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Yasuhiro Kazuki
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Thomas Drabison
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Kaoru Kobayashi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Ken-Ichi Fujita
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Yue Xu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Yan Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Eman Ahmed
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Junan Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Eric D Eisenmann
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Sharyn D Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Guido Cavaletti
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio (Y.L., T.D., Y.X., Y.J., E.A., E.D.E., S.D.B., A.S., S.H.); Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Japan (Y.K.); Chromosome Engineering Research Center, Tottori University, Japan (Y.K.); Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Japan (Y.K.); Department of Biopharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan (K.K.); Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.F.); Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy (G.C.); Fondazione IRCCS San Gerardo deiTintori, Monza, Italy (G.C.); and Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio (J.L., S.H.)
| |
Collapse
|
3
|
Li Y, Drabison T, Nepal M, Ho RH, Leblanc AF, Gibson AA, Jin Y, Yang W, Huang KM, Uddin ME, Chen M, DiGiacomo DF, Chen X, Razzaq S, Tonniges JR, McTigue DM, Mims AS, Lustberg MB, Wang Y, Hummon AB, Evans WE, Baker SD, Cavaletti G, Sparreboom A, Hu S. Targeting a xenobiotic transporter to ameliorate vincristine-induced sensory neuropathy. JCI Insight 2023; 8:e164646. [PMID: 37347545 PMCID: PMC10443802 DOI: 10.1172/jci.insight.164646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Vincristine is a widely used chemotherapeutic drug for the treatment of multiple malignant diseases that causes a dose-limiting peripheral neurotoxicity. There is no clinically effective preventative treatment for vincristine-induced sensory peripheral neurotoxicity (VIPN), and mechanistic details of this side effect remain poorly understood. We hypothesized that VIPN is dependent on transporter-mediated vincristine accumulation in dorsal root ganglion neurons. Using a xenobiotic transporter screen, we identified OATP1B3 as a neuronal transporter regulating the uptake of vincristine. In addition, genetic or pharmacological inhibition of the murine orthologue transporter OATP1B2 protected mice from various hallmarks of VIPN - including mechanical allodynia, thermal hyperalgesia, and changes in digital maximal action potential amplitudes and neuronal morphology - without negatively affecting plasma levels or antitumor effects of vincristine. Finally, we identified α-tocopherol from an untargeted metabolomics analysis as a circulating endogenous biomarker of neuronal OATP1B2 function, and it could serve as a companion diagnostic to guide dose selection of OATP1B-type transport modulators given in combination with vincristine to prevent VIPN. Collectively, our findings shed light on the fundamental basis of VIPN and provide a rationale for the clinical development of transporter inhibitors to prevent this debilitating side effect.
Collapse
Affiliation(s)
- Yang Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
- Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Thomas Drabison
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Mahesh Nepal
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
- Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Richard H. Ho
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alix F. Leblanc
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Alice A. Gibson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Yan Jin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Kevin M. Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Muhammad Erfan Uddin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Mingqing Chen
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Duncan F. DiGiacomo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Xihui Chen
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Sobia Razzaq
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | | | - Dana M. McTigue
- The Belford Center for Spinal Cord Injury & Department of Neuroscience, College of Medicine, and
| | - Alice S. Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Maryam B. Lustberg
- The Breast Center at Smilow Cancer Hospital at Yale, New Haven, Connecticut, USA
| | - Yijia Wang
- Department of Chemistry and Biochemistry & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - William E. Evans
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Sharyn D. Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Guido Cavaletti
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, and
- Division of Outcomes and Translational Sciences, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Wang M, Zhu Y, Huang M, Wang H, Zhou W, Lu D, Zhang Q. Pharmacokinetics, Bioequivalence, and Safety Studies of a Generic Selective Tyrosine Kinase Inhibitor Nilotinib Capsule Versus a Branded Product in Healthy Chinese Volunteers. Clin Pharmacol Drug Dev 2022; 11:1233-1240. [PMID: 35900031 DOI: 10.1002/cpdd.1148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023]
Abstract
Nilotinib, a second-generation tyrosine kinase inhibitor (TKI), has been approved in the United States and Europe as a treatment for patients with newly diagnosed chronic myeloid leukemia (CML)-chronic phase (CP) and patients with CML-CP or chronic myeloid leukemia-accelerated phase (CML-AP) who are resistant or intolerant to imatinib (a first-generation TKI). This study compared the bioequivalence and safety of the test nilotinib capsule and reference nilotinib capsule (Tasigna, Novartis) in healthy Chinese volunteers under fasting conditions for marketing authorization in China. The results of the study are reported for the first time. This was a single-dose, randomized, open-label, two-period, and cross-over study. Thirty healthy volunteers were randomly assigned to receive a single dose of a 200-mg test or reference capsule under fasting conditions in each period with a 10-day washout. Plasma samples were analyzed with liquid chromatography-tandem mass spectrometry. Pharmacokinetic parameters were calculated with WinNonlin software. The geometric mean ratio and the corresponding 90% confidence intervals of Cmax , AUC0-t , and AUC0-∞ for nilotinib between the two fixed-dose combination formulations were within the bioequivalence acceptance range of 80%-125%, therefore the generic and branded formulations were bioequivalent in healthy Chinese volunteers.
Collapse
Affiliation(s)
- Meng Wang
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, P.R. China
| | - Yifang Zhu
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, P.R. China
| | - Ming Huang
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, P.R. China
| | - Hao Wang
- Suzhou Thery Pharmaceutical Co., Ltd, Suzhou City, Jiangsu Province, P.R. China
| | - Wenjia Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, P.R. China
| | - Dan Lu
- Suzhou Thery Pharmaceutical Co., Ltd, Suzhou City, Jiangsu Province, P.R. China
| | - Quanying Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, P.R. China
| |
Collapse
|
5
|
Cheng M, Yang F, Liu J, Yang D, Zhang S, Yu Y, Jiang S, Dong M. Tyrosine Kinase Inhibitors-Induced Arrhythmias: From Molecular Mechanisms, Pharmacokinetics to Therapeutic Strategies. Front Cardiovasc Med 2021; 8:758010. [PMID: 34869670 PMCID: PMC8639698 DOI: 10.3389/fcvm.2021.758010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022] Open
Abstract
With the development of anti-tumor drugs, tyrosine kinase inhibitors (TKIs) are an indispensable part of targeted therapy. They can be superior to traditional chemotherapeutic drugs in selectivity, safety, and efficacy. However, they have been found to be associated with serious adverse effects in use, such as myocardial infarction, fluid retention, hypertension, and rash. Although TKIs induced arrhythmia with a lower incidence than other cardiovascular diseases, much clinical evidence indicated that adequate attention and management should be provided to patients. This review focuses on QT interval prolongation and atrial fibrillation (AF) which are conveniently monitored in clinical practice. We collected data about TKIs, and analyzed the molecule mechanism, discussed the actual clinical evidence and drug-drug interaction, and provided countermeasures to QT interval prolongation and AF. We also pooled data to show that both QT prolongation and AF are related to their multi-target effects. Furthermore, more than 30 TKIs were approved by the FDA, but most of the novel drugs had a small sample size in the preclinical trial and risk/benefit assessments were not perfect, which led to a suspension after listing, like nilotinib. Similarly, vandetanib exhibits the most significant QT prolongation and ibrutinib exhibits the highest incidence in AF, but does not receive enough attention during treatment.
Collapse
Affiliation(s)
- Mengfei Cheng
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fang Yang
- The First Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiahui Liu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dan Yang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuo Zhang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Yu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuai Jiang
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mei Dong
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
6
|
Eng H, Tseng E, Cerny MA, Goosen TC, Obach RS. Cytochrome P450 3A Time-Dependent Inhibition Assays Are Too Sensitive for Identification of Drugs Causing Clinically Significant Drug-Drug Interactions: A Comparison of Human Liver Microsomes and Hepatocytes and Definition of Boundaries for Inactivation Rate Constants. Drug Metab Dispos 2021; 49:442-450. [PMID: 33811106 DOI: 10.1124/dmd.121.000356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Time-dependent inhibition (TDI) of CYP3A is an important mechanism underlying numerous drug-drug interactions (DDIs), and assays to measure this are done to support early drug research efforts. However, measuring TDI of CYP3A in human liver microsomes (HLMs) frequently yields overestimations of clinical DDIs and thus can lead to the erroneous elimination of many viable drug candidates from further development. In this investigation, 50 drugs were evaluated for TDI in HLMs and suspended human hepatocytes (HHEPs) to define appropriate boundary lines for the TDI parameter rate constant for inhibition (kobs) at a concentration of 30 µM. In HLMs, a kobs value of 0.002 minute-1 was statistically distinguishable from control; however, many drugs show kobs greater than this but do not cause DDI. A boundary line defined by the drug with the lowest kobs that causes a DDI (diltiazem) was established at 0.01 minute-1 Even with this boundary, of the 33 drugs above this value, only 61% cause a DDI (true positive rate). A corresponding analysis was done using HHEPs; kobs of 0.0015 minute-1 was statistically distinguishable from control, and the boundary was established at 0.006 minute-1 Values of kobs in HHEPs were almost always lower than those in HLMs. These findings offer a practical guide to the use of TDI data for CYP3A in early drug-discovery research. SIGNIFICANCE STATEMENT: Time-dependent inhibition of CYP3A is responsible for many drug interactions. In vitro assays are employed in early drug research to identify and remove CYP3A time-dependent inhibitors from further consideration. This analysis demonstrates suitable boundaries for inactivation rates to better delineate drug candidates for their potential to cause clinically significant drug interactions.
Collapse
Affiliation(s)
- Heather Eng
- Medicine Design, Pfizer Inc., Groton, Connecticut
| | - Elaine Tseng
- Medicine Design, Pfizer Inc., Groton, Connecticut
| | | | | | | |
Collapse
|
7
|
Stout SM, Nemerovski CW, Streetman DS, Berg M, Hoffman J, Burke K, Bemben NM, Sklar SJ. Interpretation of Cytochrome P-450 Inhibition and Induction Effects From Clinical Data: Current Standards and Recommendations for Implementation. Clin Pharmacol Ther 2020; 109:82-86. [PMID: 32452536 DOI: 10.1002/cpt.1918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/27/2020] [Indexed: 11/11/2022]
Abstract
Agents that modify cytochrome P-450 (CYP) enzyme activity are characterized as strong, moderate, or weak inhibitors or inducers based on the magnitude of their impact on substrate exposure in clinical studies. Criteria for these classifications are simple and semiquantitative. However, assignment of a given agent to a CYP inhibitor or inducer category is often complicated by limitations of the published data, inconsistent study findings, and other factors. CYP inhibitor and inducer categories are commonly used as a basis for differentiating drug interaction management recommendations. For example, product labeling for a CYP substrate may recommend avoidance in combination with strong inhibitors and dose reduction in combination with moderate inhibitors. When such recommendations exist, ambiguity or variability in placement of inhibitors or inducers into categories can introduce potentially harmful variations in clinical drug interaction management. Failure to adequately reflect the drug interaction potential of an agent by under-categorizing it (e.g., calling it weak when data point to moderate effects), for example, may lead clinicians to respond inadequately to real risks, or to ignore potential interactions altogether. Over-categorization may lead to actions such as over-adjustment of substrate doses or unnecessary avoidance of optimal treatments. This review describes the current criteria for assignment of CYP inhibitor and inducer categories, summarizes common circumstances leading to ambiguous or variable CYP inhibitor and inducer categorizations, and proposes an approach to data interpretation and application of current criteria under uncertainty. When applied to > 1,000 CYP reviews, the approach described has identified a clear categorization in almost all cases.
Collapse
Affiliation(s)
| | | | | | - Melody Berg
- Wolters Kluwer Clinical Effectiveness, Hudson, Ohio, USA
| | - Jamie Hoffman
- Wolters Kluwer Clinical Effectiveness, Hudson, Ohio, USA
| | - Kayann Burke
- Wolters Kluwer Clinical Effectiveness, Hudson, Ohio, USA
| | - Nina M Bemben
- Wolters Kluwer Clinical Effectiveness, Hudson, Ohio, USA
| | | |
Collapse
|
8
|
Dual EGFR and ABL Tyrosine Kinase Inhibitor Treatment in a Patient with Concomitant EGFR-Mutated Lung Adenocarcinoma and BCR-ABL1-Positive CML. Case Rep Oncol Med 2020; 2020:4201727. [PMID: 32257476 PMCID: PMC7106872 DOI: 10.1155/2020/4201727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/28/2020] [Indexed: 01/29/2023] Open
Abstract
Tyrosine kinase inhibitor (TKI) combination is expected to increase in the era of precision medicine. TKI combination may be required to treat double primary cancers, each having a targetable gene, or to treat a single malignancy with multiple targetable genes. Here, we demonstrate the first report of dual EGFR and ABL TKI treatment in a patient with concomitant EGFR-mutated lung adenocarcinoma and BCR-ABL1-positive chronic myeloid leukemia (CML). A 60-year-old man with an 8-year history of CML was diagnosed as advanced EGFR-mutated lung adenocarcinoma. Complete molecular response of CML had been achieved by imatinib, and ABL-TKI had been switched to nilotinib four years previously due to muscle cramps. We discontinued nilotinib and started afatinib. Although partial response of lung adenocarcinoma was achieved, cytogenetic relapse of CML was observed following nilotinib discontinuation. We applied the previously described framework of cytochrome P450 3A4-mediated oral drug-drug interactions and selected gefitinib and nilotinib to treat both malignancies. We effectively and safely administered this combination for seven months. The present report is the first to demonstrate the safety and efficacy of dual EGFR and ABL TKI treatment in a patient with concomitant EGFR-mutated lung adenocarcinoma and CML.
Collapse
|
9
|
Prommer E. Midazolam: an essential palliative care drug. Palliat Care Soc Pract 2020; 14:2632352419895527. [PMID: 32215374 PMCID: PMC7065504 DOI: 10.1177/2632352419895527] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022] Open
Abstract
Midazolam is a commonly used benzodiazepine in palliative care and is considered one of the four essential drugs needed for the promotion of quality care in dying patients. Acting on the benzodiazepine receptor, it promotes the action of gamma-aminobutyric acid. Gamma-aminobutyric acid action promotes sedative, anxiolytic, and anticonvulsant properties. Midazolam has a faster onset and shorter duration of action than other benzodiazepines such as diazepam and lorazepam lending itself to greater flexibility in dosing than other benzodiazepines. The kidneys excrete midazolam and its active metabolite. Metabolism occurs in the liver by the P450 system. This article examines the pharmacology, pharmacodynamics, and clinical uses of midazolam in palliative care.
Collapse
Affiliation(s)
- Eric Prommer
- UCLA/VA Hospice and Palliative Medicine Program, UCLA School of Medicine, 11301 Wilshire Blvd., Bldg. 500, Room 2064A, Los Angeles, CA 90073, USA
| |
Collapse
|
10
|
Ning J, Wang W, Ge G, Chu P, Long F, Yang Y, Peng Y, Feng L, Ma X, James TD. Target Enzyme-Activated Two-Photon Fluorescent Probes: A Case Study of CYP3A4 Using a Two-Dimensional Design Strategy. Angew Chem Int Ed Engl 2019; 58:9959-9963. [PMID: 31099941 DOI: 10.1002/anie.201903683] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/24/2019] [Indexed: 01/08/2023]
Abstract
The rapid development of fluorescent probes for monitoring target enzymes is still a great challenge owing to the lack of efficient ways to optimize a specific fluorophore. Herein, a practical two-dimensional strategy was designed for the development of an isoform-specific probe for CYP3A4, a key cytochrome P450 isoform responsible for the oxidation of most clinical drugs. In first dimension of the design strategy, a potential two-photon fluorescent substrate (NN) for CYP3A4 was effectively selected using ensemble-based virtual screening. In the second dimension, various substituent groups were introduced into NN to optimize the isoform-selectivity and reactivity. Finally, with ideal selectivity and sensitivity, NEN was successfully applied to the real-time detection of CYP3A4 in living cells and zebrafish. These findings suggested that our strategy is practical for developing an isoform-specific probe for a target enzyme.
Collapse
Affiliation(s)
- Jing Ning
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Wei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Peng Chu
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.,Center for Molecular Medicine, School of Life Science and Biotechnology, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Feida Long
- Center for Molecular Medicine, School of Life Science and Biotechnology, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Yongliang Yang
- Center for Molecular Medicine, School of Life Science and Biotechnology, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Yulin Peng
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Lei Feng
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.,Center for Molecular Medicine, School of Life Science and Biotechnology, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Xiaochi Ma
- College of Integrative Medicine, The National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, Dalian Medical University, Dalian, 116044, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
11
|
Ning J, Wang W, Ge G, Chu P, Long F, Yang Y, Peng Y, Feng L, Ma X, James TD. Target Enzyme‐Activated Two‐Photon Fluorescent Probes: A Case Study of CYP3A4 Using a Two‐Dimensional Design Strategy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903683] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jing Ning
- College of Integrative MedicineThe National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative DiseaseCollege of PharmacyDalian Medical University Dalian 116044 China
| | - Wei Wang
- School of PharmacyHunan University of Chinese Medicine Changsha 410208 China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Peng Chu
- College of Integrative MedicineThe National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative DiseaseCollege of PharmacyDalian Medical University Dalian 116044 China
- Center for Molecular Medicine, School of Life Science and BiotechnologyState Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116024 China
| | - Feida Long
- Center for Molecular Medicine, School of Life Science and BiotechnologyState Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116024 China
| | - Yongliang Yang
- Center for Molecular Medicine, School of Life Science and BiotechnologyState Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116024 China
| | - Yulin Peng
- College of Integrative MedicineThe National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative DiseaseCollege of PharmacyDalian Medical University Dalian 116044 China
| | - Lei Feng
- College of Integrative MedicineThe National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative DiseaseCollege of PharmacyDalian Medical University Dalian 116044 China
- Center for Molecular Medicine, School of Life Science and BiotechnologyState Key Laboratory of Fine ChemicalsDalian University of Technology Dalian 116024 China
| | - Xiaochi Ma
- College of Integrative MedicineThe National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative DiseaseCollege of PharmacyDalian Medical University Dalian 116044 China
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical University Xuzhou 221004 China
| | - Tony D. James
- Department of ChemistryUniversity of Bath Bath BA2 7AY UK
| |
Collapse
|
12
|
Abdelgalil AA, Alam MA, Raish M, Mohammed IE, Hassan Mohammed AE, Ansari MA, Al Jenoobi FI. Dasatinib significantly reduced in vivo exposure to cyclosporine in a rat model: The possible involvement of CYP3A induction. Pharmacol Rep 2019; 71:201-205. [PMID: 30785057 DOI: 10.1016/j.pharep.2018.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/25/2018] [Accepted: 10/29/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND This study was designed to investigate the effects of dasatinib and nilotinib on the pharmacokinetics of cyclosporine in rats, as these drugs have been reported to be cytochrome P450 3A4 (CYP3A4) substrates. METHODS Control and test groups (n = 5) were treated with vehicle and dasatinib (4 mg/kg, and 16 mg/kg, oral) or nilotinib (94 mg/kg, oral), respectively, for 8 consecutive days. On day 8, all groups were administered cyclosporine (30 mg/kg) 1 h after the last dose of dasatinib or nilotinib. Blood was collected from the retro-orbital plexus in heparinized tubes at different time points (0, 0.5, 1, 1.5, 2, 3.5, 8, 12, and 24 h). The cyclosporine concentration in blood samples was determined by ultra-performance liquid chromatography-tandem mass spectrometry. The effects of dasatinib on CYP3A2 mRNA and protein expression levels were also investigated. RESULTS Dasatinib significantly reduced the maximum blood concentration (Cmax) of cyclosporine by 85.7%, and increased hepatic and intestinal CYP3A2 mRNA and protein expression levels by 2.4- and 1.25-fold, respectively, compared to those in the controls (p < 0.05). On the other hand, nilotinib had no significant effects on cyclosporine pharmacokinetic parameters. CONCLUSIONS Dasatinib significantly reduced cyclosporine exposure, which was most probably related to the induction of CYP3A-mediated cyclosporine metabolism.
Collapse
Affiliation(s)
- Ahmed A Abdelgalil
- Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Mohd Aftab Alam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Imad Eldin Mohammed
- Department of Pharmacology, College of Pharmacy, University of Gezira, Sudan
| | | | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad I Al Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Badowski ME, Burton B, Shaeer KM, Dicristofano J. Oral oncolytic and antiretroviral therapy administration: dose adjustments, drug interactions, and other considerations for clinical use. Drugs Context 2019; 8:212550. [PMID: 30815023 PMCID: PMC6383448 DOI: 10.7573/dic.212550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022] Open
Abstract
The rise in non-AIDS defining cancers (NADCs) is emerging as a leading cause of death for HIV and cancer patients. To address this, current literature and guidelines suggest the continuation of antiretroviral therapy (ART) with oral oncolytic agents to prevent adverse complications associated with HIV disease progression. However, such an approach has the potential for drug-drug interactions and adverse events for patients on such therapy. Further, recommendations on how to adjust these medications, when used concomitantly, are limited. As such, our purpose is to evaluate existing literature through such means as drug databases (e.g. Micromedex, Lexi-Comp, etc.) and package inserts along with PubMed/Medline, Embase, and Google Scholar databases to develop a reference tool for providers to utilize when there is a decision to treat a patient with ART and oral oncolytic agents concurrently. Our findings suggest that there are many drug interactions that should be taken into consideration with dual therapy. Metabolism is a key determinant of dose adjustment, and many oncolytic agents and ART agents must have their dose adjusted as such. Most notably, several tyrosine kinase inhibitors require dose increases when used with non-nucleoside reverse transcriptase inhibitors (NNRTIs) but must be decreased when used concomitantly with protease inhibitors (PIs) and cobicistat. Further findings suggest that certain agents should not be used together, which include, but are not limited to, such combinations as bosutinib with NNRTIs, cobicistat, or PIs; idelalisib with maraviroc or PIs; neratinib with NNRTIs, cobicistat, or PIs; and venetoclax with NNRTIs. Overall, the most prominent oncolytic drug interactions were discovered when such agents were used concomitantly with PIs, cobicistat-boosted elvitegravir, or NNRTIs. Future studies are necessary to further evaluate the use of these agents together in disease therapy to generate absolute evidence of such findings. However, from the studies evaluated, much evidence exists to suggest that concomitant therapy is not without drug interactions. As such, clinical decisions regarding concomitant therapy should be evaluated in which the risk and benefit of dual therapy are assessed. Dose adjustments must be made accordingly and in consultation with both HIV and oncology clinicians and pharmacists to reduce the risk for adverse outcomes and disease progression for those with cancer and HIV/AIDS.
Collapse
Affiliation(s)
- Melissa E Badowski
- Section of Infectious Diseases Pharmacotherapy, Department of Pharmacy Practice, University of Illinois at Chicago, College of Pharmacy, Chicago, IL, USA
| | | | - Kristy M Shaeer
- Department of Pharmacy Practice, University of South Florida, College of Pharmacy, Tampa, FL, USA
| | - John Dicristofano
- University of Illinois at Chicago, College of Pharmacy, Chicago, IL, USA
| |
Collapse
|
14
|
Hussaarts KGAM, Veerman GDM, Jansman FGA, van Gelder T, Mathijssen RHJ, van Leeuwen RWF. Clinically relevant drug interactions with multikinase inhibitors: a review. Ther Adv Med Oncol 2019; 11:1758835918818347. [PMID: 30643582 PMCID: PMC6322107 DOI: 10.1177/1758835918818347] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
Multikinase inhibitors (MKIs), including the tyrosine kinase inhibitors (TKIs), have rapidly become an established factor in daily (hemato)-oncology practice. Although the oral route of administration offers improved flexibility and convenience for the patient, challenges arise in the use of MKIs. As MKIs are prescribed extensively, patients are at increased risk for (severe) drug–drug interactions (DDIs). As a result of these DDIs, plasma pharmacokinetics of MKIs may vary significantly, thereby leading to high interpatient variability and subsequent risk for increased toxicity or a diminished therapeutic outcome. Most clinically relevant DDIs with MKIs concern altered absorption and metabolism. The absorption of MKIs may be decreased by concomitant use of gastric acid-suppressive agents (e.g. proton pump inhibitors) as many kinase inhibitors show pH-dependent solubility. In addition, DDIs concerning drug (uptake and efflux) transporters may be of significant clinical relevance during MKI therapy. Furthermore, since many MKIs are substrates for cytochrome P450 isoenzymes (CYPs), induction or inhibition with strong CYP inhibitors or inducers may lead to significant alterations in MKI exposure. In conclusion, DDIs are of major concern during MKI therapy and need to be monitored closely in clinical practice. Based on the current knowledge and available literature, practical recommendations for management of these DDIs in clinical practice are presented in this review.
Collapse
Affiliation(s)
- Koen G A M Hussaarts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - G D Marijn Veerman
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Frank G A Jansman
- Department of Clinical Pharmacy, Deventer Hospital, Deventer, The Netherlands
| | - Teun van Gelder
- Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | |
Collapse
|
15
|
Tian X, Zhang H, Heimbach T, He H, Buchbinder A, Aghoghovbia M, Hourcade-Potelleret F. Clinical Pharmacokinetic and Pharmacodynamic Overview of Nilotinib, a Selective Tyrosine Kinase Inhibitor. J Clin Pharmacol 2018; 58:1533-1540. [PMID: 30179260 DOI: 10.1002/jcph.1312] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/10/2018] [Indexed: 01/13/2023]
Abstract
Nilotinib, an oral inhibitor of the tyrosine kinase activity of Abelson protein, is approved for the treatment of patients with newly diagnosed chronic myeloid leukemia (CML) in chronic phase and patients with CML in chronic phase or accelerated phase resistant or intolerant to prior therapies. This review describes the pharmacokinetic and pharmacodynamic data of nilotinib in patients with CML and in healthy volunteers. Nilotinib is rapidly absorbed, with a peak serum concentration approximately 3 hours after dosing. The area under the plasma drug concentration-time curve over 24 hours and the peak serum concentration of nilotinib were dose proportional from 50-400 mg once daily. The metabolism of nilotinib is primarily via hepatic cytochrome P450 (CYP) 3A4 according to in vitro studies. In the clinical setting, exposure to nilotinib was significantly reduced by the induction of CYP3A4 with rifampicin and significantly increased by the inhibition of CYP3A with ketoconazole. Additionally, nilotinib is a competitive inhibitor of CYP3A4/5, CYP2C8, CYP2C9, CYP2D6, and uridine diphosphate glucuronosyltransferase 1A1. The bioavailability of nilotinib is increased by up to 82% when given with a high-fat meal compared with fasted state. There is a positive correlation between the occurrences of all-grade total bilirubin elevations and the steady-state nilotinib trough concentrations. Fredericia method corrected QT interval change from baseline was observed to have a correlation with nilotinib exposure. No significant relationship between nilotinib exposure and major molecular response at 12 months was seen at therapeutic doses of nilotinib 300-400 mg, probably due to the narrow range of the doses investigated.
Collapse
Affiliation(s)
- Xianbin Tian
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, USA
| | - Hefei Zhang
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, USA
| | - Tycho Heimbach
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, USA
| | - Handan He
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, USA
| | - Aby Buchbinder
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, USA
| | - Mary Aghoghovbia
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, NJ, USA
| | | |
Collapse
|
16
|
Menssen HD, Quinlan M, Kemp C, Tian X. Relative Bioavailability and Food Effect Evaluation for 2 Tablet Formulations of Asciminib in a 2-Arm, Crossover, Randomized, Open-Label Study in Healthy Volunteers. Clin Pharmacol Drug Dev 2018; 8:385-394. [PMID: 30059193 DOI: 10.1002/cpdd.602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/18/2018] [Indexed: 12/27/2022]
Abstract
Asciminib (ABL001) is an orally administered allosteric inhibitor of the BCR-ABL tyrosine kinase. The current study evaluated the relative bioavailability of its 2 tablet variants, AAA and NXA, compared with the capsule CSF and assessed the impact of food in healthy participants in a 2-arm, randomized, open-label, 4-way crossover design. The primary pharmacokinetic parameters analyzed were area under the plasma concentration-time curve (AUC) from time 0 to the time of last measurable concentration (AUClast ), AUC from time 0 to infinity (AUCinf ), and peak concentration (Cmax ). Forty-five healthy volunteers were enrolled, 22 in the AAA arm and 23 in the NXA arm. Under fasting conditions, the AUCinf , AUClast , and Cmax of the AAA tablet were similar to those of the capsule, but slightly higher (∼20%) for NXA and decreased with a high-fat meal (∼65%) and a low-fat meal (∼30%) for both tablet formulations. Overall, 20 participants (9 in the AAA arm; 11 in the NXA arm) experienced at least 1 adverse event, the most common in both arms being headache. The study showed that under fasting conditions, tablet AAA had bioavailability similar to that in the capsule CSF. The bioavailability of both tablet formulations decreased with food, with a more pronounced effect observed with a high-fat meal.
Collapse
Affiliation(s)
| | | | - Charisse Kemp
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Xianbin Tian
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| |
Collapse
|