1
|
Fionda L, Leonardi L, Tufano L, Lauletta A, Morino S, Merlonghi G, Costanzo R, Rossini E, Forcina F, Marando D, Sarzi Amadè D, Bucci E, Salvetti M, Antonini G, Garibaldi M. Muscle MRI as a biomarker of disease activity and progression in myotonic dystrophy type 1: a longitudinal study. J Neurol 2024; 271:5864-5874. [PMID: 38972019 PMCID: PMC11377679 DOI: 10.1007/s00415-024-12544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Abstract
INTRODUCTION Myotonic dystrophy type 1 (DM1) is an autosomal dominant disease characterized by myotonia and progressive muscular weakness and atrophy. The aim of this study was to investigate the usefulness of longitudinal muscle MRI in detecting disease activity and progression in DM1, and to better characterize muscle edema, fat replacement and atrophy overtime. MATERIALS AND METHODS This is a prospective, observational, longitudinal study including 25 DM1 patients that performed at least two muscle MRIs. Demographic and genetic characteristics were recorded. Muscular Impairment Rating Scale (MIRS) and MRC score were performed within 3 months from MRIs at baseline (BL) and at follow-up (FU). We analysed 32 muscles of lower body (LB) and 17 muscles of upper body (UB) by T1 and STIR sequences. T1-, STIR- and atrophy scores and their variations were evaluated. Correlations between MRIs' scores and demographic, clinical and genetic characteristics were analysed. RESULTS Eighty (80%) of patients showed fat replacement progression at FU. The median T1 score progression (ΔT1-score) was 1.3% per year in LB and 0.5% per year in UB. The rate of fat replacement progression was not homogenous, stratifying patients from non-progressors to fast progressors (> 3% ΔT1-score per year). Half of the STIR-positive muscles at BL showed T1-score progression at FU. Two patients with normal MRI at baseline only showed STIR-positive muscle at FU, marking the disease activity onset. STIR positivity at baseline correlated with fat replacement progression (ΔT1-score; p < 0.0001) and clinical worsening at FU (ΔMRC-score; p < 0.0001). Sixty-five (65%) of patients showed STIR- and fat replacement-independent muscle atrophy progression, more evident in UB. CONCLUSIONS Muscle MRI represents a sensitive biomarker of disease activity, severity, and progression in DM1. STIR alterations precede fat replacement and identify patients with a higher risk of disease progression, while T1-sequences reveal atrophy and fat replacement progression before clinical worsening.
Collapse
Affiliation(s)
- Laura Fionda
- Neuromuscular and Rare Disease Centre, Neurology Unit, Sant'Andrea Hospital, Rome, Italy.
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Rome, Italy.
| | - Luca Leonardi
- Neuromuscular and Rare Disease Centre, Neurology Unit, Sant'Andrea Hospital, Rome, Italy
| | - Laura Tufano
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Rome, Italy
| | - Antonio Lauletta
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Rome, Italy
| | - Stefania Morino
- Neuromuscular and Rare Disease Centre, Neurology Unit, Sant'Andrea Hospital, Rome, Italy
| | - Gioia Merlonghi
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Rome, Italy
| | - Rocco Costanzo
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Rome, Italy
| | - Elena Rossini
- Neuromuscular and Rare Disease Centre, Neurology Unit, Sant'Andrea Hospital, Rome, Italy
| | - Francesca Forcina
- Neuromuscular and Rare Disease Centre, Neurology Unit, Sant'Andrea Hospital, Rome, Italy
| | - Demetrio Marando
- Neuromuscular and Rare Disease Centre, Neurology Unit, Sant'Andrea Hospital, Rome, Italy
| | - David Sarzi Amadè
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Rome, Italy
| | - Elisabetta Bucci
- Neuromuscular and Rare Disease Centre, Neurology Unit, Sant'Andrea Hospital, Rome, Italy
| | - Marco Salvetti
- Neuromuscular and Rare Disease Centre, Neurology Unit, Sant'Andrea Hospital, Rome, Italy
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Rome, Italy
| | - Giovanni Antonini
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Rome, Italy
| | - Matteo Garibaldi
- Neuromuscular and Rare Disease Centre, Neurology Unit, Sant'Andrea Hospital, Rome, Italy
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Rome, Italy
| |
Collapse
|
2
|
Attarian S, Beloribi-Djefaflia S, Bernard R, Nguyen K, Cances C, Gavazza C, Echaniz-Laguna A, Espil C, Evangelista T, Feasson L, Audic F, Zagorda B, Milhe De Bovis V, Stojkovic T, Sole G, Salort-Campana E, Sacconi S. French National Protocol for diagnosis and care of facioscapulohumeral muscular dystrophy (FSHD). J Neurol 2024; 271:5778-5803. [PMID: 38955828 DOI: 10.1007/s00415-024-12538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common genetically inherited myopathies in adults. It is characterized by incomplete penetrance and variable expressivity. Typically, FSHD patients display asymmetric weakness of facial, scapular, and humeral muscles that may progress to other muscle groups, particularly the abdominal and lower limb muscles. Early-onset patients display more severe muscle weakness and atrophy, resulting in a higher frequency of associated skeletal abnormalities. In these patients, multisystem involvement, including respiratory, ocular, and auditory, is more frequent and severe and may include the central nervous system. Adult-onset FSHD patients may also display some degree of multisystem involvement which mainly remains subclinical. In 95% of cases, FSHD patients carry a pathogenic contraction of the D4Z4 repeat units (RUs) in the subtelomeric region of chromosome 4 (4q35), which leads to the expression of DUX4 retrogene, toxic for muscles (FSHD1). Five percent of patients display the same clinical phenotype in association with a mutation in the SMCHD1 gene located in chromosome 18, inducing epigenetic modifications of the 4q D4Z4 repeated region and expression of DUX4 retrogene. This review highlights the complexities and challenges of diagnosing and managing FSHD, underscoring the importance of standardized approaches for optimal patient outcomes. It emphasizes the critical role of multidisciplinary care in addressing the diverse manifestations of FSHD across different age groups, from skeletal abnormalities in early-onset cases to the often-subclinical multisystem involvement in adults. With no current cure, the focus on alleviating symptoms and slowing disease progression through coordinated care is paramount.
Collapse
Affiliation(s)
- Shahram Attarian
- Reference Center for Neuromuscular Disorders and ALS, Timone University Hospital, Aix-Marseille University, Marseille, France.
- FILNEMUS, European Reference Network for Rare Diseases (ERN-NMD), Marseille, France.
- Marseille Medical Genetics, Aix Marseille Université-Inserm UMR_1251, 13005, Marseille, France.
| | - Sadia Beloribi-Djefaflia
- Reference Center for Neuromuscular Disorders and ALS, Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Rafaelle Bernard
- Marseille Medical Genetics, Aix Marseille Université-Inserm UMR_1251, 13005, Marseille, France
| | - Karine Nguyen
- Marseille Medical Genetics, Aix Marseille Université-Inserm UMR_1251, 13005, Marseille, France
| | - Claude Cances
- Reference Center for Neuromuscular Disorders, Toulouse Children's Hospital, Toulouse, France
- Pediatric Neurology Department, Toulouse Children's Hospital, Toulouse, France
| | - Carole Gavazza
- Reference Center for Neuromuscular Disorders and ALS, Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Andoni Echaniz-Laguna
- Department of Neurology, APHP, CHU de Bicêtre, Le Kremlin Bicêtre, France
- French National Reference Center for Rare Neuropathies (NNERF), Le Kremlin Bicêtre, France
- Inserm U1195, University Paris Saclay, Le Kremlin Bicêtre, France
| | - Caroline Espil
- Reference Center for Neuromuscular Disorders AOC, Children's Hospital, CHU Bordeaux, Bordeaux, France
| | - Teresinha Evangelista
- Institute of Myology, Nord/Est/Ile-de-France Neuromuscular Reference Center, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, Paris, France
| | - Léonard Feasson
- Department of Clinical and Exercise Physiology, University Hospital Center of Saint-Etienne, 42000, Saint-Etienne, France
- Inter-University Laboratory of Human Movement Biology, EA 7424, Jean Monnet University, 42000, Saint-Etienne, France
| | - Frédérique Audic
- Reference Center for Neuromuscular Diseases in Children PACARARE, Neuropediatrics Department, Timone University Children's Hospital, Marseille, France
| | - Berenice Zagorda
- Department of Clinical and Exercise Physiology, University Hospital Center of Saint-Etienne, 42000, Saint-Etienne, France
| | - Virginie Milhe De Bovis
- Reference Center for Neuromuscular Disorders and ALS, Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Tanya Stojkovic
- Institute of Myology, Nord/Est/Ile-de-France Neuromuscular Reference Center, Pitié-Salpêtrière Hospital, APHP, Sorbonne University, Paris, France
| | - Guilhem Sole
- Centre de Référence des Maladies Neuromusculaires AOC, FILNEMUS, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | - Emmanuelle Salort-Campana
- Reference Center for Neuromuscular Disorders and ALS, Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Sabrina Sacconi
- Peripheral Nervous System and Muscle Department, Université Côte d'Azur, CHU Nice, Pasteur 2, Nice Hospital, France.
| |
Collapse
|
3
|
Riem L, DuCharme O, Cousins M, Feng X, Kenney A, Morris J, Tapscott SJ, Tawil R, Statland J, Shaw D, Wang L, Walker M, Lewis L, Jacobs MA, Leung DG, Friedman SD, Blemker SS. AI driven analysis of MRI to measure health and disease progression in FSHD. Sci Rep 2024; 14:15462. [PMID: 38965267 PMCID: PMC11224366 DOI: 10.1038/s41598-024-65802-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) affects roughly 1 in 7500 individuals. While at the population level there is a general pattern of affected muscles, there is substantial heterogeneity in muscle expression across- and within-patients. There can also be substantial variation in the pattern of fat and water signal intensity within a single muscle. While quantifying individual muscles across their full length using magnetic resonance imaging (MRI) represents the optimal approach to follow disease progression and evaluate therapeutic response, the ability to automate this process has been limited. The goal of this work was to develop and optimize an artificial intelligence-based image segmentation approach to comprehensively measure muscle volume, fat fraction, fat fraction distribution, and elevated short-tau inversion recovery signal in the musculature of patients with FSHD. Intra-rater, inter-rater, and scan-rescan analyses demonstrated that the developed methods are robust and precise. Representative cases and derived metrics of volume, cross-sectional area, and 3D pixel-maps demonstrate unique intramuscular patterns of disease. Future work focuses on leveraging these AI methods to include upper body output and aggregating individual muscle data across studies to determine best-fit models for characterizing progression and monitoring therapeutic modulation of MRI biomarkers.
Collapse
Affiliation(s)
- Lara Riem
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | - Olivia DuCharme
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | - Matthew Cousins
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | - Xue Feng
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | - Allison Kenney
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | - Jacob Morris
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA
| | | | - Rabi Tawil
- University of Rochester Medical Center, Rochester, NY, USA
| | - Jeff Statland
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Dennis Shaw
- Seattle Children's Hospital, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Leo Wang
- University of Washington, Seattle, WA, USA
| | | | - Leann Lewis
- University of Rochester Medical Center, Rochester, NY, USA
| | - Michael A Jacobs
- University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Rice University, Houston, TX, USA
| | - Doris G Leung
- Kennedy Krieger Institute, Baltimore, MD, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Silvia S Blemker
- Springbok Analytics, 110 Old Preston Ave., Charlottesville, VA, 22902, USA.
- University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Barbieri M, Hooijmans MT, Moulin K, Cork TE, Ennis DB, Gold GE, Kogan F, Mazzoli V. A deep learning approach for fast muscle water T2 mapping with subject specific fat T2 calibration from multi-spin-echo acquisitions. Sci Rep 2024; 14:8253. [PMID: 38589478 PMCID: PMC11002020 DOI: 10.1038/s41598-024-58812-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024] Open
Abstract
This work presents a deep learning approach for rapid and accurate muscle water T2 with subject-specific fat T2 calibration using multi-spin-echo acquisitions. This method addresses the computational limitations of conventional bi-component Extended Phase Graph fitting methods (nonlinear-least-squares and dictionary-based) by leveraging fully connected neural networks for fast processing with minimal computational resources. We validated the approach through in vivo experiments using two different MRI vendors. The results showed strong agreement of our deep learning approach with reference methods, summarized by Lin's concordance correlation coefficients ranging from 0.89 to 0.97. Further, the deep learning method achieved a significant computational time improvement, processing data 116 and 33 times faster than the nonlinear least squares and dictionary methods, respectively. In conclusion, the proposed approach demonstrated significant time and resource efficiency improvements over conventional methods while maintaining similar accuracy. This methodology makes the processing of water T2 data faster and easier for the user and will facilitate the utilization of the use of a quantitative water T2 map of muscle in clinical and research studies.
Collapse
Affiliation(s)
- Marco Barbieri
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | - Melissa T Hooijmans
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Kevin Moulin
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tyler E Cork
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Garry E Gold
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Feliks Kogan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Valentina Mazzoli
- Department of Radiology, Stanford University, Stanford, CA, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
5
|
Vincenten SCC, Teeselink S, Voermans NC, van Engelen BGM, Mul K, van Alfen N. Establishing the role of muscle ultrasound as an imaging biomarker in facioscapulohumeral muscular dystrophy. Neuromuscul Disord 2023; 33:936-944. [PMID: 37968164 DOI: 10.1016/j.nmd.2023.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a hereditary muscle disease, that causes weakness and wasting of skeletal muscles. In this cross-sectional cohort-study on FSHD patients, we assessed muscle ultrasound findings and their relation to clinical outcome measures, evaluating the role of ultrasound as biomarker in FSHD. We included 115 genetically confirmed FSHD patients (52% males, age-range 22-80 years). They were subjected to a standardized muscle ultrasound protocol of seven truncal and upper- and lower extremity muscles bilaterally. Muscle images were scored using the Heckmatt scale. Muscle echogenicity was quantified using z-scores. Compound echogenicity and Heckmatt scores were calculated. Nearly all patients (94%) had one or multiple muscles with an increased echogenicity z-score. The trapezius muscle was most severely affected, followed by the rectus femoris muscle. Both compound ultrasound scores strongly with multiple clinical outcome measures (ρ 0.68-0.79, p < 0.001). While most muscles showed a high level of agreement between the echogenicity z-score and Heckmatt score (>95%), the tibialis anterior and gastrocnemius muscle showed lower levels of agreement (82 and 92%). In conclusion, our study confirms the use of muscle ultrasound as clinical severity biomarker and provides a solid base for future longitudinal studies to establish ultrasound as a monitoring biomarker in FSHD.
Collapse
Affiliation(s)
- S C C Vincenten
- Radboud University Medical Center, Clinical Neuromuscular Imaging Group, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - S Teeselink
- Radboud University Medical Center, Clinical Neuromuscular Imaging Group, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - N C Voermans
- Radboud University Medical Center, Clinical Neuromuscular Imaging Group, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - B G M van Engelen
- Radboud University Medical Center, Clinical Neuromuscular Imaging Group, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - K Mul
- Radboud University Medical Center, Clinical Neuromuscular Imaging Group, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - N van Alfen
- Radboud University Medical Center, Clinical Neuromuscular Imaging Group, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
6
|
Ragozzino E, Bortolani S, Di Pietro L, Papait A, Parolini O, Monforte M, Tasca G, Ricci E. Muscle fibrosis as a prognostic biomarker in facioscapulohumeral muscular dystrophy: a retrospective cohort study. Acta Neuropathol Commun 2023; 11:165. [PMID: 37849014 PMCID: PMC10583430 DOI: 10.1186/s40478-023-01660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant epigenetic disorder with highly variable muscle involvement and disease progression. Ongoing clinical trials, aimed at counteracting muscle degeneration and disease progression in FSHD patients, increase the need for reliable biomarkers. Muscle magnetic resonance imaging (MRI) studies showed that the appearance of STIR-positive (STIR+) lesions in FSHD muscles represents an initial stage of muscle damage, preceding irreversible adipose changes. Our study aimed to investigate fibrosis, a parameter of muscle degeneration undetectable by MRI, in relation to disease activity and progression of FSHD muscles. We histologically evaluated collagen in FSHD1 patients' (STIR+ n = 27, STIR- n = 28) and healthy volunteers' (n = 12) muscles by picrosirius red staining. All patients (n = 55) performed muscle MRI before biopsy, 45 patients also after 1 year and 36 patients also after 2 years. Fat content (T1 signal) and oedema/inflammation (STIR signal) were evaluated at baseline and at 1- and 2-year MRI follow-up. STIR+ muscles showed significantly higher collagen compared to both STIR- (p = 0.001) and healthy muscles (p < 0.0001). STIR- muscles showed a higher collagen content compared to healthy muscles (p = 0.0194). FSHD muscles with a worsening in fatty infiltration during 1- (P = 0.007) and 2-year (P < 0.0001) MRI follow-up showed a collagen content of 3.6- and 3.7-fold higher compared to FSHD muscles with no sign of progression. Moreover, the fibrosis was significantly higher in STIR+ muscles who showed a worsening in fatty infiltration in a timeframe of 2 years compared to both STIR- (P = 0.0006) and STIR+ muscles with no sign of progression (P = 0.02). Fibrosis is a sign of muscle degeneration undetectable at MRI never deeply investigated in FSHD patients. Our data show that 23/27 of STIR+ and 12/28 STIR- muscles have a higher amount of collagen deposition compared to healthy muscles. Fibrosis is higher in FSHD muscles with a worsening in fatty infiltration thus suggesting that its evaluation with innovative non-invasive techniques could be a candidate prognostic biomarker for FSHD, to be used to stratify patients and to evaluate the efficacy of therapeutic treatments.
Collapse
Affiliation(s)
- Elvira Ragozzino
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Sara Bortolani
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Lorena Di Pietro
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Andrea Papait
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ornella Parolini
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Mauro Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne, UK
| | - Enzo Ricci
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
7
|
Esteller D, Morrow J, Alonso-Pérez J, Reyes D, Carbayo A, Bisogni G, Cateruccia M, Monforte M, Tasca G, Alangary A, Marini-Bettolo C, Sabatelli M, Laura M, Ramdharry G, Bolaño-Díaz C, Turon-Sans J, Töpf A, Guglieri M, Rossor AM, Olive M, Bertini E, Straub V, Reilly MM, Rojas-García R, Díaz-Manera J. Muscle magnetic resonance imaging of a large cohort of distal hereditary motor neuropathies reveals characteristic features useful for diagnosis. Neuromuscul Disord 2023; 33:744-753. [PMID: 37704504 DOI: 10.1016/j.nmd.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023]
Abstract
Distal motor neuropathies (dHMN) are an heterogenous group of diseases characterized by progressive muscle weakness affecting predominantly the distal muscles of the lower and upper limbs. Our aim was to study the imaging features and pattern of muscle involvement in muscle magnetic resonance imaging (MRI) in dHMN patients of suspected genetic origin (dHMN). We conducted a retrospective study collecting clinical, genetic and muscle imaging data. Muscle MRI included T1-weighted and T2 weighted Short Tau Inversion Recovery images (STIR-T2w) sequences. Muscle replacement by fat was quantified using the Mercuri score. Identification of selective patterns of involvement was performed using hierarchical clustering. Eighty-four patients with diagnosis of dHMN were studied. Fat replacement was predominant in the distal lower leg muscles (82/84 cases), although also affected thigh and pelvis muscles. Asymmetric involvement was present in 29% of patients. The superficial posterior compartment of the leg, including the soleus and gastrocnemius muscles, was the most affected area (77/84). We observed a reticular pattern of fatty replacement progressing towards what is commonly known as "muscle islands" in 79.8%. Hyperintensities in STIR-T2w were observed in 78.6% patients mainly in distal leg muscles. Besides features common to all individuals, we identified and describe a pattern of muscle fat replacement characteristic of BICD2, HSPB1 and DYNC1H1 patients. We conclude that muscle MRI of patients with suspected dHMN reveals common features helpful in diagnosis process.
Collapse
Affiliation(s)
- Diana Esteller
- Neurology Department Hospital Clinic de Barcelona Universitat de Barcelona, Barcelona Spain
| | - Jasper Morrow
- Centre for Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Jorge Alonso-Pérez
- Neuromuscular Disease Unit Neurology Department Hospital Universitario Nuestra Señora de Candelaria Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC) Tenerife Spain
| | - David Reyes
- Neuromuscular Disorders Unit, Motor Neuron Diseases Clinic, Neurology Department Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona IIB Sant Pau Barcelona Spain
| | - Alvaro Carbayo
- Neuromuscular Disorders Unit, Motor Neuron Diseases Clinic, Neurology Department Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona IIB Sant Pau Barcelona Spain
| | | | - Michela Cateruccia
- Unit of Muscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Childrens' Research Hospital, Rome, Italy
| | - Mauro Monforte
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| | - Aljwhara Alangary
- Centre for Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Chiara Marini-Bettolo
- John Walton Muscular Dystrophy Research Centre Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| | - Mario Sabatelli
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Matilde Laura
- Centre for Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Gita Ramdharry
- Centre for Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Carla Bolaño-Díaz
- John Walton Muscular Dystrophy Research Centre Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| | - Janina Turon-Sans
- Neuromuscular Disorders Unit, Motor Neuron Diseases Clinic, Neurology Department Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona IIB Sant Pau Barcelona Spain
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| | - Michella Guglieri
- John Walton Muscular Dystrophy Research Centre Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| | - Alexander M Rossor
- Centre for Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Montse Olive
- Neuromuscular Disorders Unit, Motor Neuron Diseases Clinic, Neurology Department Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona IIB Sant Pau Barcelona Spain
| | - Enrico Bertini
- Unit of Muscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Childrens' Research Hospital, Rome, Italy
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology and the National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - Ricard Rojas-García
- Neuromuscular Disorders Unit, Motor Neuron Diseases Clinic, Neurology Department Hospital de la Santa Creu i Sant Pau Universitat Autònoma de Barcelona IIB Sant Pau Barcelona Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) Barcelona Spain.
| | - Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Centre Newcastle University Translational and Clinical Research Institute and Newcastle Hospitals NHS Foundation Trust Newcastle upon Tyne United Kingdom; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) Barcelona Spain; Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| |
Collapse
|
8
|
Zheng F, Qiu L, Chen L, Zheng Y, Lin X, He J, Lin X, He Q, Lin Y, Lin L, Wang L, Lin F, Yang K, Lin M, Lin Y, Fu Y, Wang N, Wang Z. Association of 4qA-Specific Distal D4Z4 Hypomethylation With Disease Severity and Progression in Facioscapulohumeral Muscular Dystrophy. Neurology 2023; 101:e225-e237. [PMID: 37225433 PMCID: PMC10382269 DOI: 10.1212/wnl.0000000000207418] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/31/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The objective of this study was to examine whether the regional methylation levels at the most distal D4Z4 repeat units (RU) in the 4qA-permissive haplotype were associated with disease severity and progression in facioscapulohumeral muscular dystrophy type 1 (FSHD1). METHODS This 21-year, retrospective, observational cohort study was conducted at the Fujian Neuromedical Center (FNMC) in China. Methylation levels of the most distal D4Z4 RU, including 10 CpGs, were assessed in all participants by bisulfite sequencing. Patients with FSHD1 were stratified into 4 groups based on methylation percentage quartiles, including LM1 (low methylation), LM2 (low to intermediate methylation), LM3 (intermediate to high methylation), and highest methylation (HM) levels. Patients received evaluations of motor function focusing on lower extremity (LE) progression at baseline and in follow-ups. FSHD clinical score (CS), age-corrected clinical severity scale (ACSS), and modified Rankin scale were used to assess motor function. RESULTS The methylation levels of the 10 CpGs were significantly lower in all 823 patients with genetically confirmed FSHD1 than in 341 healthy controls (HCs). CpG6 methylation levels could distinguish the following: (1) patients with FSHD1 from HCs; (2) symptomatic from asymptomatic/unaffected patients; (3) patients with LE involvement from those without LE involvement, with AUCs (95% CI) of 0.9684 (0.9584-0.9785), 0.7417 (0.6903-0.7931), and 0.6386 (0.5816-0.6956), respectively. Lower CpG6 methylation levels were correlated with higher CS (r = -0.392), higher ACSS (r = -0.432), and earlier onset age of first-ever muscle weakness (r = 0.297). For the LM1, LM2, LM3, and HM groups, the respective proportions of LE involvement were 52.9%, 44.2%, 36.9%, and 23.4%; and onset ages of LE involvement were 20, 26.5, 25, and 26.5 years. Cox regression analysis-adjusted for sex, age at examination, D4Z4 RU, and 4qA/B haplotype-showed that the LM1, LM2, and LM3 groups (i.e., groups with lower methylation levels) had a higher risk of independent ambulation loss, with HRs (95% CI) of 3.523 (1.565-7.930), 3.356 (1.458-7.727), and 2.956 (1.245-7.020), respectively. DISCUSSION 4q35 distal D4Z4 hypomethylation is correlated with disease severity and progression to lower extremity involvement.
Collapse
Affiliation(s)
- Fuze Zheng
- From the Department of Neurology and Institute of Neurology of First Affiliated Hospital (F.Z., L.Q., L.C., Y.Z., Xiaodan Lin, J.H., Xin Lin, Q.H., Yuhua Lin, L.L., L.W., F.L., K.Y., M.L., Yi Lin, Y.F., N.W., Z.W.), Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou; and Department of Neurology (L.Q., Xin Lin, F.L., M.L., Yi Lin, Y.F., N.W., Z.W.), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Liangliang Qiu
- From the Department of Neurology and Institute of Neurology of First Affiliated Hospital (F.Z., L.Q., L.C., Y.Z., Xiaodan Lin, J.H., Xin Lin, Q.H., Yuhua Lin, L.L., L.W., F.L., K.Y., M.L., Yi Lin, Y.F., N.W., Z.W.), Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou; and Department of Neurology (L.Q., Xin Lin, F.L., M.L., Yi Lin, Y.F., N.W., Z.W.), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Long Chen
- From the Department of Neurology and Institute of Neurology of First Affiliated Hospital (F.Z., L.Q., L.C., Y.Z., Xiaodan Lin, J.H., Xin Lin, Q.H., Yuhua Lin, L.L., L.W., F.L., K.Y., M.L., Yi Lin, Y.F., N.W., Z.W.), Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou; and Department of Neurology (L.Q., Xin Lin, F.L., M.L., Yi Lin, Y.F., N.W., Z.W.), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ying Zheng
- From the Department of Neurology and Institute of Neurology of First Affiliated Hospital (F.Z., L.Q., L.C., Y.Z., Xiaodan Lin, J.H., Xin Lin, Q.H., Yuhua Lin, L.L., L.W., F.L., K.Y., M.L., Yi Lin, Y.F., N.W., Z.W.), Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou; and Department of Neurology (L.Q., Xin Lin, F.L., M.L., Yi Lin, Y.F., N.W., Z.W.), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaodan Lin
- From the Department of Neurology and Institute of Neurology of First Affiliated Hospital (F.Z., L.Q., L.C., Y.Z., Xiaodan Lin, J.H., Xin Lin, Q.H., Yuhua Lin, L.L., L.W., F.L., K.Y., M.L., Yi Lin, Y.F., N.W., Z.W.), Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou; and Department of Neurology (L.Q., Xin Lin, F.L., M.L., Yi Lin, Y.F., N.W., Z.W.), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Junjie He
- From the Department of Neurology and Institute of Neurology of First Affiliated Hospital (F.Z., L.Q., L.C., Y.Z., Xiaodan Lin, J.H., Xin Lin, Q.H., Yuhua Lin, L.L., L.W., F.L., K.Y., M.L., Yi Lin, Y.F., N.W., Z.W.), Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou; and Department of Neurology (L.Q., Xin Lin, F.L., M.L., Yi Lin, Y.F., N.W., Z.W.), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xin Lin
- From the Department of Neurology and Institute of Neurology of First Affiliated Hospital (F.Z., L.Q., L.C., Y.Z., Xiaodan Lin, J.H., Xin Lin, Q.H., Yuhua Lin, L.L., L.W., F.L., K.Y., M.L., Yi Lin, Y.F., N.W., Z.W.), Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou; and Department of Neurology (L.Q., Xin Lin, F.L., M.L., Yi Lin, Y.F., N.W., Z.W.), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qifang He
- From the Department of Neurology and Institute of Neurology of First Affiliated Hospital (F.Z., L.Q., L.C., Y.Z., Xiaodan Lin, J.H., Xin Lin, Q.H., Yuhua Lin, L.L., L.W., F.L., K.Y., M.L., Yi Lin, Y.F., N.W., Z.W.), Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou; and Department of Neurology (L.Q., Xin Lin, F.L., M.L., Yi Lin, Y.F., N.W., Z.W.), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yuhua Lin
- From the Department of Neurology and Institute of Neurology of First Affiliated Hospital (F.Z., L.Q., L.C., Y.Z., Xiaodan Lin, J.H., Xin Lin, Q.H., Yuhua Lin, L.L., L.W., F.L., K.Y., M.L., Yi Lin, Y.F., N.W., Z.W.), Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou; and Department of Neurology (L.Q., Xin Lin, F.L., M.L., Yi Lin, Y.F., N.W., Z.W.), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Lin Lin
- From the Department of Neurology and Institute of Neurology of First Affiliated Hospital (F.Z., L.Q., L.C., Y.Z., Xiaodan Lin, J.H., Xin Lin, Q.H., Yuhua Lin, L.L., L.W., F.L., K.Y., M.L., Yi Lin, Y.F., N.W., Z.W.), Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou; and Department of Neurology (L.Q., Xin Lin, F.L., M.L., Yi Lin, Y.F., N.W., Z.W.), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Lili Wang
- From the Department of Neurology and Institute of Neurology of First Affiliated Hospital (F.Z., L.Q., L.C., Y.Z., Xiaodan Lin, J.H., Xin Lin, Q.H., Yuhua Lin, L.L., L.W., F.L., K.Y., M.L., Yi Lin, Y.F., N.W., Z.W.), Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou; and Department of Neurology (L.Q., Xin Lin, F.L., M.L., Yi Lin, Y.F., N.W., Z.W.), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Feng Lin
- From the Department of Neurology and Institute of Neurology of First Affiliated Hospital (F.Z., L.Q., L.C., Y.Z., Xiaodan Lin, J.H., Xin Lin, Q.H., Yuhua Lin, L.L., L.W., F.L., K.Y., M.L., Yi Lin, Y.F., N.W., Z.W.), Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou; and Department of Neurology (L.Q., Xin Lin, F.L., M.L., Yi Lin, Y.F., N.W., Z.W.), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Kang Yang
- From the Department of Neurology and Institute of Neurology of First Affiliated Hospital (F.Z., L.Q., L.C., Y.Z., Xiaodan Lin, J.H., Xin Lin, Q.H., Yuhua Lin, L.L., L.W., F.L., K.Y., M.L., Yi Lin, Y.F., N.W., Z.W.), Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou; and Department of Neurology (L.Q., Xin Lin, F.L., M.L., Yi Lin, Y.F., N.W., Z.W.), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Minting Lin
- From the Department of Neurology and Institute of Neurology of First Affiliated Hospital (F.Z., L.Q., L.C., Y.Z., Xiaodan Lin, J.H., Xin Lin, Q.H., Yuhua Lin, L.L., L.W., F.L., K.Y., M.L., Yi Lin, Y.F., N.W., Z.W.), Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou; and Department of Neurology (L.Q., Xin Lin, F.L., M.L., Yi Lin, Y.F., N.W., Z.W.), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yi Lin
- From the Department of Neurology and Institute of Neurology of First Affiliated Hospital (F.Z., L.Q., L.C., Y.Z., Xiaodan Lin, J.H., Xin Lin, Q.H., Yuhua Lin, L.L., L.W., F.L., K.Y., M.L., Yi Lin, Y.F., N.W., Z.W.), Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou; and Department of Neurology (L.Q., Xin Lin, F.L., M.L., Yi Lin, Y.F., N.W., Z.W.), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ying Fu
- From the Department of Neurology and Institute of Neurology of First Affiliated Hospital (F.Z., L.Q., L.C., Y.Z., Xiaodan Lin, J.H., Xin Lin, Q.H., Yuhua Lin, L.L., L.W., F.L., K.Y., M.L., Yi Lin, Y.F., N.W., Z.W.), Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou; and Department of Neurology (L.Q., Xin Lin, F.L., M.L., Yi Lin, Y.F., N.W., Z.W.), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ning Wang
- From the Department of Neurology and Institute of Neurology of First Affiliated Hospital (F.Z., L.Q., L.C., Y.Z., Xiaodan Lin, J.H., Xin Lin, Q.H., Yuhua Lin, L.L., L.W., F.L., K.Y., M.L., Yi Lin, Y.F., N.W., Z.W.), Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou; and Department of Neurology (L.Q., Xin Lin, F.L., M.L., Yi Lin, Y.F., N.W., Z.W.), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Zhiqiang Wang
- From the Department of Neurology and Institute of Neurology of First Affiliated Hospital (F.Z., L.Q., L.C., Y.Z., Xiaodan Lin, J.H., Xin Lin, Q.H., Yuhua Lin, L.L., L.W., F.L., K.Y., M.L., Yi Lin, Y.F., N.W., Z.W.), Institute of Neuroscience, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou; and Department of Neurology (L.Q., Xin Lin, F.L., M.L., Yi Lin, Y.F., N.W., Z.W.), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
9
|
Maceroni M, Monforte M, Cariola R, Falsini B, Rizzo S, Savastano MC, Martelli F, Ricci E, Bortolani S, Tasca G, Minnella AM. Artificial Intelligence for Evaluation of Retinal Vasculopathy in Facioscapulohumeral Dystrophy Using OCT Angiography: A Case Series. Diagnostics (Basel) 2023; 13:982. [PMID: 36900126 PMCID: PMC10001401 DOI: 10.3390/diagnostics13050982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a slowly progressive muscular dystrophy with a wide range of manifestations including retinal vasculopathy. This study aimed to analyse retinal vascular involvement in FSHD patients using fundus photographs and optical coherence tomography-angiography (OCT-A) scans, evaluated through artificial intelligence (AI). Thirty-three patients with a diagnosis of FSHD (mean age 50.4 ± 17.4 years) were retrospectively evaluated and neurological and ophthalmological data were collected. Increased tortuosity of the retinal arteries was qualitatively observed in 77% of the included eyes. The tortuosity index (TI), vessel density (VD), and foveal avascular zone (FAZ) area were calculated by processing OCT-A images through AI. The TI of the superficial capillary plexus (SCP) was increased (p < 0.001), while the TI of the deep capillary plexus (DCP) was decreased in FSHD patients in comparison to controls (p = 0.05). VD scores for both the SCP and the DCP results increased in FSHD patients (p = 0.0001 and p = 0.0004, respectively). With increasing age, VD and the total number of vascular branches showed a decrease (p = 0.008 and p < 0.001, respectively) in the SCP. A moderate correlation between VD and EcoRI fragment length was identified as well (r = 0.35, p = 0.048). For the DCP, a decreased FAZ area was found in FSHD patients in comparison to controls (t (53) = -6.89, p = 0.01). A better understanding of retinal vasculopathy through OCT-A can support some hypotheses on the disease pathogenesis and provide quantitative parameters potentially useful as disease biomarkers. In addition, our study validated the application of a complex toolchain of AI using both ImageJ and Matlab to OCT-A angiograms.
Collapse
Affiliation(s)
- Martina Maceroni
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- UOC di Oculistica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
| | - Mauro Monforte
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Rossella Cariola
- Department of Ophthalmology, University of Turin, 10126 Turin, Italy
| | - Benedetto Falsini
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Stanislao Rizzo
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- UOC di Oculistica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
| | - Maria Cristina Savastano
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- UOC di Oculistica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
| | - Francesco Martelli
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Ageing, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Enzo Ricci
- Institute of Neurology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sara Bortolani
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giorgio Tasca
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- John Walton Muscular Dystrophy Research Centre, Newcastle Hospitals NHS Foundation Trusts, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK
| | - Angelo Maria Minnella
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- UOC di Oculistica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
| |
Collapse
|
10
|
Llansó L, Moore U, Bolano-Diaz C, James M, Blamire AM, Carlier PG, Rufibach L, Gordish-Dressman H, Boyle G, Hilsden H, Day JW, Jones KJ, Bharucha-Goebel DX, Salort-Campana E, Pestronk A, Walter MC, Paradas C, Stojkovic T, Mori-Yoshimura M, Bravver E, Pegoraro E, Mendell JR, Straub V, Díaz-Manera J. Expanding the muscle imaging spectrum in dysferlinopathy: description of an outlier population from the classical MRI pattern. Neuromuscul Disord 2023; 33:349-357. [PMID: 36972667 DOI: 10.1016/j.nmd.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023]
Abstract
Dysferlinopathy is a muscle disease characterized by a variable clinical presentation and is caused by mutations in the DYSF gene. The Jain Clinical Outcome Study for Dysferlinopathy (COS) followed the largest cohort of patients (n=187) with genetically confirmed dysferlinopathy throughout a three-year natural history study, in which the patients underwent muscle function tests and muscle magnetic resonance imaging (MRI). We previously described the pattern of muscle pathology in this population and established a series of imaging criteria for diagnosis. In this paper, we describe the muscle imaging and clinical features of a subgroup of COS participants whose muscle imaging results did not completely meet the diagnostic criteria. We reviewed 184 T1-weighted (T1w) muscle MRI scans obtained at the baseline visit of the COS study, of which 106 were pelvic and lower limb only and 78 were whole-body scans. We identified 116 of the 184 patients (63%) who did not meet at least one of the established imaging criteria. The highest number found of unmet criteria was four per patient. We identified 24 patients (13%) who did not meet three or more of the nine established criteria and considered them as "outliers". The most common unmet criterion (27.3% of cases) was the adductor magnus being equally or more affected than the adductor longus. We compared the genetic, demographic, clinical and muscle function data of the outlier patients with those who met the established criteria and observed that the outlier patients had an age of disease onset that was significantly older than the whole group (29.3 vs 20.5 years, p=0.0001). This study expands the phenotypic muscle imaging spectrum of patients with dysferlinopathy and can help to guide the diagnostic process in patients with limb girdle weakness of unknown origin.
Collapse
Affiliation(s)
- Laura Llansó
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle Upon Tyne, UK; Hospital Clínic de Barcelona, Department of Neurology, Universitat de Barcelona, Spain
| | - Ursula Moore
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle Upon Tyne, UK
| | - Carla Bolano-Diaz
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle Upon Tyne, UK
| | - Meredith James
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle Upon Tyne, UK
| | - Andrew M Blamire
- Magnetic Resonance Centre, Institute for Translational Medicine, Newcastle University
| | - Pierre G Carlier
- AIM & CEA NMR Laboratory, Institute of Myology, Pitié-Salpêtrière University Hospital, Paris, France
| | | | - Heather Gordish-Dressman
- Center for Translational Science, Division of Biostatistics and Study Methodology, Children's National Health System, Washington, DC, USA
| | - Georgina Boyle
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle Upon Tyne, UK
| | - Heather Hilsden
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle Upon Tyne, UK
| | - John W Day
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine; Stanford, CA, USA
| | - Kristi J Jones
- Kids Neuroscience Centre, Sydney Children's Hospitals Network. Sydney Medical School, University of Sydney
| | | | | | - Alan Pestronk
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maggie C Walter
- Friedrich-Baur-Institute, Dept. of Neurology, Ludwig-Maximilians-University of Munich, Germany
| | - Carmen Paradas
- Neuromuscular Unit, Department of Neurology, Hospital U. Virgen del Rocío/Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Tanya Stojkovic
- Institut de Myologie, AP-HP, G.H. Pitié-Salpêtrière, Paris, France
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry Tokyo, Japan
| | - Elena Bravver
- Carolinas Healthcare System Neurosciences Institute, Charlotte, NC, USA
| | | | | | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle Upon Tyne, UK
| | - Jordi Díaz-Manera
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle Upon Tyne, UK.
| |
Collapse
|
11
|
Tihaya MS, Mul K, Balog J, de Greef JC, Tapscott SJ, Tawil R, Statland JM, van der Maarel SM. Facioscapulohumeral muscular dystrophy: the road to targeted therapies. Nat Rev Neurol 2023; 19:91-108. [PMID: 36627512 PMCID: PMC11578282 DOI: 10.1038/s41582-022-00762-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Advances in the molecular understanding of facioscapulohumeral muscular dystrophy (FSHD) have revealed that FSHD results from epigenetic de-repression of the DUX4 gene in skeletal muscle, which encodes a transcription factor that is active in early embryonic development but is normally silenced in almost all somatic tissues. These advances also led to the identification of targets for disease-altering therapies for FSHD, as well as an improved understanding of the molecular mechanism of the disease and factors that influence its progression. Together, these developments led the FSHD research community to shift its focus towards the development of disease-modifying treatments for FSHD. This Review presents advances in the molecular and clinical understanding of FSHD, discusses the potential targeted therapies that are currently being explored, some of which are already in clinical trials, and describes progress in the development of FSHD-specific outcome measures and assessment tools for use in future clinical trials.
Collapse
Affiliation(s)
- Mara S Tihaya
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica C de Greef
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jeffrey M Statland
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
12
|
Monforte M, Attarian S, Vissing J, Diaz-Manera J, Tasca G. 265th ENMC International Workshop: Muscle imaging in Facioscapulohumeral Muscular Dystrophy (FSHD): relevance for clinical trials. 22-24 April 2022, Hoofddorp, The Netherlands. Neuromuscul Disord 2023; 33:65-75. [PMID: 36369218 DOI: 10.1016/j.nmd.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Mauro Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Shahram Attarian
- Reference Center for Neuromuscular Disorders and ALS, CHU La Timone Aix-Marseille Hospital University Marseille, France
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jordi Diaz-Manera
- John Walton Muscular Dystrophy Research Center, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome 00168, Italy.
| |
Collapse
|
13
|
Colelli G, Barzaghi L, Paoletti M, Monforte M, Bergsland N, Manco G, Deligianni X, Santini F, Ricci E, Tasca G, Mira A, Figini S, Pichiecchio A. Radiomics and machine learning applied to STIR sequence for prediction of quantitative parameters in facioscapulohumeral disease. Front Neurol 2023; 14:1105276. [PMID: 36908599 PMCID: PMC9999017 DOI: 10.3389/fneur.2023.1105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/30/2023] [Indexed: 03/14/2023] Open
Abstract
Purpose Quantitative Muscle MRI (qMRI) is a valuable and non-invasive tool to assess disease involvement and progression in neuromuscular disorders being able to detect even subtle changes in muscle pathology. The aim of this study is to evaluate the feasibility of using a conventional short-tau inversion recovery (STIR) sequence to predict fat fraction (FF) and water T2 (wT2) in skeletal muscle introducing a radiomic workflow with standardized feature extraction combined with machine learning algorithms. Methods Twenty-five patients with facioscapulohumeral muscular dystrophy (FSHD) were scanned at calf level using conventional STIR sequence and qMRI techniques. We applied and compared three different radiomics workflows (WF1, WF2, WF3), combined with seven Machine Learning regression algorithms (linear, ridge and lasso regression, tree, random forest, k-nearest neighbor and support vector machine), on conventional STIR images to predict FF and wT2 for six calf muscles. Results The combination of WF3 and K-nearest neighbor resulted to be the best predictor model of qMRI parameters with a mean absolute error about ± 5 pp for FF and ± 1.8 ms for wT2. Conclusion This pilot study demonstrated the possibility to predict qMRI parameters in a cohort of FSHD subjects starting from conventional STIR sequence.
Collapse
Affiliation(s)
- Giulia Colelli
- Department of Mathematics, University of Pavia, Pavia, Italy.,Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation, Pavia, Italy.,INFN, Group of Pavia, Pavia, Italy
| | - Leonardo Barzaghi
- Department of Mathematics, University of Pavia, Pavia, Italy.,Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Matteo Paoletti
- Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Mauro Monforte
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Niels Bergsland
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University of Buffalo, The State University of New York, Buffalo, NY, United States.,IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Giulia Manco
- Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Xeni Deligianni
- Department of Radiology, University Hospital Basel, Basel, Switzerland.,Basel Muscle MRI, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Francesco Santini
- Department of Radiology, University Hospital Basel, Basel, Switzerland.,Basel Muscle MRI, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Enzo Ricci
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgio Tasca
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle upon Tyne, United Kingdom
| | - Antonietta Mira
- Data Science Lab, Università della Svizzera italiana, Lugano, Switzerland.,Department of Science and High Technology, University of Insubria, Como, Italy
| | - Silvia Figini
- Department of Political and Social Sciences, University of Pavia, Pavia, Italy.,BioData Science Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Pichiecchio
- Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
14
|
Lupi A, Spolaor S, Favero A, Bello L, Stramare R, Pegoraro E, Nobile MS. Muscle magnetic resonance characterization of STIM1 tubular aggregate myopathy using unsupervised learning. PLoS One 2023; 18:e0285422. [PMID: 37155641 PMCID: PMC10166478 DOI: 10.1371/journal.pone.0285422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
PURPOSE Congenital myopathies are a heterogeneous group of diseases affecting the skeletal muscles and characterized by high clinical, genetic, and histological variability. Magnetic Resonance (MR) is a valuable tool for the assessment of involved muscles (i.e., fatty replacement and oedema) and disease progression. Machine Learning is becoming increasingly applied for diagnostic purposes, but to our knowledge, Self-Organizing Maps (SOMs) have never been used for the identification of the patterns in these diseases. The aim of this study is to evaluate if SOMs may discriminate between muscles with fatty replacement (S), oedema (E) or neither (N). METHODS MR studies of a family affected by tubular aggregates myopathy (TAM) with the histologically proven autosomal dominant mutation of the STIM1 gene, were examined: for each patient, in two MR assessments (i.e., t0 and t1, the latter after 5 years), fifty-three muscles were evaluated for muscular fatty replacement on the T1w images, and for oedema on the STIR images, for reference. Sixty radiomic features were collected from each muscle at t0 and t1 MR assessment using 3DSlicer software, in order to obtain data from images. A SOM was created to analyze all datasets using three clusters (i.e., 0, 1 and 2) and results were compared with radiological evaluation. RESULTS Six patients with TAM STIM1-mutation were included. At t0 MR assessments, all patients showed widespread fatty replacement that intensifies at t1, while oedema mainly affected the muscles of the legs and appears stable at follow-up. All muscles with oedema showed fatty replacement, too. At t0 SOM grid clustering shows almost all N muscles in Cluster 0 and most of the E muscles in Cluster 1; at t1 almost all E muscles appear in Cluster 1. CONCLUSION Our unsupervised learning model appears to be able to recognize muscles altered by the presence of edema and fatty replacement.
Collapse
Affiliation(s)
- Amalia Lupi
- Institute of Radiology, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Simone Spolaor
- Microsystems, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Alessandro Favero
- Institute of Radiology, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Luca Bello
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Roberto Stramare
- Clinical and Translational Advanced Imaging Unit, Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Elena Pegoraro
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Marco Salvatore Nobile
- Department of Environmental Sciences, Informatics and Statistics (DAIS), Ca' Foscari University of Venice, Venice, Italy
| |
Collapse
|
15
|
Mul K. Facioscapulohumeral Muscular Dystrophy. Continuum (Minneap Minn) 2022; 28:1735-1751. [PMID: 36537978 DOI: 10.1212/con.0000000000001155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW This article reviews the current knowledge on the clinical characteristics and disease mechanism of facioscapulohumeral muscular dystrophy (FSHD), as well as advances in targeted therapy development. RECENT FINDINGS FSHD has a wide range of severity, yet a distinct phenotype characterized by weakness of the facial, shoulder, and upper arm muscles, followed by weakness of the trunk and leg muscles. It can be caused by two genetic mechanisms that share a common downstream pathway, namely, the epigenetic derepression and subsequent misexpression of the myotoxic DUX4 transcription factor. Treatment is currently supportive and outlined in evidence-based guidelines. Advances in the understanding of the pathogenic mechanism of FSHD are paving the way for targeted therapy development. Approaches for targeted therapies to reduce DUX4 expression that are currently being explored include small molecules, antisense oligonucleotides, vector-based RNA interference, and gene therapy. In anticipation of more clinical trials, "clinical trial preparedness," including the development of sensitive biomarkers and clinical outcome measures, are needed. SUMMARY The cornerstones of the diagnosis of FSHD are clinical observation and genetic testing. Management is currently supportive, but progress in the understanding of the disease mechanism has shifted the field of FSHD toward targeted therapy development.
Collapse
|
16
|
Di Pietro L, Giacalone F, Ragozzino E, Saccone V, Tiberio F, De Bardi M, Picozza M, Borsellino G, Lattanzi W, Guadagni E, Bortolani S, Tasca G, Ricci E, Parolini O. Non-myogenic mesenchymal cells contribute to muscle degeneration in facioscapulohumeral muscular dystrophy patients. Cell Death Dis 2022; 13:793. [PMID: 36114172 PMCID: PMC9481542 DOI: 10.1038/s41419-022-05233-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 01/22/2023]
Abstract
Muscle-resident non-myogenic mesenchymal cells play key roles that drive successful tissue regeneration within the skeletal muscle stem cell niche. These cells have recently emerged as remarkable therapeutic targets for neuromuscular disorders, although to date they have been poorly investigated in facioscapulohumeral muscular dystrophy (FSHD). In this study, we characterised the non-myogenic mesenchymal stromal cell population in FSHD patients' muscles with signs of disease activity, identified by muscle magnetic resonance imaging (MRI), and compared them with those obtained from apparently normal muscles of FSHD patients and from muscles of healthy, age-matched controls. Our results showed that patient-derived cells displayed a distinctive expression pattern of mesenchymal markers, along with an impaired capacity to differentiate towards mature adipocytes in vitro, compared with control cells. We also demonstrated a significant expansion of non-myogenic mesenchymal cells (identified as CD201- or PDGFRA-expressing cells) in FSHD muscles with signs of disease activity, which correlated with the extent of intramuscular fibrosis. In addition, the accumulation of non-myogenic mesenchymal cells was higher in FSHD muscles that deteriorate more rapidly. Our results prompt a direct association between an accumulation, as well as an altered differentiation, of non-myogenic mesenchymal cells with muscle degeneration in FSHD patients. Elucidating the mechanisms and cellular interactions that are altered in the affected muscles of FSHD patients could be instrumental to clarify disease pathogenesis and identifying reliable novel therapeutic targets.
Collapse
Affiliation(s)
- Lorena Di Pietro
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy ,grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Flavia Giacalone
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Elvira Ragozzino
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Saccone
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Tiberio
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco De Bardi
- grid.417778.a0000 0001 0692 3437Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Mario Picozza
- grid.417778.a0000 0001 0692 3437Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giovanna Borsellino
- grid.417778.a0000 0001 0692 3437Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Wanda Lattanzi
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy ,grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Enrico Guadagni
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sara Bortolani
- grid.414603.4Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgio Tasca
- grid.414603.4Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Enzo Ricci
- grid.414603.4Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy ,grid.8142.f0000 0001 0941 3192Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ornella Parolini
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy ,grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| |
Collapse
|
17
|
Widholm P, Ahlgren A, Karlsson M, Romu T, Tawil R, Wagner KR, Statland JM, Wang LH, Shieh PB, van Engelen BGM, Cadavid D, Ronco L, Odueyungbo AO, Jiang JG, Mellion ML, Dahlqvist Leinhard O. Quantitative muscle analysis in facioscapulohumeral muscular dystrophy using whole-body fat-referenced MRI: Protocol development, multicenter feasibility, and repeatability. Muscle Nerve 2022; 66:183-192. [PMID: 35585766 DOI: 10.1002/mus.27638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION/AIMS Functional performance tests are the gold standard to assess disease progression and treatment effects in neuromuscular disorders. These tests can be confounded by motivation, pain, fatigue, and learning effects, increasing variability and decreasing sensitivity to disease progression, limiting efficacy assessment in clinical trials with small sample sizes. We aimed to develop and validate a quantitative and objective method to measure skeletal muscle volume and fat content based on whole-body fat-referenced magnetic resonance imaging (MRI) for use in multisite clinical trials. METHODS Subjects aged 18 to 65 years, genetically confirmed facioscapulohumeral muscular dystrophy 1 (FSHD1), clinical severity 2 to 4 (Ricci's scale, range 0-5), were enrolled at six sites and imaged twice 4-12 weeks apart with T1-weighted two-point Dixon MRI covering the torso and upper and lower extremities. Thirty-six muscles were volumetrically segmented using semi-automatic multi-atlas-based segmentation. Muscle fat fraction (MFF), muscle fat infiltration (MFI), and lean muscle volume (LMV) were quantified for each muscle using fat-referenced quantification. RESULTS Seventeen patients (mean age ± SD, 49.4 years ±13.02; 12 men) were enrolled. Within-patient SD ranged from 1.00% to 3.51% for MFF and 0.40% to 1.48% for MFI in individual muscles. For LMV, coefficients of variation ranged from 2.7% to 11.7%. For the composite score average of all muscles, observed SDs were 0.70% and 0.32% for MFF and MFI, respectively; composite LMV coefficient of variation was 2.0%. DISCUSSION We developed and validated a method for measuring skeletal muscle volume and fat content for use in multisite clinical trials of neuromuscular disorders.
Collapse
Affiliation(s)
- Per Widholm
- AMRA Medical AB, Linköping, Sweden.,Department of Radiology, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | | | | | | | - Rabi Tawil
- University of Rochester Medical Center, Rochester, New York, USA
| | - Kathryn R Wagner
- Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | - Leo H Wang
- University of Washington, Seattle, Washington, USA
| | - Perry B Shieh
- University of California, Los Angeles, California, USA
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | - John G Jiang
- Fulcrum Therapeutics, Cambridge, Massachusetts, USA
| | | | - Olof Dahlqvist Leinhard
- AMRA Medical AB, Linköping, Sweden.,Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
18
|
Deligianni X, Santini F, Paoletti M, Solazzo F, Bergsland N, Savini G, Faggioli A, Germani G, Monforte M, Ricci E, Tasca G, Pichiecchio A. Dynamic magnetic resonance imaging of muscle contraction in facioscapulohumeral muscular dystrophy. Sci Rep 2022; 12:7250. [PMID: 35508609 PMCID: PMC9068910 DOI: 10.1038/s41598-022-11147-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
Quantitative muscle MRI (water-T2 and fat mapping) is being increasingly used to assess disease involvement in muscle disorders, while imaging techniques for assessment of the dynamic and elastic muscle properties have not yet been translated into clinics. In this exploratory study, we quantitatively characterized muscle deformation (strain) in patients affected by facioscapulohumeral muscular dystrophy (FSHD), a prevalent muscular dystrophy, by applying dynamic MRI synchronized with neuromuscular electrical stimulation (NMES). We evaluated the quadriceps muscles in 34 ambulatory patients and 13 healthy controls, at 6-to 12-month time intervals. While a subgroup of patients behaved similarly to controls, for another subgroup the median strain decreased over time (approximately 57% over 1.5 years). Dynamic MRI parameters did not correlate with quantitative MRI. Our results suggest that the evaluation of muscle contraction by NMES-MRI is feasible and could potentially be used to explore the elastic properties and monitor muscle involvement in FSHD and other neuromuscular disorders.
Collapse
Affiliation(s)
- Xeni Deligianni
- Radiology, Division of Radiological Physics, University Hospital of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Basel Muscle MRI, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Francesco Santini
- Radiology, Division of Radiological Physics, University Hospital of Basel, Petersgraben 4, 4031, Basel, Switzerland. .,Basel Muscle MRI, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland.
| | - Matteo Paoletti
- Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Francesca Solazzo
- School of Specialization in Clinical Pharmacology and Toxicology Center of Research in Medical Pharmacology, School of Medicine, University of Insubria, Varese, Italy
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA.,IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Giovanni Savini
- Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Arianna Faggioli
- Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Giancarlo Germani
- Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Mauro Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Enzo Ricci
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Pichiecchio
- Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
19
|
Mensch A, Nägel S, Zierz S, Kraya T, Stoevesandt D. Bildgebung der Muskulatur bei Neuromuskulären Erkrankungen
– von der Initialdiagnostik bis zur Verlaufsbeurteilung. KLIN NEUROPHYSIOL 2022. [DOI: 10.1055/a-1738-5356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
ZusammenfassungDie bildgebende Diagnostik hat sich zu einem integralen Element der Betreuung von
PatientInnen mit neuromuskulären Erkrankungen entwickelt. Als
wesentliches Diagnostikum ist hierbei die Magnetresonanztomografie als breit
verfügbares und vergleichsweise standardisiertes Untersuchungsverfahren
etabliert, wobei die Sonografie der Muskulatur bei hinreichend erfahrenem
Untersucher ebenfalls geeignet ist, wertvolle diagnostische Informationen zu
liefern. Das CT hingegen spielt eine untergeordnete Rolle und sollte nur bei
Kontraindikationen für eine MRT in Erwägung gezogen werden.
Zunächst wurde die Bildgebung bei Muskelerkrankungen primär in
der Initialdiagnostik unter vielfältigen Fragestellungen eingesetzt. Das
Aufkommen innovativer Therapiekonzepte bei verschiedenen neuromuskulären
Erkrankungen machen neben einer möglichst frühzeitigen
Diagnosestellung insbesondere auch eine multimodale Verlaufsbeurteilung zur
Evaluation des Therapieansprechens notwendig. Auch hier wird die Bildgebung der
Muskulatur als objektiver Parameter des Therapieerfolges intensiv diskutiert und
in Forschung wie Praxis zunehmend verwendet.
Collapse
Affiliation(s)
- Alexander Mensch
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| | - Steffen Nägel
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| | - Stephan Zierz
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| | - Torsten Kraya
- Universitätsklinik und Poliklinik für Neurologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
- Klinik für Neurologie, Klinikum St. Georg,
Leipzig
| | - Dietrich Stoevesandt
- Universitätsklinik und Poliklinik für Radiologie,
Martin-Luther-Universität Halle-Wittenberg und
Universitätsklinikum Halle, Halle (Saale)
| |
Collapse
|
20
|
Ghasemi M, Emerson CP, Hayward LJ. Outcome Measures in Facioscapulohumeral Muscular Dystrophy Clinical Trials. Cells 2022; 11:687. [PMID: 35203336 PMCID: PMC8870318 DOI: 10.3390/cells11040687] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a debilitating muscular dystrophy with a variable age of onset, severity, and progression. While there is still no cure for this disease, progress towards FSHD therapies has accelerated since the underlying mechanism of epigenetic derepression of the double homeobox 4 (DUX4) gene leading to skeletal muscle toxicity was identified. This has facilitated the rapid development of novel therapies to target DUX4 expression and downstream dysregulation that cause muscle degeneration. These discoveries and pre-clinical translational studies have opened new avenues for therapies that await evaluation in clinical trials. As the field anticipates more FSHD trials, the need has grown for more reliable and quantifiable outcome measures of muscle function, both for early phase and phase II and III trials. Advanced tools that facilitate longitudinal clinical assessment will greatly improve the potential of trials to identify therapeutics that successfully ameliorate disease progression or permit muscle functional recovery. Here, we discuss current and emerging FSHD outcome measures and the challenges that investigators may experience in applying such measures to FSHD clinical trial design and implementation.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (C.P.E.J.); (L.J.H.)
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Charles P. Emerson
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (C.P.E.J.); (L.J.H.)
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Lawrence J. Hayward
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (C.P.E.J.); (L.J.H.)
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
21
|
Mohassel P, Chang N, Inoue K, Delaney A, Hu Y, Donkervoort S, Saade D, Billioux BJ, Meader B, Volochayev R, Konersman CG, Kaindl AM, Cho CH, Russell B, Rodriguez A, Foster KW, Foley AR, Moore SA, Jones PL, Bonnemann CG, Jones T, Shaw ND. Cross-sectional, Neuromuscular Phenotyping Study of Arhinia Patients With SMCHD1 Variants. Neurology 2022; 98:e1384-e1396. [PMID: 35121673 PMCID: PMC8967428 DOI: 10.1212/wnl.0000000000200032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/30/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Facioscapulohumeral muscular dystrophy type 2 (FSHD2) and arhinia are two distinct disorders caused by pathogenic variants in the same gene, SMCHD1. The mechanism underlying this phenotypic divergence remains unclear. In this study, we characterize the neuromuscular phenotype of individuals with arhinia caused by SMCHD1 variants and analyze their complex genetic and epigenetic criteria to assess their risk for FSHD2. METHODS Eleven individuals with congenital nasal anomalies, including arhinia, nasal hypoplasia, or anosmia, underwent a neuromuscular exam, genetic testing, muscle ultrasound, and muscle MRI. Risk for FSHD2 was determined by combined genetic and epigenetic analysis of 4q35 haplotype, D4Z4 repeat length and methylation profile. We also compared expression levels of pathogenic DUX4 mRNA in primary myoblasts or dermal fibroblasts (upon myogenic differentiation or epigenetic transdifferentiation, respectively) in these individuals to those with confirmed FSHD2. RESULTS Among the eleven individuals with rare, pathogenic, heterozygous missense variants in exons 3-11 of SMCHD1, only a subset (n=3/11; 1 male, 2 females; age 25-51 years) met the strict genetic and epigenetic criteria for FSHD2 (D4Z4 repeat unit length <21 in cis with a 4qA haplotype, and D4Z4 methylation <30%). None of the 3 individuals had typical clinical manifestations or muscle imaging findings consistent with FSHD2. However, the arhinia patients meeting the permissive genetic and epigenetic criteria for FSHD2 displayed some DUX4 expression in dermal fibroblasts under the epigenetic de-repression by drug treatment and in the primary myoblasts undergoing myogenic differentiation. DISCUSSION In this cross-sectional study, we identified arhinia patients who meet the full genetic and epigenetic criteria for FSHD2 and display the molecular hallmark of FSHD, that is DUX4 de-repression and expression in vitro, but who do not manifest with the typical clinicopathologic phenotype of FSHD2. The distinct dichotomy between FSHD2 and arhinia phenotypes despite an otherwise poised DUX4 locus implies the presence of novel disease-modifying factors that seem to operate as a "switch", resulting in one phenotype and not the other. Identification and further understanding of these disease-modifying factors will likely provide valuable insight with therapeutic implications for both diseases.
Collapse
Affiliation(s)
- Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Ning Chang
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Kaoru Inoue
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, RTP, NC
| | - Angela Delaney
- National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD
| | - Ying Hu
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Dimah Saade
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - B Jeanne Billioux
- International Neuroinfectious Diseases Unit, Division of Neuroimmunology and Neurovirology, National institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Brooke Meader
- National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD
| | - Rita Volochayev
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD
| | | | - Angela M Kaindl
- Charitè-Universitätsmedizin Berlin, Department of Pediatric Neurology, Center for Chronically Sick Children and Institute of Cell Biology and Neurobiology, Berlin, Germany
| | - Chie-Hee Cho
- Institute for diagnostic and interventional Radiology, University Clinic, Jena, Germany
| | - Bianca Russell
- Division of Pediatric Genetics, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA
| | | | - K Wade Foster
- Florida Dermatology and Skin Cancer Centers, Winter Haven, FL
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Steven A Moore
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Peter L Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Carsten G Bonnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Takako Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Natalie D Shaw
- Pediatric Neuroendocrinology Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, RTP, NC
| |
Collapse
|
22
|
van den Heuvel A, Lassche S, Mul K, Greco A, San León Granado D, Heerschap A, Küsters B, Tapscott SJ, Voermans NC, van Engelen BGM, van der Maarel SM. Facioscapulohumeral dystrophy transcriptome signatures correlate with different stages of disease and are marked by different MRI biomarkers. Sci Rep 2022; 12:1426. [PMID: 35082321 PMCID: PMC8791933 DOI: 10.1038/s41598-022-04817-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
With several therapeutic strategies for facioscapulohumeral muscular dystrophy (FSHD) entering clinical testing, outcome measures are becoming increasingly important. Considering the spatiotemporal nature of FSHD disease activity, clinical trials would benefit from non-invasive imaging-based biomarkers that can predict FSHD-associated transcriptome changes. This study investigated two FSHD-associated transcriptome signatures (DUX4 and PAX7 signatures) in FSHD skeletal muscle biopsies, and tested their correlation with a variety of disease-associated factors, including Ricci clinical severity score, disease duration, D4Z4 repeat size, muscle pathology scorings and functional outcome measures. It establishes that DUX4 and PAX7 signatures both show a sporadic expression pattern in FSHD-affected biopsies, possibly marking different stages of disease. This study analyzed two imaging-based biomarkers-Turbo Inversion Recovery Magnitude (TIRM) hyperintensity and fat fraction-and provides insights into their predictive power as non-invasive biomarkers for FSHD signature detection in clinical trials. Further insights in the heterogeneity of-and correlation between-imaging biomarkers and molecular biomarkers, as provided in this study, will provide important guidance to clinical trial design in FSHD. Finally, this study investigated the role of infiltrating non-muscle cell types in FSHD signature expression and detected potential distinct roles for two fibro-adipogenic progenitor subtypes in FSHD.
Collapse
Affiliation(s)
- Anita van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, Postal zone S-04-P, 2333 ZA, Leiden, The Netherlands
| | - Saskia Lassche
- Department of Neurology, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - David San León Granado
- Department of Systems Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Arend Heerschap
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Benno Küsters
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, Postal zone S-04-P, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
23
|
Banerji CRS, Zammit PS. Pathomechanisms and biomarkers in facioscapulohumeral muscular dystrophy: roles of DUX4 and PAX7. EMBO Mol Med 2021; 13:e13695. [PMID: 34151531 PMCID: PMC8350899 DOI: 10.15252/emmm.202013695] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/29/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is characterised by progressive skeletal muscle weakness and wasting. FSHD is linked to epigenetic derepression of the subtelomeric D4Z4 macrosatellite at chromosome 4q35. Epigenetic derepression permits the distal-most D4Z4 unit to transcribe DUX4, with transcripts stabilised by splicing to a poly(A) signal on permissive 4qA haplotypes. The pioneer transcription factor DUX4 activates target genes that are proposed to drive FSHD pathology. While this toxic gain-of-function model is a satisfying "bottom-up" genotype-to-phenotype link, DUX4 is rarely detectable in muscle and DUX4 target gene expression is inconsistent in patients. A reliable biomarker for FSHD is suppression of a target gene score of PAX7, a master regulator of myogenesis. However, it is unclear how this "top-down" finding links to genomic changes that characterise FSHD and to DUX4. Here, we explore the roles and interactions of DUX4 and PAX7 in FSHD pathology and how the relationship between these two transcription factors deepens understanding via the immune system and muscle regeneration. Considering how FSHD pathomechanisms are represented by "DUX4opathy" models has implications for developing therapies and current clinical trials.
Collapse
Affiliation(s)
| | - Peter S Zammit
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| |
Collapse
|
24
|
Redox Homeostasis in Muscular Dystrophies. Cells 2021; 10:cells10061364. [PMID: 34205993 PMCID: PMC8229249 DOI: 10.3390/cells10061364] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
In recent years, growing evidence has suggested a prominent role of oxidative stress in the pathophysiology of several early- and adult-onset muscle disorders, although effective antioxidant treatments are still lacking. Oxidative stress causes cell damage by affecting protein function, membrane structure, lipid metabolism, and DNA integrity, thus interfering with skeletal muscle homeostasis and functionality. Some features related to oxidative stress, such as chronic inflammation, defective regeneration, and mitochondrial damage are shared among most muscular dystrophies, and Nrf2 has been shown to be a central player in antagonizing redox imbalance in several of these disorders. However, the exact mechanisms leading to overproduction of reactive oxygen species and deregulation in the cellular antioxidants system seem to be, to a large extent, disease-specific, and the clarification of these mechanisms in vivo in humans is the cornerstone for the development of targeted antioxidant therapies, which will require testing in appropriately designed clinical trials.
Collapse
|
25
|
The increasing role of muscle MRI to monitor changes over time in untreated and treated muscle diseases. Curr Opin Neurol 2021; 33:611-620. [PMID: 32796278 DOI: 10.1097/wco.0000000000000851] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW This review aims to discuss the recent results of studies published applying quantitative MRI sequences to large cohorts of patients with neuromuscular diseases. RECENT FINDINGS Quantitative MRI sequences are now available to identify and quantify changes in muscle water and fat content. These two components have been associated with acute and chronic injuries, respectively. Studies show that the increase in muscle water is not only reversible if therapies are applied successfully but can also predict fat replacement in neurodegenerative diseases. Muscle fat fraction correlates with muscle function tests and increases gradually over time in parallel with the functional decline of patients with neuromuscular diseases. There are new spectrometry-based sequences to quantify other components, such as glycogen, electrolytes or the pH of the muscle fibre, extending the applicability of MRI to the study of several processes in neuromuscular diseases. SUMMARY The latest results obtained from the study of long cohorts of patients with various neuromuscular diseases open the door to the use of this technology in clinical trials, which would make it possible to obtain a new measure for assessing the effectiveness of new treatments. The challenge is currently the popularization of these studies and their application to the monitoring of patients in the daily clinic.
Collapse
|
26
|
Schätzl T, Kaiser L, Deigner HP. Facioscapulohumeral muscular dystrophy: genetics, gene activation and downstream signalling with regard to recent therapeutic approaches: an update. Orphanet J Rare Dis 2021; 16:129. [PMID: 33712050 PMCID: PMC7953708 DOI: 10.1186/s13023-021-01760-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Whilst a disease-modifying treatment for Facioscapulohumeral muscular dystrophy (FSHD) does not exist currently, recent advances in complex molecular pathophysiology studies of FSHD have led to possible therapeutic approaches for its targeted treatment. Although the underlying genetics of FSHD have been researched extensively, there remains an incomplete understanding of the pathophysiology of FSHD in relation to the molecules leading to DUX4 gene activation and the downstream gene targets of DUX4 that cause its toxic effects. In the context of the local proximity of chromosome 4q to the nuclear envelope, a contraction of the D4Z4 macrosatellite induces lower methylation levels, enabling the ectopic expression of DUX4. This disrupts numerous signalling pathways that mostly result in cell death, detrimentally affecting skeletal muscle in affected individuals. In this regard different options are currently explored either to suppress the transcription of DUX4 gene, inhibiting DUX4 protein from its toxic effects, or to alleviate the symptoms triggered by its numerous targets.
Collapse
Affiliation(s)
- Teresa Schätzl
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany
| | - Lars Kaiser
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104, Freiburg i. Br., Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany.
- EXIM Department, Fraunhofer Institute IZI, Leipzig, Schillingallee 68, 18057, Rostock, Germany.
- Faculty of Science, Tuebingen University, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
27
|
Santini F, Deligianni X, Paoletti M, Solazzo F, Weigel M, de Sousa PL, Bieri O, Monforte M, Ricci E, Tasca G, Pichiecchio A, Bergsland N. Fast Open-Source Toolkit for Water T2 Mapping in the Presence of Fat From Multi-Echo Spin-Echo Acquisitions for Muscle MRI. Front Neurol 2021; 12:630387. [PMID: 33716931 PMCID: PMC7952742 DOI: 10.3389/fneur.2021.630387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
Imaging has become a valuable tool in the assessment of neuromuscular diseases, and, specifically, quantitative MR imaging provides robust biomarkers for the monitoring of disease progression. Quantitative evaluation of fat infiltration and quantification of the T2 values of the muscular tissue's water component (wT2) are two of the most essential indicators currently used. As each voxel of the image can contain both water and fat, a two-component model for the estimation of wT2 must be used. In this work, we present a fast method for reconstructing wT2 maps obtained from conventional multi-echo spin-echo (MESE) acquisitions and released as Free Open Source Software. The proposed software is capable of fast reconstruction thanks to extended phase graphs (EPG) simulations and dictionary matching implemented on a general-purpose graphic processing unit. The program can also perform more conventional biexponential least-squares fitting of the data and incorporate information from an external water-fat acquisition to increase the accuracy of the results. The method was applied to the scans of four healthy volunteers and five subjects suffering from facioscapulohumeral muscular dystrophy (FSHD). Conventional multi-slice MESE acquisitions were performed with 17 echoes, and additionally, a 6-echo multi-echo gradient-echo (MEGE) sequence was used for an independent fat fraction calculation. The proposed reconstruction software was applied on the full datasets, and additionally to reduced number of echoes, respectively, to 8, 5, and 3, using EPG and biexponential least-squares fitting, with and without incorporating information from the MEGE acquisition. The incorporation of external fat fraction maps increased the robustness of the fitting with a reduced number of echoes per datasets, whereas with unconstrained fitting, the total of 17 echoes was necessary to retain an independence of wT2 from the level of fat infiltration. In conclusion, the proposed software can successfully be used to calculate wT2 maps from conventional MESE acquisition, allowing the usage of an optimized protocol with similar precision and accuracy as a 17-echo acquisition. As it is freely released to the community, it can be used as a reference for more extensive cohort studies.
Collapse
Affiliation(s)
- Francesco Santini
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Xeni Deligianni
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Matteo Paoletti
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Francesca Solazzo
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Matthias Weigel
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Allschwil, Switzerland.,Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Paulo Loureiro de Sousa
- ICube, Université de Strasbourg, Centre National de la Recherche Scientifique (CNRS), Strasbourg, France
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University Hospital of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Mauro Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Enzo Ricci
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dipartimento di Neuroscienze, Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Pichiecchio
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States.,Fondazione Don Carlo Gnocchi Onlus (IRCCS), Milan, Italy
| |
Collapse
|
28
|
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common muscular dystrophies. Over the last decade, a consensus was reached regarding the underlying cause of FSHD allowing—for the first time—a targeted approach to treatment. FSHD is the result of a toxic gain-of-function from de-repression of the DUX4 gene, a gene not normally expressed in skeletal muscle. With a clear therapeutic target, there is increasing interest in drug development for FSHD, an interest buoyed by the recent therapeutic successes in other neuromuscular diseases. Herein, we review the underlying disease mechanism, potential therapeutic approaches as well as the state of trial readiness in the planning and execution of future clinical trials in FSHD.
Collapse
Affiliation(s)
- Leo H Wang
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Rabi Tawil
- Department of Neurology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
29
|
Proteomics of Muscle Microdialysates Identifies Potential Circulating Biomarkers in Facioscapulohumeral Muscular Dystrophy. Int J Mol Sci 2020; 22:ijms22010290. [PMID: 33396627 PMCID: PMC7795508 DOI: 10.3390/ijms22010290] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/18/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by a complex epigenetic mechanism finally leading to the misexpression of DUX4 in skeletal muscle. Detecting DUX4 and quantifying disease progression in FSHD is extremely challenging, thus increasing the need for surrogate biomarkers. We applied a shotgun proteomic approach with two different setups to analyze the protein repertoire of interstitial fluids obtained from 20 muscles in different disease stages classified by magnetic resonance imaging (MRI) and serum samples from 10 FSHD patients. A total of 1156 proteins were identified in the microdialysates by data independent acquisition, 130 of which only found in muscles in active disease stage. Proteomic profiles were able to distinguish FSHD patients from controls. Two innate immunity mediators (S100-A8 and A9) and Dermcidin were upregulated in muscles with active disease and selectively present in the sera of FSHD patients. Structural muscle and plasminogen pathway proteins were downregulated. Together with the upstream inhibition of myogenic factors, this suggests defective muscle regeneration and increased fibrosis in early/active FSHD. Our MRI targeted exploratory approach confirmed that inflammatory response has a prominent role, together with impaired muscle regeneration, before clear muscle wasting occurs. We also identified three proteins as tissue and possibly circulating biomarkers in FSHD.
Collapse
|
30
|
Felisaz PF, Colelli G, Ballante E, Solazzo F, Paoletti M, Germani G, Santini F, Deligianni X, Bergsland N, Monforte M, Tasca G, Ricci E, Bastianello S, Figini S, Pichiecchio A. Texture analysis and machine learning to predict water T2 and fat fraction from non-quantitative MRI of thigh muscles in Facioscapulohumeral muscular dystrophy. Eur J Radiol 2020; 134:109460. [PMID: 33296803 DOI: 10.1016/j.ejrad.2020.109460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/04/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Quantitative MRI (qMRI) plays a crucial role for assessing disease progression and treatment response in neuromuscular disorders, but the required MRI sequences are not routinely available in every center. The aim of this study was to predict qMRI values of water T2 (wT2) and fat fraction (FF) from conventional MRI, using texture analysis and machine learning. METHOD Fourteen patients affected by Facioscapulohumeral muscular dystrophy were imaged at both thighs using conventional and quantitative MR sequences. Muscle FF and wT2 were calculated for each muscle of the thighs. Forty-seven texture features were extracted for each muscle on the images obtained with conventional MRI. Multiple machine learning regressors were trained to predict qMRI values from the texture analysis dataset. RESULTS Eight machine learning methods (linear, ridge and lasso regression, tree, random forest (RF), generalized additive model (GAM), k-nearest-neighbor (kNN) and support vector machine (SVM) provided mean absolute errors ranging from 0.110 to 0.133 for FF and 0.068 to 0.115 for wT2. The most accurate methods were RF, SVM and kNN to predict FF, and tree, RF and kNN to predict wT2. CONCLUSION This study demonstrates that it is possible to estimate with good accuracy qMRI parameters starting from texture analysis of conventional MRI.
Collapse
Affiliation(s)
- Paolo Florent Felisaz
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy; Department of Radiology, Desio Hospital, ASST Monza, Desio, Italy.
| | - Giulia Colelli
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy; Department of Mathematics, University of Pavia, Pavia, Italy
| | - Elena Ballante
- Department of Mathematics, University of Pavia, Pavia, Italy; BioData Science Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Francesca Solazzo
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Matteo Paoletti
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Giancarlo Germani
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Francesco Santini
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Xeni Deligianni
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mauro Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Enzo Ricci
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Stefano Bastianello
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy
| | - Silvia Figini
- Department of Political and Social Sciences, University of Pavia, Pavia, PV, Italy
| | - Anna Pichiecchio
- Department of Neuroradiology, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy
| |
Collapse
|
31
|
Díaz-Manera J, Walter G, Straub V. Skeletal muscle magnetic resonance imaging in Pompe disease. Muscle Nerve 2020; 63:640-650. [PMID: 33155691 DOI: 10.1002/mus.27099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/11/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Pompe disease is characterized by a deficiency of acid alpha-glucosidase that results in muscle weakness and a variable degree of disability. There is an approved therapy based on enzymatic replacement that has modified disease progression. Several reports describing muscle magnetic resonance imaging (MRI) features of Pompe patients have been published. Most of the studies have focused on late-onset Pompe disease (LOPD) and identified a characteristic pattern of muscle involvement useful for the diagnosis. In addition, quantitative MRI studies have shown a progressive increase in fat in skeletal muscles of LOPD over time and they are increasingly considered a good tool to monitor progression of the disease. The studies performed in infantile-onset Pompe disease patients have shown less consistent changes. Other more sophisticated muscle MRI sequences, such as diffusion tensor imaging or glycogen spectroscopy, have also been used in Pompe patients and have shown promising results.
Collapse
Affiliation(s)
- Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK.,Neuromuscular Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Centro de Investigación Biomédica en Enfermedades Raras, Barcelona, Spain
| | - Glenn Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Volker Straub
- John Walton Muscular Dystrophy Research Center, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| |
Collapse
|
32
|
Gerhalter T, Marty B, Gast LV, Porzelt K, Heiss R, Uder M, Schwab S, Carlier PG, Nagel AM, Türk M. Quantitative 1H and 23Na muscle MRI in Facioscapulohumeral muscular dystrophy patients. J Neurol 2020; 268:1076-1087. [PMID: 33047224 PMCID: PMC7914168 DOI: 10.1007/s00415-020-10254-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Objective Our aim was to assess the role of quantitative 1H and 23Na MRI methods in providing imaging biomarkers of disease activity and severity in patients with Facioscapulohumeral muscular dystrophy (FSHD). Methods We imaged the lower leg muscles of 19 FSHD patients and 12 controls with a multimodal MRI protocol to obtain STIR-T2w images, fat fraction (FF), water T2 (wT2), water T1 (wT1), tissue sodium concentration (TSC), and intracellular-weighted sodium signal (inversion recovery (IR) and triple quantum filter (TQF) sequence). In addition, the FSHD patients underwent muscle strength testing. Results Imaging biomarkers related with water mobility (wT1 and wT2) and ion homeostasis (TSC, IR, TQF) were increased in muscles of FSHD patients. Muscle groups with FF > 10% had higher wT2, wT1, TSC, IR, and TQF values than muscles with FF < 10%. Muscles with FF < 10% resembled muscles of healthy controls for these MRI disease activity measures. However, wT1 was increased in few muscles without fat replacement. Furthermore, few STIR-negative muscles (n = 11/76) exhibited increased wT1, TSC, IR or TQF. Increased wT1 as well as 23Na signals were also present in muscles with normal wT2. Muscle strength was related to the mean FF and all imaging biomarkers of tibialis anterior except wT2 were correlated with dorsal flexion. Conclusion The newly evaluated imaging biomarkers related with water mobility (wT1) and ion homeostasis (TSC, IR, TQF) showed different patterns compared to the established markers like FF in muscles of FSHD patients. These quantitative biomarkers could thus contain valuable complementary information for the early characterization of disease progression. Electronic supplementary material The online version of this article (10.1007/s00415-020-10254-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Teresa Gerhalter
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Maximiliansplatz 3, 91054, Erlangen, Germany.
| | - Benjamin Marty
- NMR Laboratory, Institute of Myology, Paris, France
- NMR Laboratory, CEA/DRF, IBFJ/MIRCen, Paris, France
| | - Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Maximiliansplatz 3, 91054, Erlangen, Germany
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Katharina Porzelt
- Department of Neurology, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Rafael Heiss
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Maximiliansplatz 3, 91054, Erlangen, Germany
| | - Stefan Schwab
- Department of Neurology, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Pierre G Carlier
- NMR Laboratory, Institute of Myology, Paris, France
- NMR Laboratory, CEA/DRF, IBFJ/MIRCen, Paris, France
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Maximiliansplatz 3, 91054, Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Centre, Heidelberg, Germany
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Matthias Türk
- Department of Neurology, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| |
Collapse
|
33
|
Giacomucci G, Monforte M, Diaz-Manera J, Mul K, Fernandez Torrón R, Maggi L, Marini Bettolo C, Dahlqvist JR, Haberlova J, Camaño P, Gros M, Tartaglione T, Cristiano L, Gerevini S, Calandra P, Deidda G, Giardina E, Sacconi S, Straub V, Vissing J, Van Engelen B, Ricci E, Tasca G. Deep phenotyping of facioscapulohumeral muscular dystrophy type 2 by magnetic resonance imaging. Eur J Neurol 2020; 27:2604-2615. [PMID: 32697863 DOI: 10.1111/ene.14446] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE The aim was to define the radiological picture of facioscapulohumeral muscular dystrophy 2 (FSHD2) in comparison with FSHD1 and to explore correlations between imaging and clinical/molecular data. METHODS Upper girdle and/or lower limb muscle magnetic resonance imaging scans of 34 molecularly confirmed FSHD2 patients from nine European neuromuscular centres were analysed. T1-weighted and short-tau inversion recovery (STIR) sequences were used to evaluate the global pattern and to assess the extent of fatty replacement and muscle oedema. RESULTS The most frequently affected muscles were obliquus and transversus abdominis, semimembranosus, soleus and gluteus minimus in the lower limbs; trapezius, serratus anterior, latissimus dorsi and pectoralis major in the upper girdle. Iliopsoas, popliteus, obturator internus and tibialis posterior in the lower limbs and subscapularis, spinati, sternocleidomastoid and levator scapulae in the upper girdle were the most spared. Asymmetry and STIR hyperintensities were consistent features. The pattern of muscle involvement was similar to that of FSHD1, and the combined involvement of trapezius, abdominal and hamstring muscles, together with complete sparing of iliopsoas and subscapularis, was detected in 91% of patients. Peculiar differences were identified in a rostro-caudal gradient, a predominant involvement of lower limb muscles compared to the upper girdle, and in the higher percentage of STIR hyperintensities in FSHD2. CONCLUSION This multicentre study defines the pattern of muscle involvement in FSHD2, providing useful information for diagnostics and clinical trial design. Both similarities and differences between FSHD1 and FSHD2 were detected, which is also relevant to better understand the pathogenic mechanisms underlying the FSHD-related disease spectrum.
Collapse
Affiliation(s)
- G Giacomucci
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Roma, Italy
| | - M Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - J Diaz-Manera
- Neuromuscular Disorders Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - K Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - R Fernandez Torrón
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.,Neurology Department, Biodonostia Health Research Institute, Neuromuscular Area, Hospital Donostia, Basque Health Service, Doctor Begiristain, Donostia-San Sebastian, Spain
| | - L Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - C Marini Bettolo
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - J R Dahlqvist
- Copenhagen Neuromuscular Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - J Haberlova
- Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - P Camaño
- Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases; Biodonostia-Osakidetza Basque Health Service, Molecular Diagnostics Platform, San Sebastian, Spain
| | - M Gros
- Université Côte d'Azur (UCA), Peripheral Nervous System, Muscle and ALS Department, Pasteur 2 Hospital, Nice, France.,Université Côte d'Azur, Inserm, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - T Tartaglione
- Radiology Unit, Istituto Dermopatico dell'Immacolata-IRCCS-FLMM, Rome, Italy
| | - L Cristiano
- Radiology Unit, Istituto Dermopatico dell'Immacolata-IRCCS-FLMM, Rome, Italy
| | - S Gerevini
- Neuroradiology Department, IRCCS San Raffaele Hospital, Milan, Italy
| | - P Calandra
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Monterotondo, Rome, Italy
| | - G Deidda
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Monterotondo, Rome, Italy
| | - E Giardina
- Molecular Genetics Laboratory UILDM, Santa Lucia Foundation IRCSS-University of Rome 'Tor Vergata', Rome, Italy
| | - S Sacconi
- Université Côte d'Azur (UCA), Peripheral Nervous System, Muscle and ALS Department, Pasteur 2 Hospital, Nice, France.,Université Côte d'Azur, Inserm, CNRS, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - V Straub
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - J Vissing
- Copenhagen Neuromuscular Center, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - B Van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - E Ricci
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Roma, Italy.,Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - G Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| |
Collapse
|
34
|
Reyngoudt H, Marty B, Caldas de Almeida Araújo E, Baudin PY, Le Louër J, Boisserie JM, Béhin A, Servais L, Gidaro T, Carlier PG. Relationship between markers of disease activity and progression in skeletal muscle of GNE myopathy patients using quantitative nuclear magnetic resonance imaging and 31P nuclear magnetic resonance spectroscopy. Quant Imaging Med Surg 2020; 10:1450-1464. [PMID: 32676364 DOI: 10.21037/qims-20-39] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Quantitative nuclear magnetic resonance imaging (NMRI) is an objective and precise outcome measure for evaluating disease progression in neuromuscular disorders. We aimed to investigate predictive 'disease activity' NMR indices, including water T2 and 31P NMR spectroscopy (NMRS), and its relation to NMR markers of 'disease progression', such as the changes in fat fraction (ΔFat%) and contractile cross-sectional area (ΔcCSA), in GNE myopathy (GNEM) patients. Methods NMR was performed on a 3T clinical scanner, at baseline and at a 1-year interval, in 10 GNEM patients and 29 age-matched controls. Dixon-based fat-water imaging and water T2 mapping were acquired in legs and thighs, and in the dominant forearm. 31P NMRS was performed at the level of quadriceps and hamstring. Water T2 and 31P NMRS indices were determined for all muscle groups and visits. Correlations were performed with 'disease progression' indices ΔFat%, ΔcCSA and the muscle fat transformation rate (Rmuscle_transf). Results In quadriceps, known to be relatively preserved in GNEM, water T2 at baseline was significantly higher compared to controls, and correlated strongly with the one-year evolution of Fat% and cCSA and Rmuscle_transf. Various 31P NMRS indices showed significant differences in quadriceps and hamstring compared to controls and correlations existed between these indices and ΔFat%, ΔcCSA and Rmuscle_transf. Conclusions This study demonstrates that disease activity indices such as water T2 and 31P NMRS may predict disease progression in skeletal muscles of GNEM patients, and suggests that these measures may be considered to be valuable surrogate endpoints in the assessment of GNEM disease progression.
Collapse
Affiliation(s)
- Harmen Reyngoudt
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France.,NMR Laboratory, CEA, DRF, IBFJ, MIRCen, Paris, France
| | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France.,NMR Laboratory, CEA, DRF, IBFJ, MIRCen, Paris, France
| | - Ericky Caldas de Almeida Araújo
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France.,NMR Laboratory, CEA, DRF, IBFJ, MIRCen, Paris, France
| | - Pierre-Yves Baudin
- Consultants for Research in Imaging and Spectroscopy (C.R.I.S.), Tournai, Belgium
| | - Julien Le Louër
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France.,NMR Laboratory, CEA, DRF, IBFJ, MIRCen, Paris, France
| | - Jean-Marc Boisserie
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France.,NMR Laboratory, CEA, DRF, IBFJ, MIRCen, Paris, France
| | - Anthony Béhin
- Neuromuscular Reference Center, Institute of Myology, Pitié-Salpêtrière Hospital (AP-HP), Paris, France
| | - Laurent Servais
- Institute of Myology, Pitié-Salpêtrière Hospital (AP-HP), Paris, France.,I-Motion-Pediatric Clinical Trials Department, Trousseau Hospital (AP-HP), Paris, France.,Centre de référence des maladies Neuromusculaires, CHU, University of Liège, Liège, Belgium.,MDUK Oxford Neuromuscular Center, Department of Pediatrics, University of Oxford, Oxford, UK
| | - Teresa Gidaro
- Institute of Myology, Pitié-Salpêtrière Hospital (AP-HP), Paris, France.,I-Motion-Pediatric Clinical Trials Department, Trousseau Hospital (AP-HP), Paris, France
| | - Pierre G Carlier
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France.,NMR Laboratory, CEA, DRF, IBFJ, MIRCen, Paris, France
| |
Collapse
|
35
|
Monforte M, Laschena F, Ottaviani P, Bagnato MR, Pichiecchio A, Tasca G, Ricci E. Tracking muscle wasting and disease activity in facioscapulohumeral muscular dystrophy by qualitative longitudinal imaging. J Cachexia Sarcopenia Muscle 2019; 10:1258-1265. [PMID: 31668022 PMCID: PMC6903444 DOI: 10.1002/jcsm.12473] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/14/2019] [Accepted: 06/12/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is one of the most frequent late-onset muscular dystrophies, characterized by progressive fatty replacement and degeneration involving single muscles in an asynchronous manner. With clinical trials at the horizon in this disease, the knowledge of its natural history is of paramount importance to understand the impact of new therapies. The aim of this study was to assess disease progression in FSHD using qualitative muscle magnetic resonance imaging, with a focus on the evolution of hyperintense lesions identified on short-tau inversion recovery (STIR+) sequences, hypothesized to be markers of active muscle injury. METHODS One hundred genetically confirmed consecutive FSHD patients underwent lower limb muscle magnetic resonance imaging at baseline and after 365 ± 60 days in this prospective longitudinal study. T1 weighted (T1w) and STIR sequences were used to assess fatty replacement using a semiquantitative visual score and muscle oedema. The baseline and follow-up scans of each patient were also evaluated by unblinded direct comparison to detect the changes not captured by the scoring system. RESULTS Forty-nine patients showed progression on T1w sequences after 1 year, and 30 patients showed at least one new STIR+ lesion. Increased fat deposition at follow-up was observed in 13.9% STIR+ and in only 0.21% STIR- muscles at baseline (P < 0.001). Overall, 89.9% of the muscles that showed increased fatty replacement were STIR+ at baseline and 7.8% were STIR+ at 12 months. A higher number of STIR+ muscles at baseline was associated with radiological worsening (odds ratio 1.17, 95% confidence interval 1.06-1.30, P = 0.003). CONCLUSIONS Our study confirms that STIR+ lesions represent prognostic biomarkers in FSHD and contributes to delineate its radiological natural history, providing useful information for clinical trial design. Given the peculiar muscle-by-muscle involvement in FSHD, MRI represents an invaluable tool to explore the modalities and rate of disease progression.
Collapse
Affiliation(s)
- Mauro Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | - Anna Pichiecchio
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy.,Brain and Behavioral Department, University of Pavia, Pavia, Italy
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Enzo Ricci
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|