1
|
Shen C, Oh HR, Park YR, Chen JH, Park BH, Park JH. Interaction between p21-activated kinase 4 and β-catenin as a novel pathway for PTH-dependent osteoblast activation. J Cell Physiol 2024; 239:e31245. [PMID: 38497504 DOI: 10.1002/jcp.31245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
Parathyroid hormone (PTH) serves dual roles in bone metabolism, exhibiting both anabolic and catabolic effects. The anabolic properties of PTH have been utilized in the treatment of osteoporosis with proven efficacy in preventing fractures. Despite these benefits, PTH can be administered therapeutically for up to 2 years, and its use in patients with underlying malignancies remains a subject of ongoing debate. These considerations underscore the need for a more comprehensive understanding of the underlying mechanisms. p21-activated kinase 4 (PAK4) is involved in bone resorption and cancer-associated osteolysis; however, its role in osteoblast function and PTH action remains unknown. Therefore, in this study, we aimed to clarify the role of PAK4 in osteoblast function and its effects on PTH-induced anabolic activity. PAK4 enhanced MC3T3-E1 osteoblast viability and proliferation and upregulated cyclin D1 expression. PAK4 also augmented osteoblast differentiation, as indicated by increased mineralization found by alkaline phosphatase and Alizarin Red staining. Treatment with PTH (1-34), an active PTH fragment, stimulated PAK4 expression and phosphorylation in a protein kinase A-dependent manner. In addition, bone morphogenetic protein-2 (which is known to promote bone formation) increased phosphorylated PAK4 (p-PAK4) and PAK4 levels. PAK4 regulated the expression of both phosphorylated and total β-catenin, which are critical for osteoblast proliferation and differentiation. Moreover, p-PAK4 directly interacted with β-catenin, and disruption of β-catenin's binding to T-cell factor impaired PAK4- and PTH-induced osteoblast differentiation. Our findings elucidate the effect of PAK4 on enhancing bone formation in osteoblasts and its pivotal role in the anabolic activity of PTH mediated through its interaction with β-catenin. These insights improve the understanding of the mechanisms underlying PTH activity and should inform the development of more effective and safer osteoporosis treatments.
Collapse
Affiliation(s)
- Chen Shen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Ha Ram Oh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Young Ran Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jin Hong Chen
- Department of Endocrinology, Affiliated Hospital of Nantong University, China
| | - Byung-Hyun Park
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Ji Hyun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| |
Collapse
|
2
|
Yu HC, Jeon YG, Na AY, Han CY, Lee MR, Yang JD, Yu HC, Son JB, Kim ND, Kim JB, Lee S, Bae EJ, Park BH. p21-activated kinase 4 counteracts PKA-dependent lipolysis by phosphorylating FABP4 and HSL. Nat Metab 2024; 6:94-112. [PMID: 38216738 DOI: 10.1038/s42255-023-00957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/30/2023] [Indexed: 01/14/2024]
Abstract
Adipose tissue lipolysis is mediated by cAMP-protein kinase A (PKA)-dependent intracellular signalling. Here, we show that PKA targets p21-activated kinase 4 (PAK4), leading to its protein degradation. Adipose tissue-specific overexpression of PAK4 in mice attenuates lipolysis and exacerbates diet-induced obesity. Conversely, adipose tissue-specific knockout of Pak4 or the administration of a PAK4 inhibitor in mice ameliorates diet-induced obesity and insulin resistance while enhancing lipolysis. Pak4 knockout also increases energy expenditure and adipose tissue browning activity. Mechanistically, PAK4 directly phosphorylates fatty acid-binding protein 4 (FABP4) at T126 and hormone-sensitive lipase (HSL) at S565, impairing their interaction and thereby inhibiting lipolysis. Levels of PAK4 and the phosphorylation of FABP4-T126 and HSL-S565 are enhanced in the visceral fat of individuals with obesity compared to their lean counterparts. In summary, we have uncovered an important role for FABP4 phosphorylation in regulating adipose tissue lipolysis, and PAK4 inhibition may offer a therapeutic strategy for the treatment of obesity.
Collapse
Affiliation(s)
- Hwang Chan Yu
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Korea
| | - Yong Geun Jeon
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Ann-Yae Na
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Chang Yeob Han
- School of Pharmacy, Jeonbuk National University, Jeonju, Korea
| | - Mi Rin Lee
- Department of Surgery, Jeonbuk National University Hospital, Jeonju, Korea
| | - Jae Do Yang
- Department of Surgery, Jeonbuk National University Hospital, Jeonju, Korea
| | - Hee Chul Yu
- Department of Surgery, Jeonbuk National University Hospital, Jeonju, Korea
| | | | | | - Jae Bum Kim
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Sangkyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea.
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju, Korea.
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Korea.
| |
Collapse
|
3
|
Wan J, Zhu J, Zeng J, Zhou H, He Y. Effect of Galactooligosaccharide on PPARs/PI3K/Akt Pathway and Gut Microbiota in High-Fat and High-Sugar Diet Combined with STZ-Induced GDM Rat Model. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10186-z. [PMID: 37953344 DOI: 10.1007/s12602-023-10186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Gestational diabetes mellitus (GDM) is a metabolic disorder, characterized by underlying glucose intolerance, diabetes onset or first diagnosis during pregnancy. Galactooligosaccharide (GOS) is essential for consumer protection as food supplementation. However, there is limited understanding of the effects of GOS on GDM. We successfully established a GDM rat model to explore GOS whether participated in PPARs/PI3K/Akt pathway and gut microbiota metabolites to treat for GDM. In this study, compared with the GDM group, GOS administration lowered the levels of TG, LDL-C, and HDL-C in rat serum, as well as improved the pathological changes pancreatic, liver, and kidney tissues. Compared with the GDM group, the protein expressions of PPARα, PPARγ, and PPARβ/δ markedly enhanced in GOS-treated groups (P < 0.01). Moreover, GOS administration upregulated the protein expressions of PPARα, PPARβ, PPARγ, PI3K, Akt, GLUT4, Bax, and Bcl2. GOS administration altered gut microbiota metabolites, including both SCFAs and BAs. Correlation analysis revealed close relationships between gut microbiota and experimental indicators. This study indicated that GOS effectively improved GDM in rats through the modulation of PPARs/PI3K/Akt pathway and gut microbiota. Thus, the GOS could be recommended as a candidate for novel therapy of GDM.
Collapse
Affiliation(s)
- Jiayang Wan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqi Zhu
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jieqiong Zeng
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huifen Zhou
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
4
|
Shi MY, Yu HC, Han CY, Bang IH, Park HS, Jang KY, Lee S, Son JB, Kim ND, Park BH, Bae EJ. p21-activated kinase 4 suppresses fatty acid β-oxidation and ketogenesis by phosphorylating NCoR1. Nat Commun 2023; 14:4987. [PMID: 37591884 PMCID: PMC10435519 DOI: 10.1038/s41467-023-40597-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
PPARα corepressor NCoR1 is a key regulator of fatty acid β-oxidation and ketogenesis. However, its regulatory mechanism is largely unknown. Here, we report that oncoprotein p21-activated kinase 4 (PAK4) is an NCoR1 kinase. Specifically, PAK4 phosphorylates NCoR1 at T1619/T2124, resulting in an increase in its nuclear localization and interaction with PPARα, thereby repressing the transcriptional activity of PPARα. We observe impaired ketogenesis and increases in PAK4 protein and NCoR1 phosphorylation levels in liver tissues of high fat diet-fed mice, NAFLD patients, and hepatocellular carcinoma patients. Forced overexpression of PAK4 in mice represses ketogenesis and thereby increases hepatic fat accumulation, whereas genetic ablation or pharmacological inhibition of PAK4 exhibites an opposite phenotype. Interestingly, PAK4 protein levels are significantly suppressed by fasting, largely through either cAMP/PKA- or Sirt1-mediated ubiquitination and proteasome degradation. In this way, our findings provide evidence for a PAK4-NCoR1/PPARα signaling pathway that regulates fatty acid β-oxidation and ketogenesis.
Collapse
Affiliation(s)
- Min Yan Shi
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Hwang Chan Yu
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Chang Yeob Han
- School of Pharmacy, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - In Hyuk Bang
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Ho Sung Park
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea
| | - Sangkyu Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | | | - Nam Doo Kim
- VORONOI BIO Inc., Incheon, 21984, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, 54896, Republic of Korea.
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
5
|
Mao Y, Lee E, Yang X, Bae EJ, Jeon R, Park BH. Targeting p21-activated kinase 4 (PAK4) with pyrazolo[3,4- d]pyrimidine derivative SPA7012 attenuates hepatic ischaemia-reperfusion injury in mice. J Enzyme Inhib Med Chem 2022; 37:2133-2146. [PMID: 35920284 PMCID: PMC9354638 DOI: 10.1080/14756366.2022.2106478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
p21-Activated kinase 4 (PAK4), one of the serine/threonine kinases activated by Rho-family GTPases, has been widely studied as an oncogenic protein that is overexpressed in many types of cancers. In our recent study, PAK4 upregulation was observed in mice exhibiting hepatic ischaemia-reperfusion (I/R) and in liver transplantation patients. Liver I/R injury was also attenuated in Pak4 KO mice. Herein, we report a novel series of pyrazolo[3,4-d]pyrimidine derivatives of type I ½ PAK4 inhibitors. The most potent compound SPA7012 was evaluated to determine the pharmacological potential of PAK4 inhibitor in I/R injury in mice. Mice with I/R injury showed typical patterns of liver damage, as demonstrated by increases in serum levels of aminotransferases and proinflammatory cytokines, hepatocellular necrosis and apoptosis, and inflammatory cell infiltration, relative to sham mice. Conversely, intraperitoneal administration of SPA7012 dramatically attenuated biochemical and histopathologic changes. Mechanistically, stabilisation of nuclear factor-erythroid 2-related factor 2 (Nrf2), a master regulator of anti-oxidative response, was observed following SPA7012 treatment. SPA7012 treatment in primary hepatocytes also attenuated hypoxia-reoxygenation-induced apoptotic cell death and inflammation. Together, these results provide experimental evidence supporting the use of PAK4 inhibitors for alleviation of I/R-induced liver damage.
Collapse
Affiliation(s)
- Yuancheng Mao
- Department of Biochemistry and Research Institute for Endocrine Sciences, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Eun Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Xiaohui Yang
- School of Pharmacy, Jeonbuk National University, Jeonju, Republic of Korea
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju, Republic of Korea
| | - Raok Jeon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry and Research Institute for Endocrine Sciences, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|