1
|
Qaisar R. The emerging roles of necroptosis in skeletal muscle health and disease. Pflugers Arch 2024; 476:1645-1651. [PMID: 39037477 DOI: 10.1007/s00424-024-02994-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Necroptosis is a regulated form of cell death with implications in various physiological and pathological processes in multiple tissues. However, the relevant findings from post-mitotic tissues, such as skeletal muscle, are scarce. This review summarizes the potential contributions of necroptosis to skeletal muscle health and diseases. It first discusses the physiological roles of necroptosis in muscle regeneration and development. It then summarizes the contributions of necroptosis to the pathogenesis of multiple muscle diseases, including muscular dystrophies, inflammatory myopathies, cachexia, and neuromuscular disorders. Lastly, it unravels the gaps in our understanding and therapeutic challenges of inhibiting necroptosis as a potential intervention for muscle diseases. Specifically, the findings from the transgenic animal models and the use of pharmacological inhibitors of necroptosis are discussed with relevance to improving the structure and/or function of skeletal muscle in various diseases. Recent developments from experimental animal models and clinical data are presented to discuss the roles of necroptosis in skeletal muscle health and diseases.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates.
- Space Medicine Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
- Cardiovascular Research Group, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
2
|
Sun S, Zhai W, Zhang R, Cai N. Deletion of Dux ameliorates muscular dystrophy in mdx mice by attenuating oxidative stress via Nrf2. FASEB J 2024; 38:e23771. [PMID: 38989564 DOI: 10.1096/fj.202400195r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
DUX4 has been widely reported in facioscapulohumeral muscular dystrophy, but its role in Duchenne muscular dystrophy (DMD) is unclear. Dux is the mouse paralog of DUX4. In Dux-/- mdx mice, forelimb grip strength test and treadmill test were performed, and extensor digitorum longus (EDL) contraction properties were measured to assess skeletal muscle function. Pathological changes in mice were determined by serum CK and LDH levels and muscle Masson staining. Inflammatory factors, oxidative stress, and mitochondrial function indicators were detected using kits. Primary muscle satellite cells were isolated, and the antioxidant molecule Nrf2 was detected. MTT assay and Edu assay were used to evaluate proliferation and TUNEL assay for cell death. The results show that the deletion of Dux enhanced forelimb grip strength and EDL contractility, prolonged running time and distance in mdx mice. Deleting Dux also attenuated muscle fibrosis, inflammation, oxidative stress, and mitochondrial dysfunction in mdx mice. Furthermore, Dux deficiency promoted proliferation and survival of muscle satellite cells by increasing Nrf2 levels in mdx mice.
Collapse
Affiliation(s)
- Siyuan Sun
- Department of Children Health Care, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Wen Zhai
- Department of Clinical Genetics, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Ruixue Zhang
- Department of Clinical Genetics, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Na Cai
- Department of Clinical Genetics, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
3
|
Bencze M, Periou B, Punzón I, Barthélémy I, Taglietti V, Hou C, Zaidan L, Kefi K, Blot S, Agbulut O, Gervais M, Derumeaux G, Authier F, Tiret L, Relaix F. Receptor interacting protein kinase-3 mediates both myopathy and cardiomyopathy in preclinical animal models of Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle 2023; 14:2520-2531. [PMID: 37909859 PMCID: PMC10751447 DOI: 10.1002/jcsm.13265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a progressive muscle degenerative disorder, culminating in a complete loss of ambulation, hypertrophic cardiomyopathy and a fatal cardiorespiratory failure. Necroptosis is the form of necrosis that is dependent upon the receptor-interacting protein kinase (RIPK) 3; it is involved in several inflammatory and neurodegenerative conditions. We previously identified RIPK3 as a key player in the acute myonecrosis affecting the hindlimb muscles of the mdx dystrophic mouse model. Whether necroptosis also mediates respiratory and heart disorders in DMD is currently unknown. METHODS Evidence of activation of the necroptotic axis was examined in dystrophic tissues from Golden retriever muscular dystrophy (GRMD) dogs and R-DMDdel52 rats. A functional assessment of the involvement of necroptosis in dystrophic animals was performed on mdx mice that were genetically depleted for RIPK3. Dystrophic mice aged from 12 to 18 months were analysed by histology and molecular biology to compare the phenotype of muscles from mdxRipk3+/+ and mdxRipk3-/- mice. Heart function was also examined by echocardiography in 40-week-old mice. RESULTS RIPK3 expression in sartorius and biceps femoris muscles from GRMD dogs positively correlated to myonecrosis levels (r = 0.81; P = 0.0076). RIPK3 was also found elevated in the diaphragm (P ≤ 0.05). In the slow-progressing heart phenotype of GRMD dogs, the phosphorylated form of RIPK1 at the Serine 161 site was dramatically increased in cardiomyocytes. A similar p-RIPK1 upregulation characterized the cardiomyocytes of the severe DMDdel52 rat model, associated with a marked overexpression of Ripk1 (P = 0.007) and Ripk3 (P = 0.008), indicating primed activation of the necroptotic pathway in the dystrophic heart. MdxRipk3-/- mice displayed decreased compensatory hypertrophy of the heart (P = 0.014), and echocardiography showed a 19% increase in the relative wall thickness (P < 0.05) and 29% reduction in the left ventricle mass (P = 0.0144). Besides, mdxRipk3-/- mice presented no evidence of a regenerative default or sarcopenia in skeletal muscles, moreover around 50% less affected by fibrosis (P < 0.05). CONCLUSIONS Our data highlight molecular and histological evidence that the necroptotic pathway is activated in degenerative tissues from dystrophic animal models, including the diaphragm and the heart. We also provide the genetic proof of concept that selective inhibition of necroptosis in dystrophic condition improves both histological features of muscles and cardiac function, suggesting that prevention of necroptosis is susceptible to providing multiorgan beneficial effects for DMD.
Collapse
Affiliation(s)
- Maximilien Bencze
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Baptiste Periou
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Isabel Punzón
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Inès Barthélémy
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Valentina Taglietti
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Cyrielle Hou
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Louai Zaidan
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Kaouthar Kefi
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Stéphane Blot
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Onnik Agbulut
- Institut de Biologie Paris‐Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and AgeingSorbonne UniversitéParisFrance
| | - Marianne Gervais
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Geneviève Derumeaux
- Team Derumeaux, Department of Physiology, Henri Mondor Hospital, FHU‐SENEC, AP‐HPU955‐IMRB, Université Paris‐Est Créteil (UPEC)CréteilFrance
| | - François‐Jérôme Authier
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Laurent Tiret
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| | - Fréderic Relaix
- Team Relaix, Biology of the Neuromuscular SystemU955‐IMRB, Inserm, UPEC, ENVA, EFSCréteilFrance
| |
Collapse
|
4
|
Cohen J, Huang S, Koczwara KE, Woods KT, Ho V, Woodman KG, Arbiser JL, Daman K, Lek M, Emerson CP, DeSimone AM. Flavones provide resistance to DUX4-induced toxicity via an mTor-independent mechanism. Cell Death Dis 2023; 14:749. [PMID: 37973788 PMCID: PMC10654915 DOI: 10.1038/s41419-023-06257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is among the most common of the muscular dystrophies, affecting nearly 1 in 8000 individuals, and is a cause of profound disability. Genetically, FSHD is linked to the contraction and/or epigenetic de-repression of the D4Z4 repeat array on chromosome 4, thereby allowing expression of the DUX4 gene in skeletal muscle. If the DUX4 transcript incorporates a stabilizing polyadenylation site the myotoxic DUX4 protein will be synthesized, resulting in muscle wasting. The mechanism of toxicity remains unclear, as many DUX4-induced cytopathologies have been described, however cell death does primarily occur through caspase 3/7-dependent apoptosis. To date, most FSHD therapeutic development has focused on molecular methods targeting DUX4 expression or the DUX4 transcript, while therapies targeting processes downstream of DUX4 activity have received less attention. Several studies have demonstrated that inhibition of multiple signal transduction pathways can ameliorate DUX4-induced toxicity, and thus compounds targeting these pathways have the potential to be developed into FSHD therapeutics. To this end, we have screened a group of small molecules curated based on their reported activity in relevant pathways and/or structural relationships with known toxicity-modulating molecules. We have identified a panel of five compounds that function downstream of DUX4 activity to inhibit DUX4-induced toxicity. Unexpectedly, this effect was mediated through an mTor-independent mechanism that preserved expression of ULK1 and correlated with an increase in a marker of active cellular autophagy. This identifies these flavones as compounds of interest for therapeutic development, and potentially identifies the autophagy pathway as a target for therapeutics.
Collapse
Affiliation(s)
- Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | - Kristen T Woods
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Keryn G Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | - Katelyn Daman
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alec M DeSimone
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA.
- Modalis Therapeutics, Waltham, MA, USA.
| |
Collapse
|
5
|
Sarsons CD, Gilham D, Tsujikawa LM, Wasiak S, Fu L, Rakai BD, Stotz SC, Carestia A, Sweeney M, Kulikowski E. Apabetalone, a Clinical-Stage, Selective BET Inhibitor, Opposes DUX4 Target Gene Expression in Primary Human FSHD Muscle Cells. Biomedicines 2023; 11:2683. [PMID: 37893058 PMCID: PMC10604783 DOI: 10.3390/biomedicines11102683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is a muscle disease caused by inappropriate expression of the double homeobox 4 (DUX4) gene in skeletal muscle, and its downstream activation of pro-apoptotic transcriptional programs. Inhibitors of DUX4 expression have the potential to treat FSHD. Apabetalone is a clinical-stage bromodomain and extra-terminal (BET) inhibitor, selective for the second bromodomain on BET proteins. Using primary human skeletal muscle cells from FSHD type 1 patients, we evaluated apabetalone for its ability to counter DUX4's deleterious effects and compared it with the pan-BET inhibitor JQ1, and the p38 MAPK inhibitor-and DUX4 transcriptional repressor-losmapimod. We applied RNA-sequencing and bioinformatic analysis to detect treatment-associated impacts on the transcriptome of these cells. Apabetalone inhibited the expression of DUX4 downstream markers, reversing hallmarks of FSHD gene expression in differentiated muscle cells. JQ1, but not apabetalone, was found to induce apoptosis. While both BET inhibitors modestly impacted differentiation marker expression, they did not affect myotube fusion. Losmapimod also reduced expression of DUX4 target genes but differed in its impact on FSHD-associated pathways. These findings demonstrate that apabetalone inhibits DUX4 target gene expression and reverses transcriptional programs that contribute to FSHD pathology, making this drug a promising candidate therapeutic for FSHD.
Collapse
Affiliation(s)
| | - Dean Gilham
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Laura M. Tsujikawa
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Sylwia Wasiak
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Li Fu
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Brooke D. Rakai
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Stephanie C. Stotz
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Agostina Carestia
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| | - Michael Sweeney
- Resverlogix Corp., 535 Mission St., 14th Floor, San Francisco, CA 94105, USA
| | - Ewelina Kulikowski
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB T3E 6L1, Canada
| |
Collapse
|
6
|
Cohen J, Huang S, Koczwara K, Ho V, Woodman K, Lek A, Arbiser J, Lek M, DeSimone A. Flavones provide resistance to DUX4-induced toxicity via an mTor-independent mechanism. RESEARCH SQUARE 2023:rs.3.rs-2452222. [PMID: 36778471 PMCID: PMC9915774 DOI: 10.21203/rs.3.rs-2452222/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is among the most common of the muscular dystrophies, affecting nearly 1 in 8000 individuals, and is a cause of profound disability. Genetically, FSHD is linked to the contraction and/or epigenetic de-repression of the D4Z4 repeat array on chromosome 4, thereby allowing expression of the DUX4 gene in skeletal muscle. If the DUX4 transcript incorporates a stabilizing polyadenylation site the myotoxic DUX4 protein will be synthesized, resulting in muscle wasting. The mechanism of toxicity remains unclear, as many DUX4-induced cytopathologies have been described, however cell death does primarily occur through caspase 3/7-dependent apoptosis. To date, most FSHD therapeutic development has focused on molecular methods targeting DUX4 expression or the DUX4 transcript, while therapies targeting processes downstream of DUX4 activity have received less attention. Several studies have demonstrated that inhibition of multiple signal transduction pathways can ameliorate DUX4-induced toxicity, and thus compounds targeting these pathways have the potential to be developed into FSHD therapeutics. To this end, we have screened a group of small molecules curated based on their reported activity in relevant pathways and/or structural relationships with known toxicity-modulating molecules. We have identified a panel of five compounds that function downstream of DUX4 activity to inhibit DUX4-induced toxicity. Unexpectedly, this effect was mediated through an mTor-independent mechanism that preserved expression of ULK1 and correlated with an increase in a marker of active cellular autophagy. This identifies these flavones as compounds of interest for therapeutic development, and potentially identifies the autophagy pathway as a target for therapeutics.
Collapse
|
7
|
Bencze M. Mechanisms of Myofibre Death in Muscular Dystrophies: The Emergence of the Regulated Forms of Necrosis in Myology. Int J Mol Sci 2022; 24:ijms24010362. [PMID: 36613804 PMCID: PMC9820579 DOI: 10.3390/ijms24010362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
Myofibre necrosis is a central pathogenic process in muscular dystrophies (MD). As post-lesional regeneration cannot fully compensate for chronic myofibre loss, interstitial tissue accumulates and impairs muscle function. Muscle regeneration has been extensively studied over the last decades, however, the pathway(s) controlling muscle necrosis remains largely unknown. The recent discovery of several regulated cell death (RCD) pathways with necrotic morphology challenged the dogma of necrosis as an uncontrolled process, opening interesting perspectives for many degenerative disorders. In this review, we focus on how cell death affects myofibres in MDs, integrating the latest research in the cell death field, with specific emphasis on Duchenne muscular dystrophy, the best-known and most common hereditary MD. The role of regulated forms of necrosis in myology is still in its infancy but there is increasing evidence that necroptosis, a genetically programmed form of necrosis, is involved in muscle degenerating disorders. The existence of apoptosis in myofibre demise will be questioned, while other forms of non-apoptotic RCDs may also have a role in myonecrosis, illustrating the complexity and possibly the heterogeneity of the cell death pathways in muscle degenerating conditions.
Collapse
Affiliation(s)
- Maximilien Bencze
- “Biology of the Neuromuscular System” Team, Institut Mondor de Recherche Biomédicale (IMRB), University Paris-Est Créteil, INSERM, U955 IMRB, 94010 Créteil, France;
- École Nationale Vétérinaire d’Alfort, IMRB, 94700 Maisons-Alfort, France
| |
Collapse
|
8
|
Lu-Nguyen N, Malerba A, Antoni Pineda M, Dickson G, Popplewell LJ. Improving molecular and histopathology in diaphragm muscle of the double transgenic ACTA1-MCM/FLExDUX4 mouse model of FSHD with systemic antisense therapy. Hum Gene Ther 2022; 33:923-935. [PMID: 35078334 DOI: 10.1089/hum.2021.251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a rare muscle dystrophy causing muscle weakness initially in the face, shoulders and upper arms, and extended to lower body muscles as the disease progresses. Respiratory restriction in FSHD is increasingly reported to be more common and severe than previously thought, with the involvement of diaphragm weakness in pulmonary insufficiency being under debate. As aberrant expression of the double homeobox 4 (DUX4) gene is the prime cause of FSHD, we and others have developed numerous strategies and reported promising results on downregulating DUX4 expression in both cellular and animal models of FSHD. However, the effect of DUX4 and anti-DUX4 approaches on diaphragm muscle has not been elucidated. Here we show that toxic DUX4 expression causes pathology that affects the diaphragm of ACTA1-MCM/FLExDUX4 mouse model of FSHD at both molecular and histological levels. Of importance, a systemic antisense treatment that suppresses DUX4 and target genes expression by 50% significantly improves muscle regeneration and muscle fibrosis, and prevents modification in myofiber type composition, supporting its development as a treatment for FSHD.
Collapse
Affiliation(s)
- Ngoc Lu-Nguyen
- Royal Holloway University of London, 3162, Department of Biological Sciences, Egham, Surrey, United Kingdom of Great Britain and Northern Ireland;
| | - Alberto Malerba
- Royal Holloway University of London, 3162, Department of Biological Sciences, Egham, Surrey, United Kingdom of Great Britain and Northern Ireland;
| | - Marina Antoni Pineda
- Royal Holloway University of London, 3162, Department of Biological Sciences, Egham, Surrey, United Kingdom of Great Britain and Northern Ireland;
| | - George Dickson
- Royal Holloway University of London, 3162, Department of Biological Sciences, Egham, Surrey, United Kingdom of Great Britain and Northern Ireland;
| | - Linda J Popplewell
- Royal Holloway University of London, 3162, Department of Biological Sciences, Egham, Surrey, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|