1
|
Mayer F, Cserjan-Puschmann M, Haslinger B, Shpylovyi A, Sam C, Soos M, Hahn R, Striedner G. Computational fluid dynamics simulation improves the design and characterization of a plug-flow-type scale-down reactor for microbial cultivation processes. Biotechnol J 2023; 18:e2200152. [PMID: 36442862 DOI: 10.1002/biot.202200152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022]
Abstract
The scale-up of bioprocesses remains one of the major obstacles in the biotechnology industry. Scale-down bioreactors have been identified as valuable tools to investigate the heterogeneities observed in large-scale tanks at the laboratory scale. Additionally, computational fluid dynamics (CFD) simulations can be used to gain information about fluid flow in tanks used for production. Here, we present the rational design and comprehensive characterization of a scale-down setup, in which a flexible and modular plug-flow reactor was connected to a stirred-tank bioreactor. With the help of CFD using the realizable k-ε model, the mixing time difference between a 20 and 4000 L bioreactor was evaluated and used as scale-down criterion. CFD simulations using a shear stress transport (SST) k-ω turbulence model were used to characterize the plug-flow reactor in more detail, and the model was verified using experiments. Additionally, the model was used to simulate conditions where experiments technically could not be performed due to sensor limitations. Nevertheless, verification is difficult in this case as well. This was the first time a scale-down setup was tested on high-cell-density Escherichia coli cultivations to produce industrially relevant antigen-binding fragments (Fab). Biomass yield was reduced by 11% and specific product yield was reduced by 20% during the scale-down cultivations. Additionally, the intracellular Fab fraction was increased by using the setup. The flexibility of the introduced scale-down setup in combination with CFD simulations makes it a valuable tool for investigating scale effects at the laboratory scale. More information about the large scale is still necessary to further refine the setup and to speed up bioprocess scale-up in the future.
Collapse
Affiliation(s)
- Florian Mayer
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Monika Cserjan-Puschmann
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benedikt Haslinger
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Anton Shpylovyi
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christian Sam
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
| | - Miroslav Soos
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Praha, Czech Republic
| | - Rainer Hahn
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Gerald Striedner
- Department of Biotechnology, Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
2
|
Täuber S, Blöbaum L, Steier V, Oldiges M, Grünberger A. Microfluidic single-cell scale-down bioreactors: A proof-of-concept for the growth of Corynebacterium glutamicum at oscillating pH values. Biotechnol Bioeng 2022; 119:3194-3209. [PMID: 35950295 DOI: 10.1002/bit.28208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/30/2022] [Accepted: 07/29/2022] [Indexed: 11/07/2022]
Abstract
In large-scale bioreactors, gradients in cultivation parameter such as oxygen, substrate and pH result in fluctuating cell environments. pH fluctuations were identified as a critical parameter for bioprocess performance. Traditionally, scale-down systems at the laboratory scale are used to analyze the effects of fluctuating pH values on strain and thus process performance. Here, we demonstrate the application of dynamic microfluidic single-cell cultivation (dMSCC) as a novel scale-down system for the characterization of Corynebacterium glutamicum growth using oscillating pH conditions as a model stress-factor. A detailed comparison between two-compartment reactor (two-CR) scale-down experiments and dMSCC was performed for one specific pH oscillation between reference pH 7 (~ 8 min) and disturbed pH 6 (~2 min). Similar reductions in growth rates were observed in both systems (dMSCC 21% and two-CR 27%) compared to undisturbed cultivation at pH 7. Afterwards, systematic experiments at symmetric and asymmetric pH oscillations between pH ranges of 4-6 and 8-11 and different intervals from 1 minute to 20 minutes, were performed to demonstrate the unique application range and throughput of the dMSCC system. Finally, the strength of the dMSCC application was demonstrated by mimicking fluctuating environmental conditions of a putative large-scale bioprocesse, which is difficult to conduct using two-CRs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sarah Täuber
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.,Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Luisa Blöbaum
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.,Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Valentin Steier
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Alexander Grünberger
- Multiscale Bioengineering, Technical Faculty, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany.,Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
3
|
Hartmann FSF, Anastasiou I, Weiß T, Shen J, Seibold GM. Impedance flow cytometry for viability analysis of Corynebacterium glutamicum. J Microbiol Methods 2021; 191:106347. [PMID: 34656671 DOI: 10.1016/j.mimet.2021.106347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/15/2022]
Abstract
Corynebacterium glutamicum efficiently produces glutamate when growth is inhibited. Analyses of viability in this non-growing state requires time consuming plating and determination of colony forming units. We here establish impedance flow cytometry measurements to assess the viability of non-growing, glutamate producing C. glutamicum cultures within minutes.
Collapse
Affiliation(s)
- Fabian Stefan Franz Hartmann
- Department of Biotechnology and Biomedicine, Section for Synthetic Biology, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Ioannis Anastasiou
- Department of Biotechnology and Biomedicine, Section for Synthetic Biology, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Tamara Weiß
- Department of Biotechnology and Biomedicine, Section for Synthetic Biology, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Jing Shen
- Department of Biotechnology and Biomedicine, Section for Synthetic Biology, Technical University of Denmark, Kongens, Lyngby, Denmark
| | - Gerd Michael Seibold
- Department of Biotechnology and Biomedicine, Section for Synthetic Biology, Technical University of Denmark, Kongens, Lyngby, Denmark.
| |
Collapse
|
4
|
Ziegler M, Zieringer J, Döring CL, Paul L, Schaal C, Takors R. Engineering of a robust Escherichia coli chassis and exploitation for large-scale production processes. Metab Eng 2021; 67:75-87. [PMID: 34098100 DOI: 10.1016/j.ymben.2021.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 11/28/2022]
Abstract
In large-scale bioprocesses microbes are exposed to heterogeneous substrate availability reducing the overall process performance. A series of deletion strains was constructed from E. coli MG1655 aiming for a robust phenotype in heterogeneous fermentations with transient starvation. Deletion targets were hand-picked based on a list of genes derived from previous large-scale simulation runs. Each gene deletion was conducted on the premise of strict neutrality towards growth parameters in glucose minimal medium. The final strain of the series, named E. coli RM214, was cultivated continuously in an STR-PFR (stirred tank reactor - plug flow reactor) scale-down reactor. The scale-down reactor system simulated repeated passages through a glucose starvation zone. When exposed to nutrient gradients, E. coli RM214 had a significantly lower maintenance coefficient than E. coli MG1655 (Δms = 0.038 gGlucose/gCDW/h, p < 0.05). In an exemplary protein production scenario E. coli RM214 remained significantly more productive than E. coli MG1655 reaching 44% higher eGFP yield after 28 h of STR-PFR cultivation. This study developed E. coli RM214 as a robust chassis strain and demonstrated the feasibility of engineering microbial hosts for large-scale applications.
Collapse
Affiliation(s)
- Martin Ziegler
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| | - Julia Zieringer
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| | - Clarissa-Laura Döring
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| | - Liv Paul
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| | - Christoph Schaal
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| | - Ralf Takors
- University of Stuttgart - Institute of Biochemical Engineering, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
5
|
Does the BioBLU 0.3f single-use scale to the BioFlo® 320 reuseable bioreactor on a matched volumetric oxygen mass transfer coefficient? World J Microbiol Biotechnol 2021; 37:11. [PMID: 33392800 PMCID: PMC7779418 DOI: 10.1007/s11274-020-02968-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/24/2020] [Indexed: 11/08/2022]
Abstract
The volumetric oxygen mass transfer coefficient (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k_{l} a$$\end{document}kla) is an essential parameter in aerobic high-cell density fermentation where the availability of oxygen to growing microorganisms is a limiting factor. Bioprocess teams looking to scale-up/down between the Eppendorf BioBLU 0.3f single-use vessel and the BioFlo® 320 reusable vessel bioreactors may find it challenging using a matched \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k_{l} a$$\end{document}kla. The maximum \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k_{l} a$$\end{document}kla of the BioFlo® 320 reusable bioreactor was 109 h−1, which was approximately twice that of the BioBLU 0.3f single-use vessel. The results here show no overlap in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k_{l} a$$\end{document}kla values when both bioreactors were compared and thus conclude that scalability based on \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k_{l} a$$\end{document}kla is not viable. The maximum \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k_{l} a$$\end{document}kla of the Eppendorf BioBLU 0.3f single-use reported here was 47 h−1 compared to that of the manufacturer’s value of 2500 h−1, indicating a 53-fold difference. This discrepancy was attributed to the incompatible sulfite addition method used by the manufacturer for estimation.
Collapse
|
6
|
Understanding gradients in industrial bioreactors. Biotechnol Adv 2020; 46:107660. [PMID: 33221379 DOI: 10.1016/j.biotechadv.2020.107660] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/22/2020] [Accepted: 11/14/2020] [Indexed: 01/07/2023]
Abstract
Gradients in industrial bioreactors have attracted substantial research attention since exposure to fluctuating environmental conditions has been shown to lead to changes in the metabolome, transcriptome as well as population heterogeneity in industrially relevant microorganisms. Such changes have also been found to impact key process parameters like the yield on substrate and the productivity. Hence, understanding gradients is important from both the academic and industrial perspectives. In this review the causes of gradients are outlined, along with their impact on microbial physiology. Quantifying the impact of gradients requires a detailed understanding of both fluid flow inside industrial equipment and microbial physiology. This review critically examines approaches used to investigate gradients including large-scale experimental work, computational methods and scale-down approaches. Avenues for future work have been highlighted, particularly the need for further coordinated development of both in silico and experimental tools which can be used to further the current understanding of gradients in industrial equipment.
Collapse
|
7
|
Hanspal N, Chai N, Allen B, Brown D. Applying multiple approaches to deepen understanding of mixing and mass transfer in large-scale aerobic fermentations. J Ind Microbiol Biotechnol 2020; 47:929-946. [PMID: 32894378 DOI: 10.1007/s10295-020-02307-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
Different methods are used at Corteva® Agriscience to improve our understanding of mixing in large-scale mechanically agitated fermentors. These include (a) use of classical empirical correlations, (b) use of small-scale models, and (c) computational fluid dynamics (CFD). Each of these approaches has its own inherent strengths and limitations. Classic empirical or semi-empirical correlations can provide insights into mass transfer, blending, shear, and other important factors but are dependent on the geometry and condition used to develop the correlations. Laboratory-scale modelling can be very useful to study mixing and model the effect of heterogeneity on the culture, but success is highly dependent on the methodology applied. CFD provides an effective means to accelerate the exploration of alternative design strategies through physics-based computer simulations that may not be adequately described by existing knowledge or correlations. However, considerable time and effort is needed to build and validate these models. In this paper, we review the various approaches used at Corteva Agriscience to deepen our understanding of mixing in large-scale fermentation processes.
Collapse
Affiliation(s)
- Navraj Hanspal
- Corteva ® Agriscience, 3100 James Savage Rd, Midland, MI, 48642, USA
| | - Ning Chai
- Corteva Agriscience, 901 Loveridge Rd, Pittsburg, CA, 94565, USA
| | - Billy Allen
- Bioprocess Mixing Solutions, LLC, 6228 Deerwood Ct, Greenwood, IN, USA
| | - Dale Brown
- Corteva Agriscience, 9330 Zionsville Rd, Indianapolis, IN, USA.
| |
Collapse
|
8
|
Li H, Xu X, Tan W, Lu X, He F, Xu S, Tian W, Chen K, Li G, Ouyang P, Liu Y, Liang R. Sustainable separation of bio-based cadaverine based on carbon dioxide capture by forming carbamate. RSC Adv 2020; 10:44728-44735. [PMID: 35516266 PMCID: PMC9058519 DOI: 10.1039/d0ra08564b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/08/2020] [Indexed: 12/30/2022] Open
Abstract
Cadaverine carbamate, capturing the self-released carbon dioxide from the decarboxylation of l-lysine, is the green and sustainable separation of bio-based cadaverine.
Collapse
Affiliation(s)
- Hui Li
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Xu Xu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Weimin Tan
- National Engineering Research Center for Coatings
- CNOOC Changzhou Paint and Coatings Industry Research Institute Co., Ltd
- Changzhou
- China
| | - Xuedong Lu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Feng He
- Jiangsu Jicui Industrial Biotechnology Research Institute Co., Ltd
- Nanjing
- China
| | - Sheng Xu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Weilong Tian
- Jiangsu Jicui Industrial Biotechnology Research Institute Co., Ltd
- Nanjing
- China
| | - Kequan Chen
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Ganlu Li
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Yaozong Liu
- Gansu Yinguang Juyin Chemical Co., Ltd
- Baiyin
- China
| | | |
Collapse
|
9
|
Yang P, Peng X, Wang S, Li D, Li M, Jiao P, Zhuang W, Wu J, Wen Q, Ying H. Crystal structure, thermodynamics, and crystallization of bio-based polyamide 56 salt. CrystEngComm 2020. [DOI: 10.1039/d0ce00198h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polyamide 56 is regarded as one of the most promising materials for the textile industry. This report gives the crystallization route of high-quality polyamide 56 monomers, and its crystal structure, transformation behaviors, and solubility.
Collapse
Affiliation(s)
- Pengpeng Yang
- National Engineering Technique Research Center for Biotechnology
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering, and
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture
- Nanjing Tech University
| | - Xiaoqiang Peng
- National Engineering Technique Research Center for Biotechnology
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering, and
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture
- Nanjing Tech University
| | - Sen Wang
- National Engineering Technique Research Center for Biotechnology
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering, and
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture
- Nanjing Tech University
| | - Dong Li
- Qingdao Product Quality Supervision and Testing Research Institute
- Qingdao
- China
| | - Ming Li
- National Engineering Technique Research Center for Biotechnology
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering, and
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture
- Nanjing Tech University
| | - Pengfei Jiao
- School of Life Science and Technology
- Nanyang Normal University
- Nanyang
- China
| | - Wei Zhuang
- National Engineering Technique Research Center for Biotechnology
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering, and
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture
- Nanjing Tech University
| | - Jinglan Wu
- National Engineering Technique Research Center for Biotechnology
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering, and
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture
- Nanjing Tech University
| | - Qingshi Wen
- Industrial Biotechnology Institute of Jiangsu Industrial Technology Research Institute
- Nanjing
- China
| | - Hanjie Ying
- National Engineering Technique Research Center for Biotechnology
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Biotechnology and Pharmaceutical Engineering, and
- Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture
- Nanjing Tech University
| |
Collapse
|