Cuevas-Nunez M, Pan A, Sangalli L, Haering HJ, Mitchell JC. Leveraging machine learning to create user-friendly models to mitigate appointment failure at dental school clinics.
J Dent Educ 2023;
87:1735-1745. [PMID:
37786254 DOI:
10.1002/jdd.13375]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/04/2023] [Accepted: 08/26/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE/OBJECTIVES
This study had a twofold outcome. The first aim was to develop an efficient, machine learning (ML) model using data from a dental school clinic (DSC) electronic health record (EHR). This model identified patients with a high likelihood of failing an appointment and provided a user-friendly system with a rating score that would alert clinicians and administrators of patients at high risk of no-show appointments. The second aim was to identify key factors with ML modeling that contributed to patient no-show appointments.
METHODS
Using de-identified data from a DSC EHR, eight ML algorithms were evaluated: simple decision tree, bagging regressor classifier, random forest classifier, gradient boosted regression, AdaBoost regression, XGBoost regression, neural network, and logistic regression classifier. The performance of each model was assessed using a confusion matrix with different threshold level of probability; precision, recall and predicted accuracy on each threshold; receiver-operating characteristic curve (ROC) and area under curve (AUC); as well as F1 score.
RESULTS
The ML models agreed on the threshold of probability score at 0.20-0.25 with Bagging classifier as the model that performed best with a F1 score of 0.41 and AUC of 0.76. Results showed a strong correlation between appointment failure and appointment confirmation, patient's age, number of visits before the appointment, total number of prior failed appointments, appointment lead time, as well as the patient's total number of medical alerts.
CONCLUSIONS
Altogether, the implementation of this user-friendly ML model can improve DSC workflow, benefiting dental students learning outcomes and optimizing personalized patient care.
Collapse