1
|
Hudcovic T, Petr Hermanova P, Kozakova H, Benada O, Kofronova O, Schwarzer M, Srutkova D. Priority order of neonatal colonization by a probiotic or pathogenic Escherichia coli strain dictates the host response to experimental colitis. Front Microbiol 2024; 15:1393732. [PMID: 39206364 PMCID: PMC11349737 DOI: 10.3389/fmicb.2024.1393732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
The alarming prevalence of inflammatory bowel disease (IBD) in early childhood is associated with imbalances in the microbiome, the immune response, and environmental factors. Some pathogenic Escherichia coli (E. coli) strains have been found in IBD patients, where they may influence disease progression. Therefore, the discovery of new harmful bacterial strains that have the potential to drive the inflammatory response is of great importance. In this study, we compared the immunomodulatory properties of two E. coli strains of serotype O6: the probiotic E. coli Nissle 1917 and the uropathogenic E. coli O6:K13:H1. Using the epithelial Caco-2 cell line, we investigated the different abilities of the strains to adhere to and invade epithelial cells. We confirmed the potential of E. coli Nissle 1917 to modulate the Th1 immune response in a specific manner in an in vitro setting by stimulating mouse bone marrow-derived dendritic cells (BM-DCs). In gnotobiotic in vivo experiments, we demonstrated that neonatal colonization with E. coli Nissle 1917 achieves a stable high concentration in the intestine and protects mice from the progressive effect of E. coli O6:K13:H1 in developing ulcerative colitis in an experimental model. In contrast, a single-dose treatment with E. coli Nissle 1917 is ineffective in achieving such high concentrations and does not protect against DSS-induced ulcerative colitis in mice neonatally colonized with pathobiont E. coli O6:K13:H1. Despite the stable coexistence of both E. coli strains in the intestinal environment of the mice, we demonstrated a beneficial competitive interaction between the early colonizing E. coli Nissle 1917 and the late-arriving strain O6:K13:H1, suggesting its anti-inflammatory potential for the host. This study highlights the importance of the sequence of bacterial colonization, which influences the development of the immune response in the host gut and potentially impacts future quality of life.
Collapse
Affiliation(s)
- Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Petra Petr Hermanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Hana Kozakova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Oldrich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Olga Kofronova
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czechia
| |
Collapse
|
2
|
Pourali P, Dzmitruk V, Benada O, Svoboda M, Benson V. Conjugation of microbial-derived gold nanoparticles to different types of nucleic acids: evaluation of transfection efficiency. Sci Rep 2023; 13:14669. [PMID: 37674013 PMCID: PMC10482973 DOI: 10.1038/s41598-023-41567-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
In this study, gold nanoparticles produced by eukaryotic cell waste (AuNP), were analyzed as a transfection tool. AuNP were produced by Fusarium oxysporum and analyzed by spectrophotometry, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS) were used before and after conjugation with different nucleic acid (NA) types. Graphite furnace atomic absorption spectroscopy (GF-AAS) was used to determine the AuNP concentration. Conjugation was detected by electrophoresis. Confocal microscopy and quantitative real-time PCR (qPCR) were used to assess transfection. TEM, SEM, and EDS showed 25 nm AuNP with round shape. The amount of AuNP was 3.75 ± 0.2 µg/µL and FTIR proved conjugation of all NA types to AuNP. All the samples had a negative charge of - 36 to - 46 mV. Confocal microscopy confirmed internalization of the ssRNA-AuNP into eukaryotic cells and qPCR confirmed release and activity of carried RNA.
Collapse
Affiliation(s)
- P Pourali
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - V Dzmitruk
- Center of Molecular Structure, Institute of Biotechnology, Czech Academy of Sciences, Vesec, Czech Republic
| | - O Benada
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - M Svoboda
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - V Benson
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Bavlovic J, Pavkova I, Balonova L, Benada O, Stulik J, Klimentova J. Intact O-antigen is critical structure for the exceptional tubular shape of outer membrane vesicles in Francisella tularensis. Microbiol Res 2023; 269:127300. [PMID: 36641863 DOI: 10.1016/j.micres.2023.127300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/19/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Francisella tularensis is a highly infectious Gram-negative coccobacillus which causes the disease tularemia. The potential for its misuse as a biological weapon has led disease control and prevention centers to classify this bacterium as a category A agent. Bacterial outer membrane vesicles (OMVs) are spherical particles 20-250 nm in size produced by all Gram-negative bacteria and constitute one of the major secretory pathways. Bacteria use them in interacting with both other bacterial cells and eukaryotic (host) cells. OMVs of Francisella contain number of its so far described virulence factors and immunomodulatory proteins. Their role in host-pathogen interactions can therefore be presumed, and the possibility exists also for their potential use in a subunit vaccine. Moreover, Francisella microbes produce both usual spherical and unusual tubular OMVs. Because OMVs emerge from the outermost surface of the bacterial cell, we focused on the secretion of OMVs in several mutant Francisella strains with disrupted surface structures (namely the O-antigen). O-antigen in Francisella is not only the structural component of LPS but also forms another important virulence factor: the O-antigen polysaccharide capsule. Mutant strain phenotypes were evaluated by growth curves, vesiculation rates, their sensitivity to the complement contained in serum, and proliferation inside murine bone marrow macrophages. Morphologies of both OMVs and the bacteria were visualized by electron microscopy. The O-antigen mutant strains were considerably attenuated in serum resistance and intracellular proliferation. All the strains showed lower ability to form the tubular OMVs. Some strains formed tubular protrusions from their outer membrane but their stability was weak. Some hypervesiculating strains were revealed that will serve as source of OMVs for further studies of their protective potential. Our results suggest the presence of LPS and the O-antigen capsule on the surface of Francisella to be critical not only for its virulence but also for the exceptional tubular shape of its OMVs.
Collapse
Affiliation(s)
- Jan Bavlovic
- University of Defense, Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, Třebešská 1575, 500 01 Hradec Králové, Czech Republic
| | - Ivona Pavkova
- University of Defense, Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, Třebešská 1575, 500 01 Hradec Králové, Czech Republic
| | - Lucie Balonova
- University of Defense, Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, Třebešská 1575, 500 01 Hradec Králové, Czech Republic
| | - Oldrich Benada
- Czech Academy of Sciences, Institute of Microbiology, Krč, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Jiri Stulik
- University of Defense, Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, Třebešská 1575, 500 01 Hradec Králové, Czech Republic
| | - Jana Klimentova
- University of Defense, Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, Třebešská 1575, 500 01 Hradec Králové, Czech Republic.
| |
Collapse
|
4
|
Alijagic A, Scherbak N, Kotlyar O, Karlsson P, Wang X, Odnevall I, Benada O, Amiryousefi A, Andersson L, Persson A, Felth J, Andersson H, Larsson M, Hedbrant A, Salihovic S, Hyötyläinen T, Repsilber D, Särndahl E, Engwall M. A Novel Nanosafety Approach Using Cell Painting, Metabolomics, and Lipidomics Captures the Cellular and Molecular Phenotypes Induced by the Unintentionally Formed Metal-Based (Nano)Particles. Cells 2023; 12:281. [PMID: 36672217 PMCID: PMC9856453 DOI: 10.3390/cells12020281] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Additive manufacturing (AM) or industrial 3D printing uses cutting-edge technologies and materials to produce a variety of complex products. However, the effects of the unintentionally emitted AM (nano)particles (AMPs) on human cells following inhalation, require further investigations. The physicochemical characterization of the AMPs, extracted from the filter of a Laser Powder Bed Fusion (L-PBF) 3D printer of iron-based materials, disclosed their complexity, in terms of size, shape, and chemistry. Cell Painting, a high-content screening (HCS) assay, was used to detect the subtle morphological changes elicited by the AMPs at the single cell resolution. The profiling of the cell morphological phenotypes, disclosed prominent concentration-dependent effects on the cytoskeleton, mitochondria, and the membranous structures of the cell. Furthermore, lipidomics confirmed that the AMPs induced the extensive membrane remodeling in the lung epithelial and macrophage co-culture cell model. To further elucidate the biological mechanisms of action, the targeted metabolomics unveiled several inflammation-related metabolites regulating the cell response to the AMP exposure. Overall, the AMP exposure led to the internalization, oxidative stress, cytoskeleton disruption, mitochondrial activation, membrane remodeling, and metabolic reprogramming of the lung epithelial cells and macrophages. We propose the approach of integrating Cell Painting with metabolomics and lipidomics, as an advanced nanosafety methodology, increasing the ability to capture the cellular and molecular phenotypes and the relevant biological mechanisms to the (nano)particle exposure.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Nikolai Scherbak
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| | - Oleksandr Kotlyar
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
- Centre for Applied Autonomous Sensor Systems (AASS), Mobile Robotics and Olfaction Lab (MRO), Örebro University, SE-701 82 Örebro, Sweden
| | - Patrik Karlsson
- Department of Mechanical Engineering, Örebro University, SE-701 82 Örebro, Sweden
| | - Xuying Wang
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden
| | - Inger Odnevall
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden
- AIMES—Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Oldřich Benada
- Institute of Microbiology of the Czech Academy of Sciences, 140 00 Prague, Czech Republic
| | - Ali Amiryousefi
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Lena Andersson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
- Department of Occupational and Environmental Medicine, Örebro University Hospital, SE-701 85 Örebro, Sweden
| | - Alexander Persson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | | | | | - Maria Larsson
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| | - Alexander Hedbrant
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Samira Salihovic
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Tuulia Hyötyläinen
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| | - Dirk Repsilber
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
5
|
Culture Isolate of Rickettsia felis from a Tick. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074321. [PMID: 35410003 PMCID: PMC8998211 DOI: 10.3390/ijerph19074321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023]
Abstract
Although the cat flea, Ctenocephalides felis, has been identified as the primary vector of Rickettsia felis, additional flea, tick, mite, and louse species have also been associated with this bacterium by molecular means; however, the role of these arthropods in the transmission of R. felis has not been clarified. Here, we succeeded in culture isolation of R. felis from a host-seeking castor bean tick, Ixodes ricinus, the most common tick in Slovakia. The bacterial isolation was performed on XTC-2 cells at 28 °C using the shell-vial technique. An evaluation of the growth properties was performed for both the XTC-2 and Vero cell lines. We observed R. felis in the infected host cells microscopically by Gimenez staining and immunofluorescence assay. The R. felis isolate was purified by gradient ultracentrifugation and visualized by electron microscopy. Fragments of the genes gltA, ompA, ompB, htrA, rpoB, sca4, rffE, and rrs were amplified and compared with the corresponding sequences of the type strain URRWXCal2 and other R. felis culture -isolated strains. We did not detect any nucleotide polymorphisms; however, plasmid pRFδ, characteristic of the standard strain, was absent in our isolate. Herein, we describe the first successful isolation and characterization of a tick-derived R. felis strain “Danube”, obtained from an I. ricinus nymph.
Collapse
|
6
|
Response of Biological Gold Nanoparticles to Different pH Values: Is It Possible to Prepare Both Negatively and Positively Charged Nanoparticles? APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mycelium-free supernatant (MFS) of a five-day-old culture medium of Fusarium oxysporum was used to synthesize gold nanoparticles (AuNPs). The experimental design of the study was to answer the question: can this production process of AuNPs be controllable like classical chemical or physical approaches? The process of producing AuNPs from 1 mM tetrachloroauric (III) acid trihydrate in MFS was monitored visually by color change at different pH values and quantified spectroscopically. The produced AuNPs were analyzed by transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The presence of capping agents was confirmed by Fourier transform infrared spectroscopy (FTIR). Two AuNP samples with acidic and alkaline pH were selected and adjusted with the pH gradient and analyzed. Finally, the size and zeta potential of all samples were determined. The results confirmed the presence of the proteins as capping agents on the surface of the AuNPs and confirmed the production of AuNPs at all pH values. All AuNP samples exhibited negative zeta potential, and this potential was higher at natural to alkaline pH values. The size distribution analysis showed that the size of AuNPs produced at alkaline pH was smaller than that at acidic pH. Since all samples had negative charge, we suspect that there were other molecules besides proteins that acted as capping agents on the surface of the AuNPs. We conclude that although the biological method of nanoparticle production is safe, green, and inexpensive, the ability to manipulate the nanoparticles to obtain both positive and negative charges is limited, curtailing their application in the medical field.
Collapse
|
7
|
Klimentova J, Rehulka P, Pavkova I, Kubelkova K, Bavlovic J, Stulik J. Cross-Species Proteomic Comparison of Outer Membrane Vesicles and Membranes of Francisella tularensis subsp. tularensis versus subsp. holarctica. J Proteome Res 2021; 20:1716-1732. [PMID: 33543941 DOI: 10.1021/acs.jproteome.0c00917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Release of outer membrane vesicles (OMV) is an important phenomenon in Gram-negative bacteria playing multiple roles in their lifestyle, including in relation to virulence and host-pathogen interaction. Francisella tularensis, unlike other bacteria, releases unusually shaped, tubular OMV. We present a proteomic comparison of OMV and membrane fractions from two F. tularensis strains: moderately virulent subsp. holarctica strain FSC200 and highly virulent subsp. tularensis strain SchuS4. Proteomic comparison studies routinely evaluate samples from the same proteome, but sometimes we must compare samples from closely related organisms. This raises quantification issues. We propose a novel approach to cross-species proteomic comparison based on an intersection protein database from the individual single-species databases. This is less prone to quantification errors arising from differences in the sequences. Consecutively comparing subproteomes of OMV and membranes of the two strains allows distinguishing differences in relative protein amounts caused by global expression changes from those caused by preferential protein packing to OMV or membranes. Among the proteins most differently packed into OMV between the two strains, we detected proteins involved in biosynthesis and metabolism of bacterial envelope components like O-antigen, lipid A, phospholipids, and fatty acids, as well as some major structural outer membrane proteins. The data are available via ProteomeXchange with identifier PXD022406.
Collapse
Affiliation(s)
- Jana Klimentova
- Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, University of Defence, Hradec Kralove 500 01, Czech Republic
| | - Pavel Rehulka
- Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, University of Defence, Hradec Kralove 500 01, Czech Republic
| | - Ivona Pavkova
- Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, University of Defence, Hradec Kralove 500 01, Czech Republic
| | - Klara Kubelkova
- Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, University of Defence, Hradec Kralove 500 01, Czech Republic
| | - Jan Bavlovic
- Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, University of Defence, Hradec Kralove 500 01, Czech Republic
| | - Jiri Stulik
- Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, University of Defence, Hradec Kralove 500 01, Czech Republic
| |
Collapse
|
8
|
Navarro Pacheco NI, Roubalova R, Semerad J, Grasserova A, Benada O, Kofronova O, Cajthaml T, Dvorak J, Bilej M, Prochazkova P. In Vitro Interactions of TiO 2 Nanoparticles with Earthworm Coelomocytes: Immunotoxicity Assessment. NANOMATERIALS 2021; 11:nano11010250. [PMID: 33477826 PMCID: PMC7832855 DOI: 10.3390/nano11010250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/27/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are manufactured worldwide. Once they arrive in the soil environment, they can endanger living organisms. Hence, monitoring and assessing the effects of these nanoparticles is required. We focus on the Eisenia andrei earthworm immune cells exposed to sublethal concentrations of TiO2 NPs (1, 10, and 100 µg/mL) for 2, 6, and 24 h. TiO2 NPs at all concentrations did not affect cell viability. Further, TiO2 NPs did not cause changes in reactive oxygen species (ROS) production, malondialdehyde (MDA) production, and phagocytic activity. Similarly, they did not elicit DNA damage. Overall, we did not detect any toxic effects of TiO2 NPs at the cellular level. At the gene expression level, slight changes were detected. Metallothionein, fetidin/lysenin, lumbricin and MEK kinase I were upregulated in coelomocytes after exposure to 10 µg/mL TiO2 NPs for 6 h. Antioxidant enzyme expression was similar in exposed and control cells. TiO2 NPs were detected on coelomocyte membranes. However, our results do not show any strong effects of these nanoparticles on coelomocytes at both the cellular and molecular levels.
Collapse
Affiliation(s)
- Natividad Isabel Navarro Pacheco
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
- First Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08 Prague 2, Czech Republic
| | - Radka Roubalova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
| | - Jaroslav Semerad
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
- Faculty of Science, Institute for Environmental Studies, Charles University, Benatska 2, 128 01 Prague 2, Czech Republic
| | - Alena Grasserova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
- Faculty of Science, Institute for Environmental Studies, Charles University, Benatska 2, 128 01 Prague 2, Czech Republic
| | - Oldrich Benada
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
| | - Olga Kofronova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
| | - Tomas Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
- Faculty of Science, Institute for Environmental Studies, Charles University, Benatska 2, 128 01 Prague 2, Czech Republic
| | - Jiri Dvorak
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
| | - Martin Bilej
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
| | - Petra Prochazkova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
- Correspondence:
| |
Collapse
|
9
|
Pospíšil J, Vítovská D, Kofroňová O, Muchová K, Šanderová H, Hubálek M, Šiková M, Modrák M, Benada O, Barák I, Krásný L. Bacterial nanotubes as a manifestation of cell death. Nat Commun 2020; 11:4963. [PMID: 33009406 PMCID: PMC7532143 DOI: 10.1038/s41467-020-18800-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022] Open
Abstract
Bacterial nanotubes are membranous structures that have been reported to function as conduits between cells to exchange DNA, proteins, and nutrients. Here, we investigate the morphology and formation of bacterial nanotubes using Bacillus subtilis. We show that nanotube formation is associated with stress conditions, and is highly sensitive to the cells' genetic background, growth phase, and sample preparation methods. Remarkably, nanotubes appear to be extruded exclusively from dying cells, likely as a result of biophysical forces. Their emergence is extremely fast, occurring within seconds by cannibalizing the cell membrane. Subsequent experiments reveal that cell-to-cell transfer of non-conjugative plasmids depends strictly on the competence system of the cell, and not on nanotube formation. Our study thus supports the notion that bacterial nanotubes are a post mortem phenomenon involved in cell disintegration, and are unlikely to be involved in cytoplasmic content exchange between live cells.
Collapse
Affiliation(s)
- Jiří Pospíšil
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Dragana Vítovská
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Olga Kofroňová
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Katarína Muchová
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51, Bratislava, Slovakia
| | - Hana Šanderová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 160 00, Prague 6, Czech Republic
| | - Michaela Šiková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Martin Modrák
- Laboratory of Bioinformatics/Core Facility, Institute of Microbiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Oldřich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.
| | - Imrich Barák
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51, Bratislava, Slovakia.
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
10
|
Klimentova J, Pavkova I, Horcickova L, Bavlovic J, Kofronova O, Benada O, Stulik J. Francisella tularensis subsp. holarctica Releases Differentially Loaded Outer Membrane Vesicles Under Various Stress Conditions. Front Microbiol 2019; 10:2304. [PMID: 31649645 PMCID: PMC6795709 DOI: 10.3389/fmicb.2019.02304] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/20/2019] [Indexed: 11/16/2022] Open
Abstract
Francisella tularensis is a Gram-negative, facultative intracellular bacterium, causing a severe disease called tularemia. It secretes unusually shaped nanotubular outer membrane vesicles (OMV) loaded with a number of virulence factors and immunoreactive proteins. In the present study, the vesicles were purified from a clinical isolate of subsp. holarctica strain FSC200. We here provide a comprehensive proteomic characterization of OMV using a novel approach in which a comparison of OMV and membrane fraction is performed in order to find proteins selectively enriched in OMV vs. membrane. Only these proteins were further considered to be really involved in the OMV function and/or their exceptional structure. OMV were also isolated from bacteria cultured under various cultivation conditions simulating the diverse environments of F. tularensis life cycle. These included conditions mimicking the milieu inside the mammalian host during inflammation: oxidative stress, low pH, and high temperature (42°C); and in contrast, low temperature (25°C). We observed several-fold increase in vesiculation rate and significant protein cargo changes for high temperature and low pH. Further proteomic characterization of stress-derived OMV gave us an insight how the bacterium responds to the hostile environment of a mammalian host through the release of differentially loaded OMV. Among the proteins preferentially and selectively packed into OMV during stressful cultivations, the previously described virulence factors connected to the unique intracellular trafficking of Francisella were detected. Considerable changes were also observed in a number of proteins involved in the biosynthesis and metabolism of the bacterial envelope components like O-antigen, lipid A, phospholipids, and fatty acids. Data are available via ProteomeXchange with identifier PXD013074.
Collapse
Affiliation(s)
- Jana Klimentova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czechia
| | - Ivona Pavkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czechia
| | - Lenka Horcickova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czechia
| | - Jan Bavlovic
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czechia
| | - Olga Kofronova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Oldrich Benada
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia.,Faculty of Science, Jan Evangelista Purkyně University, Ústí nad Labem, Czechia
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defense, Hradec Kralove, Czechia
| |
Collapse
|
11
|
Bánová Vulić R, Zdurienčíková M, Tyčiaková S, Benada O, Dubrovčáková M, Lakota J, Škultéty Ľ. Silencing of carbonic anhydrase I enhances the malignant potential of exosomes secreted by prostatic tumour cells. J Cell Mol Med 2019; 23:3641-3655. [PMID: 30916466 PMCID: PMC6484292 DOI: 10.1111/jcmm.14265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/14/2019] [Accepted: 02/26/2019] [Indexed: 12/17/2022] Open
Abstract
We report results showing that the silencing of carbonic anhydrase I (siCA1) in prostatic (PC3) tumour cells has a significant impact on exosome formation. An increased diameter, concentration and diversity of the produced exosomes were noticed as a consequence of this knock‐down. The protein composition of the exosomes' cargo was also altered. Liquid chromatography and mass spectrometry analyses identified 42 proteins significantly altered in PC3 siCA1 exosomes compared with controls. The affected proteins are mainly involved in metabolic processes, biogenesis, cell component organization and defense/immunity. Interestingly, almost all of them have been described as ‘enhancers' of tumour development through the promotion of cell proliferation, migration and invasion. Thus, our results indicate that the reduced expression of the CA1 protein enhances the malignant potential of PC3 cells.
Collapse
Affiliation(s)
| | | | | | - Oldřich Benada
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | | | - Ján Lakota
- Biomedical Research Center SAS, Bratislava, Slovak Republic.,St. Elizabeth Cancer Institute, Bratislava, Slovak Republic.,Center of Experimental Medicine SAS, Bratislava, Slovak Republic
| | - Ľudovít Škultéty
- Biomedical Research Center SAS, Bratislava, Slovak Republic.,Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| |
Collapse
|
12
|
The use of styrene-maleic acid copolymer (SMA) for studies on T cell membrane rafts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1861:130-141. [PMID: 30463696 DOI: 10.1016/j.bbamem.2018.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
Abstract
An emerging alternative to the use of detergents in biochemical studies on membrane proteins is apparently the use styrene-maleic acid (SMA) amphipathic copolymers. These cut the membrane into nanodiscs (SMA-lipid particles, SMALPs), which contain membrane proteins possibly surrounded by their native lipid environment. We examined this approach for studies on several types of T cell membrane proteins, previously defined as raft or non-raft associated, to see whether the properties of the raft derived SMALPs differ from non-raft SMALPs. Our results indicate that two types of raft proteins, GPI-anchored proteins and two Src family kinases, are markedly present in membrane fragments much larger (>250 nm) than those containing non-raft proteins (<20 nm). Lipid probes sensitive to membrane fluidity (membrane order) indicate that the lipid environment in the large SMALPs is less fluid (more ordered) than in the small ones which may indicate the presence of a more ordered lipid Lo phase which is characteristic of membrane rafts. Also the lipid composition of the small vs. large SMALPs is markedly different - the large ones are enriched in cholesterol and lipids containing saturated fatty acids. In addition, we confirm that T cell membrane proteins present in SMALPs can be readily immunoisolated. Our results support the use of SMA as a potentially better (less artifact prone) alternative to detergents for studies on membrane proteins and their complexes, including membrane rafts.
Collapse
|
13
|
Vyhnanovský J, Kratzer J, Benada O, Matoušek T, Mester Z, Sturgeon RE, Dědina J, Musil S. Diethyldithiocarbamate enhanced chemical generation of volatile palladium species, their characterization by AAS, ICP-MS, TEM and DART-MS and proposed mechanism of action. Anal Chim Acta 2017; 1005:16-26. [PMID: 29389315 DOI: 10.1016/j.aca.2017.12.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 11/27/2022]
Abstract
Comprehensive investigation of chemical generation of volatile species (VSG) of palladium for detection by analytical atomic and mass spectrometry and, specifically, the mechanistic aspects of their formation and tentative identification are presented. VSG was achieved in a flow injection mode using a generator that permitted rapid mixing of acidified sample with NaBH4 reductant. Atomization in a diffusion flame with detection by atomic absorption spectrometry was exclusively used for optimization of generation conditions while inductively coupled plasma mass spectrometry was utilized to investigate overall system efficiency and analytical metrics of the VSG system for potential ultratrace analysis. Sodium diethyldithiocarbamate (DDTC) served as a crucial reaction modifier, enhancing overall system efficiency 9-fold. Combinations of modifiers, Triton X-100 and Antifoam B surfactants provided a synergistic effect to yield a further 2-fold enhancement of VSG. The overall system efficiency was in the range 16-22%, with higher efficiencies correlating with higher Pd concentrations. The contribution of co-generated aerosol to the overall system efficiency, determined by means of concurrent measurement of added Cs, was negligible - less than 0.1%. The nature of the volatile species was investigated using several approaches, but principally by transmission electron microscopy (TEM) after their collection on a grid, and by direct analysis in real time (DART) using high resolution orbitrap mass spectrometry. These experiments suggest a parallel but dual-route mechanism of VSG of Pd, one attributed to generation of a volatile DDTC chelate of Pd and a second to nanoparticle formation.
Collapse
Affiliation(s)
- Jaromír Vyhnanovský
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic; Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Albertov 8, 128 43 Prague, Czech Republic
| | - Jan Kratzer
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
| | - Oldřich Benada
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Tomáš Matoušek
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
| | - Zoltán Mester
- National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Ralph E Sturgeon
- National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Jiří Dědina
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
| | - Stanislav Musil
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic.
| |
Collapse
|
14
|
Chemical generation of volatile species of copper – Optimization, efficiency and investigation of volatile species nature. Anal Chim Acta 2017; 977:10-19. [DOI: 10.1016/j.aca.2017.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 11/23/2022]
|
15
|
Mikalová L, Bosák J, Hříbková H, Dědičová D, Benada O, Šmarda J, Šmajs D. Novel Temperate Phages of Salmonella enterica subsp. salamae and subsp. diarizonae and Their Activity against Pathogenic S. enterica subsp. enterica Isolates. PLoS One 2017; 12:e0170734. [PMID: 28118395 PMCID: PMC5261728 DOI: 10.1371/journal.pone.0170734] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/10/2017] [Indexed: 01/20/2023] Open
Abstract
Forty strains of Salmonella enterica (S. enterica) subspecies salamae (II), arizonae (IIIa), diarizonae (IIIb), and houtenae (IV) were isolated from human or environmental samples and tested for bacteriophage production. Production of bacteriophages was observed in 15 S. enterica strains (37.5%) belonging to either the subspecies salamae (8 strains) or diarizonae (7 strains). Activity of phages was tested against 52 pathogenic S. enterica subsp. enterica isolates and showed that phages produced by subsp. salamae had broader activity against pathogenic salmonellae compared to phages from the subsp. diarizonae. All 15 phages were analyzed using PCR amplification of phage-specific regions and 9 different amplification profiles were identified. Five phages (SEN1, SEN4, SEN5, SEN22, and SEN34) were completely sequenced and classified as temperate phages. Phages SEN4 and SEN5 were genetically identical, thus representing a single phage type (i.e. SEN4/5). SEN1 and SEN4/5 fit into the group of P2-like phages, while the SEN22 phage showed sequence relatedness to P22-like phages. Interestingly, while phage SEN34 was genetically distantly related to Lambda-like phages (Siphoviridae), it had the morphology of the Myoviridae family. Based on sequence analysis and electron microscopy, phages SEN1 and SEN4/5 were members of the Myoviridae family and phage SEN22 belonged to the Podoviridae family.
Collapse
Affiliation(s)
- Lenka Mikalová
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Hana Hříbková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Daniela Dědičová
- National Reference Laboratory for Salmonella, The National Institute of Public Health, Šrobárova, Prague, Czech Republic
| | - Oldřich Benada
- Institute of Microbiology of ASCR, v.v.i., Vídeňská, Prague, Czech Republic
| | - Jan Šmarda
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| |
Collapse
|
16
|
Osicka R, Osickova A, Hasan S, Bumba L, Cerny J, Sebo P. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. eLife 2015; 4:e10766. [PMID: 26650353 PMCID: PMC4755762 DOI: 10.7554/elife.10766] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/09/2015] [Indexed: 12/24/2022] Open
Abstract
Integrins are heterodimeric cell surface adhesion and signaling receptors that are essential for metazoan existence. Some integrins contain an I-domain that is a major ligand binding site. The ligands preferentially engage the active forms of the integrins and trigger signaling cascades that alter numerous cell functions. Here we found that the adenylate cyclase toxin (CyaA), a key virulence factor of the whooping cough agent Bordetella pertussis, preferentially binds an inactive form of the integrin complement receptor 3 (CR3), using a site outside of its I-domain. CyaA binding did not trigger downstream signaling of CR3 in human monocytes and CyaA-catalyzed elevation of cAMP effectively blocked CR3 signaling initiated by a natural ligand. This unprecedented type of integrin-ligand interaction distinguishes CyaA from all other known ligands of the I-domain-containing integrins and provides a mechanistic insight into the previously observed central role of CyaA in the pathogenesis of B. pertussis.
Collapse
Affiliation(s)
- Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Shakir Hasan
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Cerny
- Institute of Biotechnology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
17
|
Beranová J, Seydlová G, Kozak H, Benada O, Fišer R, Artemenko A, Konopásek I, Kromka A. Sensitivity of bacteria to diamond nanoparticles of various size differs in gram-positive and gram-negative cells. FEMS Microbiol Lett 2014; 351:179-86. [DOI: 10.1111/1574-6968.12373] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/22/2013] [Accepted: 12/22/2013] [Indexed: 11/26/2022] Open
Affiliation(s)
- Jana Beranová
- Institute of Physics v.v.i.; Academy of Sciences of the Czech Republic; Prague; Czech Republic
- Faculty of Science; Charles University in Prague; Prague Czech Republic
| | - Gabriela Seydlová
- Institute of Physics v.v.i.; Academy of Sciences of the Czech Republic; Prague; Czech Republic
- Faculty of Science; Charles University in Prague; Prague Czech Republic
| | - Halyna Kozak
- Institute of Physics v.v.i.; Academy of Sciences of the Czech Republic; Prague; Czech Republic
| | - Oldřich Benada
- Institute of Microbiology v.v.i.; Academy of Sciences of the Czech Republic; Prague Czech Republic
- Faculty of Science; J.E. Purkinje University in Ústí nad Labem; Ústí nad Labem Czech Republic
| | - Radovan Fišer
- Faculty of Science; Charles University in Prague; Prague Czech Republic
| | - Anna Artemenko
- Institute of Physics v.v.i.; Academy of Sciences of the Czech Republic; Prague; Czech Republic
| | - Ivo Konopásek
- Faculty of Science; Charles University in Prague; Prague Czech Republic
| | - Alexander Kromka
- Institute of Physics v.v.i.; Academy of Sciences of the Czech Republic; Prague; Czech Republic
| |
Collapse
|
18
|
Wald T, Osickova A, Sulc M, Benada O, Semeradtova A, Rezabkova L, Veverka V, Bednarova L, Maly J, Macek P, Sebo P, Slaby I, Vondrasek J, Osicka R. Intrinsically disordered enamel matrix protein ameloblastin forms ribbon-like supramolecular structures via an N-terminal segment encoded by exon 5. J Biol Chem 2013; 288:22333-45. [PMID: 23782691 DOI: 10.1074/jbc.m113.456012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tooth enamel, the hardest tissue in the body, is formed by the evolutionarily highly conserved biomineralization process that is controlled by extracellular matrix proteins. The intrinsically disordered matrix protein ameloblastin (AMBN) is the most abundant nonamelogenin protein of the developing enamel and a key element for correct enamel formation. AMBN was suggested to be a cell adhesion molecule that regulates proliferation and differentiation of ameloblasts. Nevertheless, detailed structural and functional studies on AMBN have been substantially limited by the paucity of the purified nondegraded protein. With this study, we have developed a procedure for production of a highly purified form of recombinant human AMBN in quantities that allowed its structural characterization. Using size exclusion chromatography, analytical ultracentrifugation, transmission electron, and atomic force microscopy techniques, we show that AMBN self-associates into ribbon-like supramolecular structures with average widths and thicknesses of 18 and 0.34 nm, respectively. The AMBN ribbons exhibited lengths ranging from tens to hundreds of nm. Deletion analysis and NMR spectroscopy revealed that an N-terminal segment encoded by exon 5 comprises two short independently structured regions and plays a key role in self-assembly of AMBN.
Collapse
Affiliation(s)
- Tomas Wald
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
The Bordetella pertussis type III secretion system tip complex protein Bsp22 is not a protective antigen and fails to elicit serum antibody responses during infection of humans and mice. Infect Immun 2013; 81:2761-7. [PMID: 23690400 DOI: 10.1128/iai.00353-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The type III secretion system (T3SS) of pathogenic bordetellae employs a self-associating tip complex protein Bsp22. This protein is immunogenic during infections by Bordetella bronchiseptica and could be used as a protective antigen to immunize mice against B. bronchiseptica challenge. Since low-passage clinical isolates of the human pathogen Bordetella pertussis produce a highly homologous Bsp22 protein (97% homology), we examined its vaccine and diagnostic potential. No Bsp22-specific antibodies were, however, detected in serum samples from 36 patients with clinically and serologically confirmed whooping cough disease (pertussis syndrome). Moreover, although the induction of Bsp22 secretion by the laboratory-adapted 18323 strain in the course of mice lung infection was observed, the B. pertussis 18323-infected mice did not mount any detectable serum antibody response against Bsp22. Furthermore, immunization with recombinant Bsp22 protein yielded induction of high Bsp22-specific serum antibody titers but did not protect mice against an intranasal challenge with B. pertussis 18323. Unlike for B. bronchiseptica, hence, the Bsp22 protein is nonimmunogenic, and/or the serum antibody response to it is suppressed, during B. pertussis infections of humans and mice.
Collapse
|
20
|
Abstract
The overproduction of β-amyloid (Aβ) fragments in transgenic APPswe/PS1dE9 mice results in formation of amyloid deposits in the cerebral cortex and hippocampus starting around four months of age and leading to cognitive impairment much later. We have previously found an age and transgene-dependent weakening of muscarinic receptor-mediated transmission that was not present in young (6-10-week-old) animals but preceded both amyloid deposits and cognitive deficits. Now we investigated immediate and prolonged in vitro effects of non-aggregated Aβ(1-42) on coupling of individual muscarinic receptor subtypes expressed in CHO (Chinese hamster ovary) cells and their underlying mechanisms. Immediate application of 1 μM Aβ(1-42) had no effect on the binding of the muscarinic antagonist N-methylscopolamine or the agonist carbachol. In contrast, 4-day treatment of CHO cells expressing the M1 muscarinic receptor with 100 nM Aβ(1-42) significantly changed the binding characteristics of the muscarinic agonist carbachol and reduced the extent of the M1 receptor-stimulated breakdown of phosphatidylinositol while it did not demonstrate overt toxic effects. The treatment had no influence on the expression of either G-proteins or muscarinic receptors. In concert, we found no change in the gene expression of muscarinic receptor subtypes and gene or protein expression of the G(s), G(q/11), and G(i/o) G-proteins in the cerebral cortex of young adult APPswe/PS1dE9 mice that demonstrate high concentrations of soluble Aβ(1-42) and impaired muscarinic receptor-mediated G-protein activation. Our results provide strong evidence that the initial injurious effects of Aβ(1-42) on M1 muscarinic receptor-mediated transmissionis is due to compromised coupling of the receptor with G(q/11) G-protein.
Collapse
|
21
|
Vannucci L, Falvo E, Fornara M, Di Micco P, Benada O, Krizan J, Svoboda J, Hulikova-Capkova K, Morea V, Boffi A, Ceci P. Selective targeting of melanoma by PEG-masked protein-based multifunctional nanoparticles. Int J Nanomedicine 2012; 7:1489-509. [PMID: 22619508 PMCID: PMC3356193 DOI: 10.2147/ijn.s28242] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Nanoparticle-based systems are promising for the development of imaging and therapeutic agents. The main advantage of nanoparticles over traditional systems lies in the possibility of loading multiple functionalities onto a single molecule, which are useful for therapeutic and/or diagnostic purposes. These functionalities include targeting moieties which are able to recognize receptors overexpressed by specific cells and tissues. However, targeted delivery of nanoparticles requires an accurate system design. We present here a rationally designed, genetically engineered, and chemically modified protein-based nanoplatform for cell/tissue-specific targeting. Methods Our nanoparticle constructs were based on the heavy chain of the human protein ferritin (HFt), a highly symmetrical assembly of 24 subunits enclosing a hollow cavity. HFt-based nanoparticles were produced using both genetic engineering and chemical functionalization methods to impart several functionalities, ie, the α-melanocyte-stimulating hormone peptide as a melanoma-targeting moiety, stabilizing and HFt-masking polyethylene glycol molecules, rhodamine fluorophores, and magnetic resonance imaging agents. The constructs produced were extensively characterized by a number of physicochemical techniques, and assayed for selective melanoma-targeting in vitro and in vivo. Results Our HFt-based nanoparticle constructs functionalized with the α-melanocyte-stimulating hormone peptide moiety and polyethylene glycol molecules were specifically taken up by melanoma cells but not by other cancer cell types in vitro. Moreover, experiments in melanoma-bearing mice indicate that these constructs have an excellent tumor-targeting profile and a long circulation time in vivo. Conclusion By masking human HFt with polyethylene glycol and targeting it with an α-melanocyte-stimulating hormone peptide, we developed an HFt-based melanoma-targeting nanoplatform for application in melanoma diagnosis and treatment. These results could be of general interest, because the same strategy can be exploited to develop ad hoc nanoplatforms for specific delivery towards any cell/tissue type for which a suitable targeting moiety is available.
Collapse
Affiliation(s)
- Luca Vannucci
- Institute of Microbiology, Academy of Sciences of the Czech Republic, VVI, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mrázek H, Benada O, Man P, Vaněk O, Křen V, Bezouška K, Weignerová L. Facile production of Aspergillus niger α- N -acetylgalactosaminidase in yeast. Protein Expr Purif 2012; 81:106-114. [DOI: 10.1016/j.pep.2011.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/26/2011] [Accepted: 09/19/2011] [Indexed: 11/28/2022]
|
23
|
Ploss M, Kuhn A. Membrane insertion and assembly of epitope-tagged gp9 at the tip of the M13 phage. BMC Microbiol 2011; 11:211. [PMID: 21943062 PMCID: PMC3193035 DOI: 10.1186/1471-2180-11-211] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/26/2011] [Indexed: 11/18/2022] Open
Abstract
Background Filamentous M13 phage extrude from infected Escherichia coli with a tip structure composed of gp7 and gp9. This tip structure is extended by the assembly of the filament composed of the major coat protein gp8. Finally, gp3 and gp6 terminate the phage structure at the proximal end. Up to now, gp3 has been the primary tool for phage display technology. However, gp7, gp8 and gp9 could also be used for phage display and these phage particles should bind to two different or more surfaces when the modified coat proteins are combined. Therefore, we tested here if the amino-terminal end of gp9 can be modified and whether the modified portion is exposed and detectable on the M13 phage particles. Results The amino-terminal region of gp9 was modified by inserting short sequences that encode antigenic epitopes. We show here that the modified gp9 proteins correctly integrate into the membrane using the membrane insertase YidC exposing the modified epitope into the periplasm. The proteins are then efficiently assembled onto the phage particles. Also extensions up to 36 amino acid residues at the amino-terminal end of gp9 did not interfere with membrane integration and phage assembly. The exposure of the antigenic tags on the phage was visualised with immunogold labelling by electron microscopy and verified by dot blotting with antibodies to the tags. Conclusions Our results suggest that gp9 at the phage tip is suitable for the phage display technology. The modified gp9 can be supplied in trans from a plasmid and fully complements M13 phage with an amber mutation in gene 9. The modified phage tip is very well accessible to antibodies.
Collapse
Affiliation(s)
- Martin Ploss
- Institute of Microbiology and Molecular Biology, University of Hohenheim, Stuttgart, Germany
| | | |
Collapse
|
24
|
Kaplan O, Bezouška K, Plíhal O, Ettrich R, Kulik N, Vaněk O, Kavan D, Benada O, Malandra A, Sveda O, Veselá AB, Rinágelová A, Slámová K, Cantarella M, Felsberg J, Dušková J, Dohnálek J, Kotik M, Křen V, Martínková L. Heterologous expression, purification and characterization of nitrilase from Aspergillus niger K10. BMC Biotechnol 2011; 11:2. [PMID: 21210990 PMCID: PMC3023689 DOI: 10.1186/1472-6750-11-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 01/06/2011] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Nitrilases attract increasing attention due to their utility in the mild hydrolysis of nitriles. According to activity and gene screening, filamentous fungi are a rich source of nitrilases distinct in evolution from their widely examined bacterial counterparts. However, fungal nitrilases have been less explored than the bacterial ones. Nitrilases are typically heterogeneous in their quaternary structures, forming short spirals and extended filaments, these features making their structural studies difficult. RESULTS A nitrilase gene was amplified by PCR from the cDNA library of Aspergillus niger K10. The PCR product was ligated into expression vectors pET-30(+) and pRSET B to construct plasmids pOK101 and pOK102, respectively. The recombinant nitrilase (Nit-ANigRec) expressed in Escherichia coli BL21-Gold(DE3)(pOK101/pTf16) was purified with an about 2-fold increase in specific activity and 35% yield. The apparent subunit size was 42.7 kDa, which is approx. 4 kDa higher than that of the enzyme isolated from the native organism (Nit-ANigWT), indicating post-translational cleavage in the enzyme's native environment. Mass spectrometry analysis showed that a C-terminal peptide (Val327 - Asn₃₅₆) was present in Nit-ANigRec but missing in Nit-ANigWT and Asp₂₉₈-Val₃₁₃ peptide was shortened to Asp₂₉₈-Arg₃₁₀ in Nit-ANigWT. The latter enzyme was thus truncated by 46 amino acids. Enzymes Nit-ANigRec and Nit-ANigWT differed in substrate specificity, acid/amide ratio, reaction optima and stability. Refolded recombinant enzyme stored for one month at 4°C was fractionated by gel filtration, and fractions were examined by electron microscopy. The late fractions were further analyzed by analytical centrifugation and dynamic light scattering, and shown to consist of a rather homogeneous protein species composed of 12-16 subunits. This hypothesis was consistent with electron microscopy and our modelling of the multimeric nitrilase, which supports an arrangement of dimers into helical segments as a plausible structural solution. CONCLUSIONS The nitrilase from Aspergillus niger K10 is highly homologous (≥86%) with proteins deduced from gene sequencing in Aspergillus and Penicillium genera. As the first of these proteins, it was shown to exhibit nitrilase activity towards organic nitriles. The comparison of the Nit-ANigRec and Nit-ANigWT suggested that the catalytic properties of nitrilases may be changed due to missing posttranslational cleavage of the former enzyme. Nit-ANigRec exhibits a lower tendency to form filaments and, moreover, the sample homogeneity can be further improved by in vitro protein refolding. The homogeneous protein species consisting of short spirals is expected to be more suitable for structural studies.
Collapse
Affiliation(s)
- Ondřej Kaplan
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
|
27
|
Vojtová J, Kofronová O, Sebo P, Benada O. Bordetella adenylate cyclase toxin induces a cascade of morphological changes of sheep erythrocytes and localizes into clusters in erythrocyte membranes. Microsc Res Tech 2006; 69:119-29. [PMID: 16456835 DOI: 10.1002/jemt.20277] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adenylate cyclase toxin (CyaA) of Bordetella pertussis penetrates the membrane of eukaryotic cells, producing high levels of intracellular cAMP, as well as hemolysis that results from the formation of cation-selective toxin channels in the membrane. Using several microscopical approaches we studied the effects of CyaA action on the morphology of sheep erythrocytes during early phases preceding lysis and examined localization of CyaA molecules within the erythrocyte membrane. CyaA induced a cascade of morphological changes of erythrocytes, such as shrinkage, formation of membrane projections, and blebs and swelling. The use of an enzymatically inactive CyaA-AC- toxoid that is unable to produce cAMP and of a CyaA-E581K mutant exhibiting higher hemolytic activity than with CyaA showed that the hemolytic activity is responsible for the induction of morphological changes of erythrocytes. Further, immunolabeling of inserted CyaA-232/FLAG molecules with specific anti-FLAG antibodies and IgG-gold particles indicated a clustered distribution of CyaA molecules in erythrocyte membrane. This was confirmed by immunofluorescence and confocal microscopy, which revealed uniform stoichiometry of CyaA clusters, suggesting CyaA binding into specific domains in erythrocyte membrane. Indeed, a decrease of CyaA binding after cholesterol depletion of erythrocytes suggests toxin targeting and binding to membrane microdomains (rafts).
Collapse
Affiliation(s)
- Jana Vojtová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20, Prague 4, Czech Republic
| | | | | | | |
Collapse
|
28
|
Smarda J, Benada O. Phage tail-like (high-molecular-weight) bacteriocins of Budvicia aquatica and Pragia fontium (Enterobacteriaceae). Appl Environ Microbiol 2006; 71:8970-3. [PMID: 16332902 PMCID: PMC1317372 DOI: 10.1128/aem.71.12.8970-8973.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Electron microscopic analysis of contractile phage tail-like bacteriocins of three Pragia fontium strains and one Budvicia aquatica strain was performed. Fonticin and aquaticin are remarkably heat sensitive but trypsin resistant. Simultaneous production of contractile and flexible phage tail-like bacteriocins in the P. fontium 64613 strain is shown for the first time.
Collapse
Affiliation(s)
- Jan Smarda
- Department of Biology, Faculty of Medicine, Masaryk University, Tomeova 12, CZ-602 00 Brno, Czech Republic
| | | |
Collapse
|
29
|
Identification and characterization of a heat-labile type I glutamine synthetase fromStreptomyces cinnamonensis. Folia Microbiol (Praha) 1997. [DOI: 10.1007/bf02826549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Regulation, purification and partial characterization of glutamine synthetase fromStreptomyces aureofaciens. Folia Microbiol (Praha) 1995. [DOI: 10.1007/bf02814720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Mikulik K, Benada O, Anderova M. Ribulose-1,5-bisphosphate carboxylase of thermophilic hydrogen-oxidizing microorganism Bacillus schlegelii. Biochem Biophys Res Commun 1992; 182:425-31. [PMID: 1731799 DOI: 10.1016/s0006-291x(05)80162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ribulose-1,5-bisphosphate carboxylase was isolated from thermophilic hydrogen-oxidizing Bacillus schlegelii. Molecular mass of the native enzyme is 560,000 and optimal reaction temperature is 70 degrees C. Km value for ribulose 1,5-bisphosphate is 0.27 mM. The carboxylase activity of the enzyme is dependent on Mg2+ with the optimum at 10 mM. The enzyme is an oligomer of L8S8 type with Mr of large subunits and small subunits of 56,000 and 14,000, respectively. Negatively stained enzyme has regular polygonal shape in top view, 12 nm in diameter, with central electron dense patch.
Collapse
Affiliation(s)
- K Mikulik
- Institute of Microbiology, Czechoslovak Academy of Sciences, Prague
| | | | | |
Collapse
|