1
|
Meng X, Li W, Wu Q, Gao Y, Zhang L. Microcystin-LR induces lactate production disruption via altering the m 6A modification in Sertoli cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115288. [PMID: 37481861 DOI: 10.1016/j.ecoenv.2023.115288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
We have previously reported the toxicity of microcystin-LR (MC-LR) to the male reproductive system, which results in functional changes in mouse testes. In this study, mice were orally exposed to MC-LR at 1, 7.5, 15, or 30 μg/L daily for 180 days. We found an increase in germ cell apoptosis in the seminiferous tubules and low-quality sperm in the epididymis. A decrease in lactate dehydrogenase A (Ldha) expression in testes through high-throughput sequencing was observed. We validated that MC-LR disrupted lactate production in Sertoli cells by suppressing the expression of Ldha. Further studies identified that methyltransferase 3 (Mettl3) catalysed N6-methyladenosine (m6A) methylation of Ldha mRNA. Mettl3 was downregulated in Sertoli cells following exposure to MC-LR, decreasing m6A levels of Ldha. The stability of Ldha mRNA decreased when m6A levels of Ldha were inhibited. In conclusion, these results showed that MC-LR inhibits the expression of Ldha in an m6A-dependent manner, which might result in the apoptosis of spermatogenic cells and a decline in sperm quality. Our work provides a new perspective to understanding MC-LR-induced male infertility.
Collapse
Affiliation(s)
- Xiannan Meng
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Wenju Li
- Department of Tropical Medicine and Infectious Diseases, Hainan Hospital, The Chinese PLA General Hospital, Sanya, Hainan, China
| | - Qingxuan Wu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Yue Gao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Ling Zhang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China; Department of Histology and Embryology, Basic Medical College, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
2
|
Chen X, Zheng Y, Li X, Gao Q, Feng T, Zhang P, Liao M, Tian X, Lu H, Zeng W. Profiling of miRNAs in porcine Sertoli cells. J Anim Sci Biotechnol 2020; 11:85. [PMID: 32821380 PMCID: PMC7429792 DOI: 10.1186/s40104-020-00487-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/12/2020] [Indexed: 11/10/2022] Open
Abstract
Background Sertoli cells (SCs) create a specialized environment to support and dictate spermatogenesis. MicroRNAs (miRNAs), a kind of ~ 22 nt small noncoding RNAs, have been reported to be highly abundant in mouse SCs and play critical roles in spermatogenesis. However, the miRNAs of porcine SCs remain largely unknown. Methods We isolated porcine SCs and conducted small RNA sequencing. By comparing miRNAs in germ cells, we systematically analyzed the miRNA expression pattern of porcine SCs. We screened the highly enriched SC miRNAs and predicted their functions by Gene Ontology analysis. The dual luciferase assay was used to elucidate the regulation of tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) by ssc-miR-149. Results The analysis showed that 18 miRNAs were highly expressed in SCs and 15 miRNAs were highly expressed in germ cells. These miRNAs were predicted to mediate SC and germ cell functions. In addition, ssc-miR-149 played critical roles in SCs by targeting TRAF3. Conclusion Our findings provide novel insights into the miRNA expression pattern and their regulatory roles of porcine SCs.
Collapse
Affiliation(s)
- Xiaoxu Chen
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001 China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yi Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xueliang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Qiang Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Tongying Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Pengfei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Mingzhi Liao
- College of Life Science, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xiu'e Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Hongzhao Lu
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001 China
| | - Wenxian Zeng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
3
|
Lara NDLEM, Costa GMJ, Figueiredo AFA, de França LR. The Sertoli cell: what can we learn from different vertebrate models? Anim Reprod 2020; 16:81-92. [PMID: 33299481 PMCID: PMC7720927 DOI: 10.21451/1984-3143-ar2018-125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Besides having medical applications, comparative studies on reproductive biology are very useful, providing, for instance, essential knowledge for basic, conservation and biotechnological research. In order to maintain the reproductive potential and the survival of all vertebrate species, both sperm and steroid production need to occur inside the testis. From the approximately fifty thousand vertebrate species still alive, very few species are already investigated; however, our knowledge regarding Sertoli cell biology is quite good. In this regard, it is already known that since testis differentiation the Sertoli cells are the somatic cells in charge of supporting and orchestrating germ cells during development and full spermatogenesis in adult animals. In the present review, we highlight key aspects related to Sertoli cell biology in vertebrates and show that this key testis somatic cell presents huge and intrinsic plasticity, particularly when cystic (fish and amphibians) and non-cystic (reptiles, birds and mammals) spermatogenesis is compared. In particular, we briefly discuss the main aspects related to Sertoli cells functions, interactions with germ cells, Sertoli cells proliferation and efficiency, as well as those regarding spermatogonial stem cell niche regulation, which are crucial aspects responsible for the magnitude of sperm production. Most importantly, we show that we could greatly benefit from investigations using different vertebrate experimental models, mainly now that there is a big concern regarding the decline in human sperm counts caused by a multitude of factors.
Collapse
Affiliation(s)
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Luiz Renato de França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
4
|
Chen H, Jin S, Huang S, Folmer J, Liu J, Ge R, Zirkin BR. Transplantation of alginate-encapsulated seminiferous tubules and interstitial tissue into adult rats: Leydig stem cell differentiation in vivo? Mol Cell Endocrinol 2016; 436:250-8. [PMID: 27591121 PMCID: PMC5050555 DOI: 10.1016/j.mce.2016.08.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/09/2016] [Accepted: 08/29/2016] [Indexed: 01/06/2023]
Abstract
In vivo and in vitro studies were conducted to determine whether testosterone-producing Leydig cells are able to develop from cells associated with rat seminiferous tubules, interstitium, or both. Adult rat seminiferous tubules and interstitium were isolated, encapsulated separately in alginate, and implanted subcutaneously into castrated rats. With implanted tubules, serum testosterone increased through two months. Tubules removed from the implanted rats and incubated with LH produced testosterone, and cells on the tubule surfaces expressed steroidogenic enzymes. With implanted interstitial tissue, serum levels of testosterone remained undetectable. However, co-culture of interstitium plus tubules in vitro resulted in the formation of Leydig cells by both compartments. These results indicate that seminiferous tubules contain both cellular and paracrine factors necessary for the differentiation of Leydig cells, and that the interstitial compartment contains precursor cells capable of forming testosterone-producing Leydig cells but requires stimulation by paracrine factors from the seminiferous tubules to do so.
Collapse
Affiliation(s)
- Haolin Chen
- Center for Scientific Research, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shiying Jin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shengsong Huang
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Urology, Tongji Hospital, Tongji University School of Medicine, Putuo, Shanghai 200065, China
| | - Janet Folmer
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - June Liu
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Renshan Ge
- Center for Scientific Research, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Barry R Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
5
|
Abstract
In situ hybridization (ISH) is an excellent method for detecting RNA in histological sections, both to detect gene expression and to assign gene expression to a distinct cell population. Therefore, ISH may be used in basic cell biology to detect the expression of certain genes within a tissue containing various cell populations. Here, we describe the detection and cellular localization of three estrogen receptors, both isoforms of the genomic estrogen receptor (ERα and ERβ) as well as the membrane-bound G-protein-coupled estrogen receptor 1 (GPER) in the human testis.
Collapse
|
6
|
França LR, Hess RA, Dufour JM, Hofmann MC, Griswold MD. The Sertoli cell: one hundred fifty years of beauty and plasticity. Andrology 2016; 4:189-212. [PMID: 26846984 DOI: 10.1111/andr.12165] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 12/18/2022]
Abstract
It has been one and a half centuries since Enrico Sertoli published the seminal discovery of the testicular 'nurse cell', not only a key cell in the testis, but indeed one of the most amazing cells in the vertebrate body. In this review, we begin by examining the three phases of morphological research that have occurred in the study of Sertoli cells, because microscopic anatomy was essentially the only scientific discipline available for about the first 75 years after the discovery. Biochemistry and molecular biology then changed all of biological sciences, including our understanding of the functions of Sertoli cells. Immunology and stem cell biology were not even topics of science in 1865, but they have now become major issues in our appreciation of Sertoli cell's role in spermatogenesis. We end with the universal importance and plasticity of function by comparing Sertoli cells in fish, amphibians, and mammals. In these various classes of vertebrates, Sertoli cells have quite different modes of proliferation and epithelial maintenance, cystic vs. tubular formation, yet accomplish essentially the same function but in strikingly different ways.
Collapse
Affiliation(s)
- L R França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,National Institute for Amazonian Research (INPA), Manaus, Amazonas, Brazil
| | - R A Hess
- Reproductive Biology and Toxicology, Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| | - J M Dufour
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - M C Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M D Griswold
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
7
|
|
8
|
Kavarthapu R, Dufau ML. Germ Cell Nuclear Factor (GCNF/RTR) Regulates Transcription of Gonadotropin-Regulated Testicular RNA Helicase (GRTH/DDX25) in Testicular Germ Cells--The Androgen Connection. Mol Endocrinol 2015; 29:1792-804. [PMID: 26484580 DOI: 10.1210/me.2015-1198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gonadotropin-regulated testicular RNA helicase (GRTH) (GRTH/DDX25), is a testis-specific protein essential for completion of spermatogenesis. Transgenic mice carrying 5'-flanking regions of the GRTH gene/green fluorescence protein (GFP) reporter revealed a region (-6.4/-3.6 kb) which directs its expression in germ cells (GCs) via androgen action. This study identifies a functional cis-binding element on the GRTH gene for GC nuclear factor (GCNF) (GCNF/RTR) required to regulate GRTH gene expression in postmeiotic testis GCs and explore the action of androgen on GCNF and GRTH transcription/expression. GCNF expression decreased in mice testis upon flutamide (androgen receptor antagonist) treatment, indicating the presence of an androgen/GCNF network to direct GRTH expression in GC. Binding studies and chromatin immunoprecipitation demonstrated specific association of GCNF to a consensus half-site (-5270/-5252) of the GRTH gene in both round spermatids and spermatocytes, which was abolished by flutamide treatment in round spermatids. Moreover, flutamide treatment of wild-type mice caused selective reduction of GCNF and GRTH in round spermatids. GCNF knock-down in seminiferous tubules from GRTH-transgenic mice (dark zone, round spermatid rich) caused decreased GFP expression. Exposure of tubules to flutamide caused decrease in GCNF and GFP expression, whereas androgen exposure induced significant increase. Our studies provide evidence for actions of androgen on GCNF cell-specific regulation of GRTH expression in GC. GRTH associates with GCNF mRNA, its absence caused increase on GCNF expression and mRNA stability indicative of a negative autocrine regulation of GCNF by GRTH. These in vivo/in vitro models link androgen actions to GC through GCNF, as regulated transfactor that controls transcription/expression of GRTH.
Collapse
Affiliation(s)
- Raghuveer Kavarthapu
- Section on Molecular Endocrinology, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Maria L Dufau
- Section on Molecular Endocrinology, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
9
|
Stanley E, Lin CY, Jin S, Liu J, Sottas CM, Ge R, Zirkin BR, Chen H. Identification, proliferation, and differentiation of adult Leydig stem cells. Endocrinology 2012; 153:5002-10. [PMID: 22865373 PMCID: PMC3512003 DOI: 10.1210/en.2012-1417] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Leydig cells, the testosterone-producing cells of the adult testis, rarely turn over. However, their elimination with ethane dimethanesulfonate (EDS) is followed by the appearance of new, fully functional adult Leydig cells. The cells that give rise to the new Leydig cells have not been well characterized, and little is known about the mechanism by which they are regulated. We isolated cells expressing platelet-derived growth factor receptor-α, but not 3β-hydroxysteroid dehydrogenase (3β-HSD(neg)) from the testes of EDS-treated adult rats. Depending on conditions, these cells proliferated indefinitely or differentiated and produced testosterone. To localize these cells and to determine the effect of the testicular environment on their function, the seminiferous tubules and testicular interstitium were physically separated and cultured. During the first 72 h in culture, 3β-HSD(neg) cells on the tubule surfaces underwent divisions. Some of these cells later expressed 3β-HSD and produced testosterone. Removal of the newly formed 3β-HSD(pos) cells from the tubule surfaces with EDS, followed by further culture of the stripped tubules, resulted in the reappearance of testosterone-producing cells. These results, taken together, suggest that the precursors for newly formed Leydig cells are stem cells, with many if not all situated on the surfaces of the seminiferous tubules. Although normally quiescent, the stem cells are capable of self-renewal and differentiation. The development of the tubule culture system should provide a valuable in vitro approach to assess the role(s) of niche components on the function of adult Leydig stem cells despite their residing in a complex mammalian tissue.
Collapse
Affiliation(s)
- Erin Stanley
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sato T, Aiyama Y, Ishii-Inagaki M, Hara K, Tsunekawa N, Harikae K, Uemura-Kamata M, Shinomura M, Zhu XB, Maeda S, Kuwahara-Otani S, Kudo A, Kawakami H, Kanai-Azuma M, Fujiwara M, Miyamae Y, Yoshida S, Seki M, Kurohmaru M, Kanai Y. Cyclical and patch-like GDNF distribution along the basal surface of Sertoli cells in mouse and hamster testes. PLoS One 2011; 6:e28367. [PMID: 22174794 PMCID: PMC3235125 DOI: 10.1371/journal.pone.0028367] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 11/07/2011] [Indexed: 12/22/2022] Open
Abstract
Background and Aims In mammalian spermatogenesis, glial cell line-derived neurotrophic factor (GDNF) is one of the major Sertoli cell-derived factors which regulates the maintenance of undifferentiated spermatogonia including spermatogonial stem cells (SSCs) through GDNF family receptor α1 (GFRα1). It remains unclear as to when, where and how GDNF molecules are produced and exposed to the GFRα1-positive spermatogonia in vivo. Methodology and Principal Findings Here we show the cyclical and patch-like distribution of immunoreactive GDNF-positive signals and their close co-localization with a subpopulation of GFRα1-positive spermatogonia along the basal surface of Sertoli cells in mice and hamsters. Anti-GDNF section immunostaining revealed that GDNF-positive signals are mainly cytoplasmic and observed specifically in the Sertoli cells in a species-specific as well as a seminiferous cycle- and spermatogenic activity-dependent manner. In contrast to the ubiquitous GDNF signals in mouse testes, high levels of its signals were cyclically observed in hamster testes prior to spermiation. Whole-mount anti-GDNF staining of the seminiferous tubules successfully visualized the cyclical and patch-like extracellular distribution of GDNF-positive granular deposits along the basal surface of Sertoli cells in both species. Double-staining of GDNF and GFRα1 demonstrated the close co-localization of GDNF deposits and a subpopulation of GFRα1-positive spermatogonia. In both species, GFRα1-positive cells showed a slender bipolar shape as well as a tendency for increased cell numbers in the GDNF-enriched area, as compared with those in the GDNF-low/negative area of the seminiferous tubules. Conclusion/Significance Our data provide direct evidence of regionally defined patch-like GDNF-positive signal site in which GFRα1-positive spermatogonia possibly interact with GDNF in the basal compartment of the seminiferous tubules.
Collapse
Affiliation(s)
- Takeshi Sato
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
- Drug Safety Research Labs, Astellas Pharma Inc., Osaka, Japan
| | - Yoshimi Aiyama
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
| | | | - Kenshiro Hara
- Division of Germ Cell Biology, National Institute for Basic Biology and Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Naoki Tsunekawa
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
| | - Kyoko Harikae
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
| | - Mami Uemura-Kamata
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
- Center for Experimental Animal, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mai Shinomura
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
| | - Xiao Bo Zhu
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
| | - Seishi Maeda
- Division of Cell Biology, Department of Anatomy, Hyogo College of Medicine, Nishinomiya, Japan
| | - Sachi Kuwahara-Otani
- Division of Cell Biology, Department of Anatomy, Hyogo College of Medicine, Nishinomiya, Japan
| | - Akihiko Kudo
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Japan
| | - Hayato Kawakami
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Japan
| | - Masami Kanai-Azuma
- Center for Experimental Animal, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michio Fujiwara
- Drug Safety Research Labs, Astellas Pharma Inc., Osaka, Japan
| | - Yoichi Miyamae
- Drug Safety Research Labs, Astellas Pharma Inc., Osaka, Japan
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology and Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Makoto Seki
- Division of Cell Biology, Department of Anatomy, Hyogo College of Medicine, Nishinomiya, Japan
| | | | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
11
|
Graf M, Brobeil A, Sturm K, Steger K, Wimmer M. 14-3-3 beta in the healthy and diseased male reproductive system. Hum Reprod 2010; 26:59-66. [DOI: 10.1093/humrep/deq319] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
12
|
Sato H, Tsai-Morris CH, Dufau ML. Relevance of gonadotropin-regulated testicular RNA helicase (GRTH/DDX25) in the structural integrity of the chromatoid body during spermatogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:534-43. [PMID: 20176059 DOI: 10.1016/j.bbamcr.2010.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 01/29/2010] [Accepted: 02/09/2010] [Indexed: 11/17/2022]
Abstract
Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25), a multifunctional protein and a component of ribonucleoprotein complexes, is essential for the completion of spermatogenesis. We investigated the nuclear/cytoplasmic shuttling of GRTH in germ cells and its impact on the chromatoid body (CB)-a perinuclear organelle viewed as a storage/processing site of mRNAs. GRTH resides in the nucleus, cytoplasm and CB of round spermatids. Treatment of these cells with inhibitors of nuclear export or RNA synthesis caused nuclear retention of GRTH and its absence in the cytoplasm and CB. The nuclear levels of GRTH bound RNA messages were significantly enhanced and major reduction was observed in the cytoplasm. This indicated GRTH main transport function of mRNAs to the cytoplasm and CB. MVH, a germ cell helicase, and MIWI, a component of the RNA-induced-silencing complex (RISC), confined to the CB/cytoplasm, were absent in the CB and accumulated in the cytoplasm upon treatment. This also occurred in spermatids of GRTH-KO mice. The CB changed from lobular-filamentous to a small condensed structure after treatment resembling the CB of GRTH-KO. No interaction of GRTH with MVH or RISC members in both protein and RNA were observed. Besides of participating in the transport of messages of relevant spermatogenic genes, GRTH was found to transport its own message to cytoplasmic sites. Our studies suggest that GRTH through its export/transport function as a component of mRNP is essential to govern the CB structure in spermatids and to maintain systems that may participate in mRNA storage and their processing during spermatogenesis.
Collapse
Affiliation(s)
- Hisashi Sato
- Section on Molecular Endocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | | | | |
Collapse
|
13
|
|
14
|
Sluka P, O'Donnell L, McLachlan RI, Stanton PG. Application of laser-capture microdissection to analysis of gene expression in the testis. ACTA ACUST UNITED AC 2008; 42:173-201. [PMID: 18243898 DOI: 10.1016/j.proghi.2007.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 10/03/2007] [Indexed: 12/13/2022]
Abstract
The isolation and molecular analysis of highly purified cell populations from complex, heterogeneous tissues has been a challenge for many years. Spermatogenesis in the testis is a particularly difficult process to study given the unique multiple cellular associations within the seminiferous epithelium, making the isolation of specific cell types difficult. Laser-capture microdissection (LCM) is a recently developed technique that enables the isolation of individual cell populations from complex tissues. This technology has enhanced our ability to directly examine gene expression in enriched testicular cell populations by routine methods of gene expression analysis, such as real-time RT-PCR, differential display, and gene microarrays. The application of LCM has however introduced methodological hurdles that have not been encountered with more conventional molecular analyses of whole tissue. In particular, tissue handling (i.e. fixation, storage, and staining), consumables (e.g. slide choice), staining reagents (conventional H&E vs. fluorescence), extraction methods, and downstream applications have all required re-optimisation to facilitate differential gene expression analysis using the small amounts of material obtained using LCM. This review will discuss three critical issues that are essential for successful procurement of cells from testicular tissue sections; tissue morphology, capture success, and maintenance of molecular integrity. The importance of these issues will be discussed with specific reference to the two most commonly used LCM systems; the Arcturus PixCell IIe and PALM systems. The rat testis will be used as a model, and emphasis will be placed on issues of tissue handling, processing, and staining methods, including the application of fluorescence techniques to assist in the identification of cells of interest for the purposes of mRNA expression analysis.
Collapse
Affiliation(s)
- Pavel Sluka
- Prince Henry's Institute of Medical Research, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | | | | | | |
Collapse
|
15
|
Dufau ML, Tsai-Morris CH. Gonadotropin-regulated testicular helicase (GRTH/DDX25): an essential regulator of spermatogenesis. Trends Endocrinol Metab 2007; 18:314-20. [PMID: 17889551 DOI: 10.1016/j.tem.2007.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 09/10/2007] [Accepted: 09/10/2007] [Indexed: 12/27/2022]
Abstract
Male germ-cell maturation is orchestrated by a cascade of temporally regulated factors. Gonadotropin-regulated testicular helicase (GRTH/DDX25), a target of gonadotropin and androgen action, is a post-transcriptional regulator of key spermatogenesis genes. Male mice lacking GRTH are sterile, with spermatogenic arrest owing to the failure of round spermatids to elongate. GRTH is a component of messenger ribonucleoprotein particles, which transport target mRNAs to the cytoplasm for storage in chromatoid bodies of spermatids; these messages are released for translation during spermatogenesis. GRTH is also found in polyribosomes, where it regulates the translation of mRNAs encoding spermatogenesis factors. The association of GRTH mutations with male infertility underlines the importance of GRTH as a central, post-transcriptional regulator of spermatogenesis.
Collapse
Affiliation(s)
- Maria L Dufau
- Section on Molecular Endocrinology, Endocrinology and Reproduction Research Branch, National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
16
|
Ishikawa T, Morris PL. Interleukin-1beta signals through a c-Jun N-terminal kinase-dependent inducible nitric oxide synthase and nitric oxide production pathway in Sertoli epithelial cells. Endocrinology 2006; 147:5424-30. [PMID: 16887914 DOI: 10.1210/en.2006-0643] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our recent Sertoli cell (SC) studies showed that the c-Jun N-terminal kinase (JNK) and inducible cyclooxygenase-2 (COX-2) pathways are key regulatory components of IL (IL-1alpha, IL-1beta, and IL-6) expression and START-domain containing StARD1 and StARD5 proteins. IL-1beta regulates SC autocrine/paracrine activities and subsequently influences developing germ cells and spermatogenesis. This study was designed to evaluate whether IL-1beta mediates high-output inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in these specialized epithelial cells and characterize gonadotropin and cytokine-regulation of NO. Purified SCs were maintained in serum-free cultures and treated with FSH (100 ng-1 microg/ml) or IL-1beta (10 ng/ml) in time-course studies. To determine obligatory intracellular pathways, treatments were conducted with or without activity inhibitors: COX-2 selective (NS-398, 10 microM) or JNK (SP600125, 10 microM) for 1, 3, 6, and 24 h. NOS mRNAs and proteins were evaluated by RT-PCR and Western analysis, respectively. NO and reactive oxygen species were measured by flow cytometry and ELISA. IL-1beta transiently induces intracellular NO (30 min) but not reactive oxygen species. Subsequently, iNOS mRNA and protein expression (3-6 h) significantly increased after IL-1beta but not FSH stimulation, and in time-dependent manner, markedly increased extracellular NO (24 h, 8-fold). No change in the constitutive endothelial NOS isoform was observed. Inhibition of JNK, but not COX-2, activity inhibits IL-1beta-induced iNOS expression and NO production. Such findings suggest that intra- and extracellular NO within the tubule may alert SCs monitoring the microenvironment to an aberrant cytokine, triggering antioxidant and antiinflammatory activities to avoid disruption of spermatogenesis.
Collapse
Affiliation(s)
- Tomomoto Ishikawa
- Center for Biomedical Research, Population Council, New York, New York 10021, USA
| | | |
Collapse
|
17
|
Abstract
All germ cells throughout the animal kingdom contain cytoplasmic cloud-like accumulations of material called nuage. Polar bodies in Drosophila oocytes are probably the best known forms of nuage. In spermatogenic cells, the nuage is called chromatoid body (CB). In early spermatids of the rat, it has a diameter of 1-1.5 microm and a finely filamentous lobular structure. Typically, it is associated with a multitude of vesicles. It is first clearly seen in mid- and late pachytene spermatocytes as an intermitochondrial dense material. During early spermiogenesis it is seen near the Golgi complex and frequently connected by material continuities through nuclear pore complexes with intranuclear particles. In living cells, the CB moves around the Golgi complex and has frequent contacts with it. The CB also moves perpendicularly to the nuclear envelope, and even through cytoplasmic bridges to the neighbour spermatids. One of the major components of the CB is a DEAD-box RNA helicase VASA that belongs to a class of proteins thought to act as RNA chaperones. It is a general marker of all germ cells and best characterized in Drosophila. The mouse VASA homologue was recently used as a marker of sperm formation from embryonic stem cells. It becomes generally accepted that the CB with its associated structures constitute a mechanism of post-transcriptional processing and storage of several mRNA species that are shared between neighbour cells and used for translation when the genome of the spermatids becomes inactive.
Collapse
Affiliation(s)
- Martti Parvinen
- Department of Anatomy, University of Turku, FIN-20520 Turku, Finland.
| |
Collapse
|
18
|
Li LH, Donald JM, Golub MS. Review on testicular development, structure, function, and regulation in common marmoset. ACTA ACUST UNITED AC 2005; 74:450-69. [PMID: 16193499 DOI: 10.1002/bdrb.20057] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND The common marmoset (Callithrix jacchus) is a New World primate that has been used increasingly in toxicological evaluations including testing for testicular toxicity of pharmaceutical and environmental chemicals. Information on structural and functional characteristics of the testis in common marmosets ("marmoset" in this review) is critical for designing experiments, interpreting data collected, and determining relevance to humans in risk assessment. METHODS This study provides a comprehensive review on testicular development, structure, function, and regulation in common marmosets. RESULTS There is little information regarding testicular formation and development during gestation. Based on the overall pattern of embryonic development in marmosets, it is postulated that gonadal formation and testicular differentiation most likely takes place during gestational Week 6-12. After birth, the neonatal period of the first 2-3 weeks and the pubertal period from Months 6-12 are critical for establishment of spermatogenesis in the adult. In the adult, a nine-stage model has been used to describe the organization of seminiferous epithelium and multiple stages per tubular cross-section have been observed. Seminiferous epithelium is organized in a wave or partial-wave manner. There are on average two stages per cross-section of seminiferous tubules in adult marmoset testis. Sertoli cells in the marmoset have a uniform morphology. Marmoset spermatogenesis has a high efficiency. The prime determinant of germ cell production is proliferation and survival of spermatogonia. Sertoli cell proliferation during the neonatal period is regulated by follicle-stimulating hormone (FSH), but chorionic gonadotropin (CG), instead of luteinizing hormone (LH), is the only gonadotropin with luteinizing function in marmoset. The receptor gene for CG in marmoset is unique in that it does not have exon 10. Marmosets have a "generalized steroid hormone resistance," i.e., relatively high levels of steroid hormones in circulation and relatively low response to exogenous steroids. Blockage of FSH, CG, and testosterone production during the first 3 months after birth does not cause permanent damage to the male reproductive system. Initiation of spermatogenesis in the marmoset requires unique factors that are probably not present in other mammals. Normal male marmosets respond to estradiol injection positively (increased LH or CG levels), a pattern seen in normal females or castrated males, but not usually in normal males of other mammalian species. CONCLUSIONS It seems that the endocrine system including the testis in marmosets has some unique features that have not been observed in rodents, Old World primates, and humans, but detailed comparison in these features among these species will be presented in another review. Based on the data available, marmoset seems to be an interesting model for comparative studies. However, interpretation of experimental findings on the testicular effects in marmosets should be made with serious caution. Depending on potential mode of testicular actions of the chemical under investigation, marmoset may have very limited value in predicting potential testicular or steroid hormone-related endocrine effects of test chemicals in humans.
Collapse
Affiliation(s)
- Ling-Hong Li
- Reproductive and Cancer Hazard Assessment Section Branch, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California 95812, USA.
| | | | | |
Collapse
|
19
|
Wright WW, Smith L, Kerr C, Charron M. Mice that express enzymatically inactive cathepsin L exhibit abnormal spermatogenesis. Biol Reprod 2003; 68:680-7. [PMID: 12533435 DOI: 10.1095/biolreprod.102.006726] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The finding of large, stage-specific changes in secretion of procathepsin L by rat Sertoli cells has led to the hypothesis that this proenzyme promotes the survival, replication, or differentiation of spermatogenic cells. Experiments described herein used a mouse model to test this hypothesis. To prove that mice are appropriate for this purpose, we first demonstrate that mature mouse Sertoli cells express cathepsin L mRNA in the same stage-specific manner as rat Sertoli cells and they also secrete procathepsin L. To test whether catalytically active cathepsin L is required for normal spermatogenesis, we examined the testes of 110- to 120-day-old furless mice, which express catalytically inactive cathepsin L. Morphologic examination of testes of furless mice revealed both normal and atrophic seminiferous tubules. Enumeration of atrophic tubules in furless and control mice demonstrates that lack of functional cathepsin L results in a 12-fold increase in seminiferous tubule atrophy. To determine whether lack of functional cathepsin L affects the production of male germ cells in apparently normal, nonatrophic tubules, we compared numbers in control and furless mice of preleptotene spermatocytes, pachytene spermatocytes, and round spermatids per Sertoli cell. Results demonstrate that the lack of functional cathepsin L causes a 16% reduction in formation of preleptotene spermatocytes and a 25% reduction in differentiation of these cells into pachytene spermatocyte. These results suggest that procathepsin L either directly or indirectly has two distinct functions in the testis. This proenzyme prevents atrophy of seminiferous tubules and promotes the formation of preleptotene spermatocytes and the differentiation of these meiotic cells into pachytene spermatocytes.
Collapse
Affiliation(s)
- William W Wright
- Department of Biochemistry and Molecular Biology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205-2179, USA. wwright
| | | | | | | |
Collapse
|
20
|
Sluka P, O'Donnell L, Stanton PG. Stage-specific expression of genes associated with rat spermatogenesis: characterization by laser-capture microdissection and real-time polymerase chain reaction. Biol Reprod 2002; 67:820-8. [PMID: 12193390 DOI: 10.1095/biolreprod.102.004879] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Spermatogenesis in the rat consists of 14 unique morphologic cellular associations between Sertoli cells and developing germ cells within the seminiferous epithelium. The complexity of the cellular associations leads to difficulty in the isolation of individual cells at a defined stage of development for the study of their unique patterns of gene or protein expression. Thus, laser-capture microdissection is an ideal technique to permit such analysis. This study used laser-capture microdissection and real-time reverse transcription-polymerase chain reaction (RT-PCR) to quantitate the stage-specific expression of a series of genes of functional significance in hormonal regulation and cell-cell interactions in spermatogenesis, including cathepsin-L, CREM-tau, transition protein-1, androgen receptor, beta1-integrin, N-cadherin, and hypoxanthine phosphoribosyltransferase (HPRT). Frozen sections (10 micro m) were obtained from normal adult rat testes. Laser-capture microdissection (LCM) was used to capture all cells in cross-sections of seminiferous tubules that were grouped into stages I-V, VII-VIII, and IX-XIII. Transition protein-1 expression was lowest during stages I-V and increased 5.9-fold during stages VII-VIII and IX-XIII (P < 0.01). Cathepsin-L expression was highest during stages I-V and VII-VIII, falling 4.9-fold during stages IX-XIII (P < 0.05). Similarly, CREM-tau expression was highest during stages I-V and VII-VIII, falling 1.6-fold during stages IX-XIII (P < 0.05). A novel CREM-tau isoform lacking the phosphorylation domain was also characterized but was not stage-specific. beta1-Integrin, N-cadherin, and androgen receptor expression did not change between the spermatogenic stages examined. HPRT housekeeper expression was lowest during stages I-V but increased 1.5-fold during stages VII-VIII and IX-XIII (P < 0.05). This study is the first to apply LCM and real-time RT-PCR analysis to quantitate stage-specific changes in the expression of multiple genes in the seminiferous epithelium.
Collapse
Affiliation(s)
- Pavel Sluka
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia 3168
| | | | | |
Collapse
|
21
|
El-Hefnawy T, Ioffe S, Dym M. Expression of the leptin receptor during germ cell development in the mouse testis. Endocrinology 2000; 141:2624-30. [PMID: 10875267 DOI: 10.1210/endo.141.7.7542] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leptin, a recently identified hormonal product of the ob gene, is known to regulate appetite, body metabolism, and reproductive functions. We investigated the expression of the leptin receptor (Ob-R) in testes from different age groups. The messenger RNA for Ob-R was found in testes from all age groups using RT-PCR. Using immunohistochemistry, we observed age- and stage-dependent distribution of the Ob-R in mouse testis. In testis of 5-day-old mice, its expression was mainly in type A spermatogonia. In the 20- and 30-day-old testis, Ob-R expression was in the spermatocytes; in the adult testis, it was specific to spermatocytes in stages IX and X of the cycle of the seminiferous epithelium. Five main immunoreactive proteins were detected using Western blot (220, 120, 90, 66, and 46 kDa). The 120-kDa protein was evident only in 20-day-old and older testes, whereas the 90-kDa band was present only in the 5- and 10-day-old testis. Leptin treatment induced phosphorylation of signal transducer and activator of transcription-3 in cultured seminiferous tubules from adult and 5-day-old testes. Our results show for the first time age- and stage-specific localization of a functional Ob-R in testicular germ cells. We hypothesize a direct role for leptin, through phosphorylation of signal transducer and activator of transcription-3, in proliferation and differentiation of germ cells, which may partially explain the infertility observed in leptin-deficient mice.
Collapse
Affiliation(s)
- T El-Hefnawy
- Department of Cell Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | |
Collapse
|
22
|
Nowak FV, Torres G, Golden J, Hu SB. Expression of the preoptic regulatory factor-1 and -2 genes in rat testis. Developmental and hormonal regulation. Endocrine 1997; 6:65-72. [PMID: 9225118 DOI: 10.1007/bf02738804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hormone-responsive peptides play a vital role in development and regulation of testicular function. The preoptic regulatory factors, porf-1 and porf-2, were originally discovered in the rat brain, but are also expressed in the rat and human testis. In the brain expression is age-related, hormone-responsive, region- specific, and gender-related, suggesting that porf-1 and porf-2 are involved in gender-specific brain development and function. Tissue-specific porf-1 and porf-2 mRNAs are also found in the testis and hypophysectomy may alter testicular porf-2 expression. It was thus of interest to further examine porf-1 and porf-2 expression in the testis to evaluate their potential as hormone-responsive peptides that regulate testicular development and function. Testicular expression of both porf-1 and -2 was analyzed as a function of maturational stage, aging and hypophysectomy by the solution hybridization/nuclease protection assay, and cellular location determined by in situ hybridization histochemistry. Expression was quantitatively compared in normal male rats at 15, 30 and 60 d (n = 4) and at 2, 6, 12, and 24 mo of age (n = 5). During development porf-1 is expressed at a constant level at 15, 30 and 60 d, then declines significantly with advancing age; levels at 24 mo are only 20% of those seen at 2 mo (p < 0.05). In contrast, porf-2 expression is highest at 15 d of age and steadily declines at 30 and 60 d, plateaus in the mature adult (6 and 12 mo), then exhibits an additional significant decline in the aged 24 mo animals (6 vs 24 mo, p < 0.05). Hypophysectomy of young adult rats at day 42 results in increased testicular expression 12 d later of both porf-1 (p < 0.05) and porf-2(p < 0.005) compared to intact 54-d-old rats (n = 5). In situ hybridization histochemistry confirms that both porf-1 and porf-2 are expressed in the mature testis at 60 d of age. Porf-2 mRNA is localized to immature germ cells including spermatogonia and primary spermatocytes. Porf-1 mRNA is associated with mature sperm and at low levels in the Sertoli cell cytoplasm surrounding spermatocytes. These data suggest that porf-2 is a pituitary hormone-responsive factor in the developing testis and that both porf-1 and porf-2 have cell-type specific functions in the germ cell compartment of the mature testis
Collapse
Affiliation(s)
- F V Nowak
- Department of Internal Medicine, St. Louis University Health Sciences Center, MO, USA.
| | | | | | | |
Collapse
|
23
|
Foulkes NS, Sassone-Corsi P. Transcription factors coupled to the cAMP-signalling pathway. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1288:F101-21. [PMID: 9011175 DOI: 10.1016/s0304-419x(96)00025-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- N S Foulkes
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, C.U.de Strasbourg, France
| | | |
Collapse
|
24
|
Kerr JB. Macro, micro, and molecular research on spermatogenesis: the quest to understand its control. Microsc Res Tech 1995; 32:364-84. [PMID: 8563039 DOI: 10.1002/jemt.1070320503] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Synchronous maturation of the germ cells in the seminiferous epithelium has long been recognized by microscopy, and is believed to be a consequence of a complex interaction between the germ cells and the Sertoli cells, largely driven by testosterone and its synergistic action with follicle-stimulating hormone. Overall coordination of the cycle of the seminiferous epithelium is reviewed with regard to the known and possible actions of testosterone upon the Sertoli cells and the germ cells. With gradual refinements of optical instrumentation and development of a wide range of histological, morphometric, biochemical, and molecular techniques, coupled with selective alterations of hormonal stimulation and the cellular composition of the testis, new approaches to the question of how sperm production is regulated are becoming available. Germ cell and Sertoli cell functions are intimately related to each other via local, intratesticular or paracrine signals which are suppressed or triggered at certain defined steps in the spermatogenic process. The coordination of germ cell proliferation and maturation is discussed in terms of the contributions made by microscopical techniques.
Collapse
Affiliation(s)
- J B Kerr
- Department of Anatomy, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Wright WW, Zabludoff SD, Penttilä TL, Parvinen M. Germ cell-Sertoli cell interactions: regulation by germ cells of the stage-specific expression of CP-2/cathepsin L mRNA by Sertoli cells. DEVELOPMENTAL GENETICS 1995; 16:104-13. [PMID: 7736660 DOI: 10.1002/dvg.1020160203] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CP-2/cathepsin L mRNA is expressed primarily by rat Sertoli cells within stage VI-VIII seminiferous tubules. To test whether germ cells regulated this expression, we examined if separating Sertoli cells from specific germ cells affected expression of this transcript in Sertoli cells. First, Sertoli cells were isolated from adult (90-day-old) and immature (25-day-old) rats and levels of this transcript measured immediately or after 1, 3 and 5 days in culture. Results demonstrated that immediately upon isolation, CP-2/cathepsin L mRNA levels were significantly higher in mature cells. However, after 1 day in culture, the levels of this transcript increased in immature cells and remained high in mature cells. We therefore conclude that in vivo, a subset of germ cells inhibit the expression of CP-2/cathepsin L mRNA by immature Sertoli cells. Second, to examine the effect of specific germ cells on CP-2/cathepsin L mRNA expression, we exposed the testes of mature rats to 3 Gy of gamma-radiation and analyzed stage-specific expression of this transcript at varying times during maturation depletion and subsequent germ cell restoration. Loss of spermatogonia or spermatocytes was without effect. However, when pachytene spermatocytes through step 14 spermatids were depleted, expression at stages VI-VIII was reduced by half and expression at stages IX-I was increased 14-fold. These changes resulted in the loss of stage-specific expression of CP-2/cathepsin L mRNA by Sertoli cells. Finally, stage VI-VIII tubules, depleted primarily in step 15-19 spermatids, had levels of CP-2/cathepsin L mRNA that were 60% of control. However, stage-specific expression of this transcript was detected in these tubules. In contrast to what we noted with CP-2/cathepsin L mRNA, loss and restoration of germ cells had no effect on Sertoli cell levels of SGP-2 mRNA, indicating that testicular irradiation had no overall effect on Sertoli cell function. Taken together, these data suggest that the stage-specific expression of the CP-2/cathepsin L gene results from the sequential stimulation and inhibition of Sertoli cells by germ cells, that pachytene spermatocytes through step 14 spermatids are required for this stage-specific expression and that step 18 and 19 spermatids amplify this expression at stages VI-VIII.
Collapse
Affiliation(s)
- W W Wright
- Department of Population Dynamics, Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
26
|
Richler C, Ast G, Goitein R, Wahrman J, Sperling R, Sperling J. Splicing components are excluded from the transcriptionally inactive XY body in male meiotic nuclei. Mol Biol Cell 1994; 5:1341-52. [PMID: 7696714 PMCID: PMC301162 DOI: 10.1091/mbc.5.12.1341] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The study of the effect of programmed cessation of transcription in a large nuclear domain, on the distribution of elements of the pre-mRNA splicing machinery, is the main aim of this paper. To this end, we took advantage of the nuclear partitioning of mouse spermatocytes early in meiosis into autosomal transcribing and XY nontranscribing compartments. This system also allows to extend this study to stages in sperm differentiation that are accompanied by reduction and eventual cessation of transcription. We show by indirect immunofluorescence in spermatogenetic cells that 1) fluorescent signals of the pre-mRNA splicing factors SF53/4 and SC35, of the Sm antigens, and of RNA polymerase II, are largely absent from the nontranscribing, X-inactivated compartment, but are abundantly present in the transcribing autosomal compartment and 2) the presence, gradual reduction, and absence of transcriptive activity in nuclei undergoing the sperm formation sequence are positively correlated with the fluorescence patterns of the antibodies against SF53/4, SC35, and the Sm antigens. These data suggest that cessation of transcription during spermatogenesis is accompanied by exclusion of the splicing machinery from nontranscribing chromatin to its vicinity.
Collapse
Affiliation(s)
- C Richler
- Department of Genetics, Hebrew University of Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
27
|
|