1
|
Alhadidy MM, Kanaan NM. Biochemical approaches to assess the impact of post-translational modifications on pathogenic tau conformations using recombinant protein. Biochem Soc Trans 2024; 52:301-318. [PMID: 38348781 PMCID: PMC10903483 DOI: 10.1042/bst20230596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/29/2024]
Abstract
Tau protein is associated with many neurodegenerative disorders known as tauopathies. Aggregates of tau are thought of as a main contributor to neurodegeneration in these diseases. Increasingly, evidence points to earlier, soluble conformations of abnormally modified monomers and multimeric tau as toxic forms of tau. The biological processes driving tau from physiological species to pathogenic conformations remain poorly understood, but certain avenues are currently under investigation including the functional consequences of various pathological tau changes (e.g. mutations, post-translational modifications (PTMs), and protein-protein interactions). PTMs can regulate several aspects of tau biology such as proteasomal and autophagic clearance, solubility, and aggregation. Moreover, PTMs can contribute to the transition of tau from normal to pathogenic conformations. However, our understating of how PTMs specifically regulate the transition of tau into pathogenic conformations is partly impeded by the relative lack of structured frameworks to assess and quantify these conformations. In this review, we describe a set of approaches that includes several in vitro assays to determine the contribution of PTMs to tau's transition into known pathogenic conformations. The approaches begin with different methods to create recombinant tau proteins carrying specific PTMs followed by validation of the PTMs status. Then, we describe a set of biochemical and biophysical assays that assess the contribution of a given PTM to different tau conformations, including aggregation, oligomerization, exposure of the phosphatase-activating domain, and seeding. Together, these approaches can facilitate the advancement of our understanding of the relationships between PTMs and tau conformations.
Collapse
Affiliation(s)
- Mohammed M. Alhadidy
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, U.S.A
- Neuroscience Program, Michigan State University, East Lansing, MI, U.S.A
| | - Nicholas M. Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, U.S.A
- Neuroscience Program, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
2
|
El Kantar S, Yassin A, Nehmeh B, Labaki L, Mitri S, Naser Aldine F, Hirko A, Caballero S, Monck E, Garcia-Maruniak A, Akoury E. Deciphering the therapeutical potentials of rosmarinic acid. Sci Rep 2022; 12:15489. [PMID: 36109609 PMCID: PMC9476430 DOI: 10.1038/s41598-022-19735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/02/2022] [Indexed: 12/01/2022] Open
Abstract
Lemon balm is herbal tea used for soothing stomach cramps, indigestion, and nausea. Rosmarinic acid (RA) is one of its chemical constituents known for its therapeutic potentials against cancer, inflammatory and neuronal diseases such as the treatment of neurofibromatosis or prevention from Alzheimer’s diseases (AD). Despite efforts, recovery and purification of RA in high yields has not been entirely successful. Here, we report its aqueous extraction with optimal conditions and decipher the structure by nuclear magnetic resonance (NMR) spectroscopy. Using various physical–chemical and biological assays, we highlight its anti-aggregation inhibition potentials against the formation of Tau filaments, one of the hallmarks of AD. We then examine its anti-cancer potentials through reduction of the mitochondrial reductase activity in tumor cells and investigate its electrochemical properties by cyclic voltammetry. Our data demonstrates that RA is a prominent biologically active natural product with therapeutic potentials for drug discovery in AD, cancer therapy and inflammatory diseases.
Collapse
|
3
|
Townsend D, Fullwood NJ, Yates EA, Middleton DA. Aggregation Kinetics and Filament Structure of a Tau Fragment Are Influenced by the Sulfation Pattern of the Cofactor Heparin. Biochemistry 2020; 59:4003-4014. [PMID: 32954725 PMCID: PMC7584336 DOI: 10.1021/acs.biochem.0c00443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/11/2020] [Indexed: 01/16/2023]
Abstract
A pathological signature of Alzheimer's disease (AD) is the formation of neurofibrillary tangles comprising filamentous aggregates of the microtubule associated protein tau. Tau self-assembly is accelerated by polyanions including heparin, an analogue of heparan sulfate. Tau filaments colocalize with heparan sulfate proteoglycans (HSPGs) in vivo, and HSPGs may also assist the transcellular propagation of tau aggregates. Here, we investigate the role of the sulfate moieties of heparin in the aggregation of a recombinant tau fragment Δtau187, comprising residues 255-441 of the C-terminal microtubule-binding domain. The effects that the selective removal of the N-, 2-O-, and 6-O-sulfate groups from heparin have on the kinetics of tau aggregation, aggregate morphology, and protein structure and dynamics were examined. Aggregation kinetics monitored by thioflavin T (ThT) fluorescence revealed that aggregation is considerably slower in the presence of 2-O-desulfated heparin than with N- or 6-O-desulfated heparin. Transmission electron microscopy revealed that tau filaments induced by 2-O-desulfated heparin were more slender than filaments formed in the presence of intact heparin or 6-O-desulfated heparin. The 2-O-desulfated heparin-induced filaments had more extensive regions of flexibility than the other filaments, according to circular dichroism and solid-state NMR spectroscopy. These results indicate that the sulfation pattern of heparin regulates tau aggregation, not purely though electrostatic forces but also through conformational perturbations of heparin when the 2-O-sulfate is removed. These findings may have implications for the progression of AD, as the sulfation pattern of GAGs is known to change during the aging process, which is the main risk factor for the disease.
Collapse
Affiliation(s)
- David Townsend
- Department
of Chemistry, University of Lancaster, Lancaster LA1 4YB, U.K.
| | - Nigel J. Fullwood
- Division
of Biomedical and Life Sciences, University
of Lancaster, Lancaster LA1 4YG, U.K.
| | - Edwin A. Yates
- Department
of Biochemistry and Systems Biology, Institute of Systems, Molecular
and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - David A. Middleton
- Department
of Chemistry, University of Lancaster, Lancaster LA1 4YB, U.K.
| |
Collapse
|
4
|
Smith JW, Jiang X, An H, Barclay AM, Licari G, Tajkhorshid E, Moore EG, Rienstra CM, Moore JS, Chen Q. Polymer-Peptide Conjugates Convert Amyloid into Protein Nanobundles through Fragmentation and Lateral Association. ACS APPLIED NANO MATERIALS 2020; 3:937-945. [PMID: 32149271 PMCID: PMC7059651 DOI: 10.1021/acsanm.9b01331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The assembly of proteins into amyloid fibrils has become linked not only with the progression of myriad human diseases, but also important biological functions. Understanding and controlling the formation, structure, and stability of amyloid fibrils is therefore a major scientific goal. Here we utilize electron microscopy-based approaches combined with quantitative statistical analysis to show how recently developed kind of amyloid modulators-multivalent polymer-peptide conjugates (mPPCs)-can be applied to control the structure and stability of amyloid fibrils. In doing so, we demonstrate that mPPCs are able to convert 40-residue amyloid beta fibrils into ordered nanostructures through a combination of fragmentation and bundling. Fragmentation is shown to be consistent with a model where the rate constant of fibril breakage is independent of the fibril length, suggesting a local and specific interaction between fibrils and mPPCs. Subsequent bundling, which was previously not observed, leads to the formation of sheet-like nanostructures which are surprisingly much more uniform than the starting fibrils. These nanostructures have dimensions independent of the molecular weight of the mPPC and retain the molecular-level ordering of the starting amyloid fibrils. Collectively, we reveal quantitative and nanoscopic understanding of how mPPCs can be applied to control amyloid structure and stability, and demonstrate approaches to elucidate nanoscale amyloid phase behavior in the presence of functional macromolecules and other modulators.
Collapse
Affiliation(s)
- John W. Smith
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Xing Jiang
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, United States
| | - Hyosung An
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Alexander M. Barclay
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Giuseppe Licari
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Edwin G. Moore
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Chad M. Rienstra
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Corresponding Authors: , ,
| | - Jeffrey S. Moore
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Corresponding Authors: , ,
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Corresponding Authors: , ,
| |
Collapse
|
5
|
Kumar H, Udgaonkar JB. Mechanistic approaches to understand the prion-like propagation of aggregates of the human tau protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:922-932. [PMID: 30986567 DOI: 10.1016/j.bbapap.2019.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022]
Abstract
The dynamic nature of the tau protein under physiological conditions is likely to be critical for it to perform its diverse functions inside a cell. Under some conditions, this intrinsically disordered protein assembles into pathogenic aggregates that are self-perpetuating, toxic and infectious in nature. The role of liquid-liquid phase separation in the initiation of the aggregation reaction remains to be delineated. Depending on the nature of the aggregate, its structure, and its localization, neurodegenerative disorders with diverse clinical features are manifested. The prion-like mechanism by which these aggregates propagate and spread across the brain is not well understood. Various factors (PTMs, mutations) have been strongly associated with the pathological aggregates of tau. However, little is known about how these factors modulate the pathological properties linked to aggregation. This review describes the current progress towards understanding the mechanism of propagation of tau aggregates.
Collapse
Affiliation(s)
- Harish Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India; Indian Institute of Science Education and Research, Pune 411008, India.
| |
Collapse
|
6
|
Novak P, Kontsekova E, Zilka N, Novak M. Ten Years of Tau-Targeted Immunotherapy: The Path Walked and the Roads Ahead. Front Neurosci 2018; 12:798. [PMID: 30450030 PMCID: PMC6224648 DOI: 10.3389/fnins.2018.00798] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
Neurofibrillary pathology comprised of pathological tau protein is closely tied to a range of neurodegenerative disorders, the most common of which is Alzheimer's disease. While they are individually rarer, a range of other disorders, the tauopathies (including Pick's disease, progressive supranuclear palsy, corticobasal degeneration, primary progressive aphasia, and ∼50% of behavioral variant frontotemporal dementia cases) display pronounced underlying tau pathology. In all cases, the distribution and amount of tau pathology closely correlates with the severity and phenotype of cognitive impairment, and with the pattern and degree of brain atrophy. Successfully counteracting tau pathology is likely to halt or slow the progression of these debilitating disorders. This makes tau a target of prime importance, yet an elusive one. The diversity of the tau proteome and post-translational modifications, as well as pathophysiology of tau are reviewed. Beginning 2013, a range of tau-targeted immunotherapies have entered clinical development; these therapies, and their common themes and differences are reviewed. The manuscript provides an extensive discussion on epitope selection for immunotherapies against tau pathology, on immunological mechanisms involved in their action, and challenges such as immune senescence, vaccine design, or evolution of epitopes. Furthermore, we provide methodological recommendations for the characterization of active vaccines and antibodies, animal models, and the target itself - the diseased tau proteome.
Collapse
Affiliation(s)
- Petr Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- AXON Neuroscience CRM Services SE, Bratislava, Slovakia
| | - Eva Kontsekova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Michal Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- AXON Neuroscience SE, Larnaca, Cyprus
| |
Collapse
|
7
|
Nizynski B, Dzwolak W, Nieznanski K. Amyloidogenesis of Tau protein. Protein Sci 2017; 26:2126-2150. [PMID: 28833749 DOI: 10.1002/pro.3275] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 11/08/2022]
Abstract
The role of microtubule-associated protein Tau in neurodegeneration has been extensively investigated since the discovery of Tau amyloid aggregates in the brains of patients with Alzheimer's disease (AD). The process of formation of amyloid fibrils is known as amyloidogenesis and attracts much attention as a potential target in the prevention and treatment of neurodegenerative conditions linked to protein aggregation. Cerebral deposition of amyloid aggregates of Tau is observed not only in AD but also in numerous other tauopathies and prion diseases. Amyloidogenesis of intrinsically unstructured monomers of Tau can be triggered by mutations in the Tau gene, post-translational modifications, or interactions with polyanionic molecules and aggregation-prone proteins/peptides. The self-assembly of amyloid fibrils of Tau shares a number of characteristic features with amyloidogenesis of other proteins involved in neurodegenerative diseases. For example, in vitro experiments have demonstrated that the nucleation phase, which is the rate-limiting stage of Tau amyloidogenesis, is shortened in the presence of fragmented preformed Tau fibrils acting as aggregation templates ("seeds"). Accordingly, Tau aggregates released by tauopathy-affected neurons can spread the neurodegenerative process in the brain through a prion-like mechanism, originally described for the pathogenic form of prion protein. Moreover, Tau has been shown to form amyloid strains-structurally diverse self-propagating aggregates of potentially various pathological effects, resembling in this respect prion strains. Here, we review the current literature on Tau aggregation and discuss mechanisms of propagation of Tau amyloid in the light of the prion-like paradigm.
Collapse
Affiliation(s)
- Bartosz Nizynski
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 2C Banacha Str, Warsaw, 02-097, Poland.,Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Str, Warsaw, 02-093, Poland
| | - Wojciech Dzwolak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Str, Warsaw, 02-093, Poland
| | - Krzysztof Nieznanski
- Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, Warsaw, 02-093, Poland
| |
Collapse
|
8
|
Chanu SI, Sarkar S. Targeted downregulation of dMyc restricts neurofibrillary tangles mediated pathogenesis of human neuronal tauopathies in Drosophila. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2111-2119. [DOI: 10.1016/j.bbadis.2017.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 11/16/2022]
|
9
|
Kim D, Lim S, Haque MM, Ryoo N, Hong HS, Rhim H, Lee DE, Chang YT, Lee JS, Cheong E, Kim DJ, Kim YK. Identification of disulfide cross-linked tau dimer responsible for tau propagation. Sci Rep 2015; 5:15231. [PMID: 26470054 PMCID: PMC4606741 DOI: 10.1038/srep15231] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/11/2015] [Indexed: 01/24/2023] Open
Abstract
Recent evidence suggests that tau aggregates are not only neurotoxic, but also propagate in neurons acting as a seed for native tau aggregation. Prion-like tau transmission is now considered as an important pathogenic mechanism driving the progression of tau pathology in the brain. However, prion-like tau species have not been clearly characterized. To identify infectious tau conformers, here we prepared diverse tau aggregates and evaluated the effect on inducing intracellular tau-aggregation. Among tested, tau dimer containing P301L-mutation is identified as the most infectious form to induce tau pathology. Biochemical analysis reveals that P301L-tau dimer is covalently cross-linked with a disulfide bond. The relatively small and covalently cross-linked tau dimer induced tau pathology efficiently in primary neurons and also in tau-transgenic mice. So far, the importance of tau disulfide cross-linking has been overlooked in the study of tau pathology. Here our results suggested that tau disulfide cross-linking might play critical role in tau propagation by producing structurally stable and small tau conformers.
Collapse
Affiliation(s)
- Dohee Kim
- Korea Institute of Science and Technology (KIST), Brain Science Institute, Center for neuro-medicine, Seoul 136-791, South Korea.,Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, South Korea
| | - Sungsu Lim
- Korea Institute of Science and Technology (KIST), Brain Science Institute, Center for neuro-medicine, Seoul 136-791, South Korea
| | - Md Mamunul Haque
- Korea Institute of Science and Technology (KIST), Brain Science Institute, Center for neuro-medicine, Seoul 136-791, South Korea.,Biological Chemistry, University of Science and Technology (UST), Daejon 305-333, South Korea
| | - Nayeon Ryoo
- Korea Institute of Science and Technology (KIST), Brain Science Institute, Center for Neuroscience, Seoul 136-791, South Korea
| | | | - Hyewhon Rhim
- Korea Institute of Science and Technology (KIST), Brain Science Institute, Center for Neuroscience, Seoul 136-791, South Korea.,Department of Neuroscience, University of Science and Technology (UST), Daejon 305-333, South Korea
| | - Dong-Eun Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, South Korea
| | - Young-Tae Chang
- Department of Chemistry &Med Chem Program, National University of Singapore, 3 Science Drive 2, 117543 Singapore (Singapore).,Singapore BioImaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, 138667 Singapore (Singapore)
| | - Jun-Seok Lee
- Korea Institute of Science and Technology (KIST), Molecular Recognition Research Center, Seoul 136-791, South Korea.,Biological Chemistry, University of Science and Technology (UST), Daejon 305-333, South Korea
| | - Eunji Cheong
- Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, South Korea
| | - Dong Jin Kim
- Korea Institute of Science and Technology (KIST), Brain Science Institute, Center for neuro-medicine, Seoul 136-791, South Korea
| | - Yun Kyung Kim
- Korea Institute of Science and Technology (KIST), Brain Science Institute, Center for neuro-medicine, Seoul 136-791, South Korea.,Biological Chemistry, University of Science and Technology (UST), Daejon 305-333, South Korea
| |
Collapse
|
10
|
Lim S, Haque MM, Kim D, Kim DJ, Kim YK. Cell-based Models To Investigate Tau Aggregation. Comput Struct Biotechnol J 2014; 12:7-13. [PMID: 25505502 PMCID: PMC4262059 DOI: 10.1016/j.csbj.2014.09.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/20/2014] [Accepted: 09/24/2014] [Indexed: 12/14/2022] Open
Abstract
Accumulation of abnormal tau aggregates in neuron is an important pathological signature in multiple neurodegenerative disorders including Alzheimer's disease. Tau is a neuron specific microtubule-associated protein that regulates microtubule stability, which is critical for axonal outgrowth and synaptic plasticity. In a pathological condition, tau dissociates from microtubules and forms insoluble aggregates called neurofibrillary tangles (NFTs). The accumulation of NFTs in neuron directly correlates with microtubule dysfunction and neuronal degeneration. Due to the pathophysiological importance of tau, great efforts have been made to understand tau aggregation processes and find therapeutics to halt or reverse the processes. However, progress has been slow due to the lack of a suitable method for monitoring tau aggregation. In this mini-review, we will review the conventional methods for studying tau aggregation, and introduce recent cell-based sensor approaches that allow monitoring tau aggregation in living cells.
Collapse
Affiliation(s)
- Sungsu Lim
- Center for Neuro-medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Md Mamunul Haque
- Center for Neuro-medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea ; Biological Chemistry, University of Science and Technology, Daejon 305-333, Republic of Korea
| | - Dohee Kim
- Center for Neuro-medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea ; Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Dong Jin Kim
- Center for Neuro-medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Yun Kyung Kim
- Center for Neuro-medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| |
Collapse
|
11
|
Hales CM, Seyfried NT, Dammer EB, Duong D, Yi H, Gearing M, Troncoso JC, Mufson EJ, Thambisetty M, Levey AI, Lah JJ. U1 small nuclear ribonucleoproteins (snRNPs) aggregate in Alzheimer's disease due to autosomal dominant genetic mutations and trisomy 21. Mol Neurodegener 2014; 9:15. [PMID: 24773620 PMCID: PMC4022210 DOI: 10.1186/1750-1326-9-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/18/2014] [Indexed: 01/08/2023] Open
Abstract
Background We recently identified U1 small nuclear ribonucleoprotein (snRNP) tangle-like aggregates and RNA splicing abnormalities in sporadic Alzheimer’s disease (AD). However little is known about snRNP biology in early onset AD due to autosomal dominant genetic mutations or trisomy 21 in Down syndrome. Therefore we investigated snRNP biochemical and pathologic features in these disorders. Findings We performed quantitative proteomics and immunohistochemistry in postmortem brain from genetic AD cases. Electron microscopy was used to characterize ultrastructural features of pathologic aggregates. U1-70k and other snRNPs were biochemically enriched in the insoluble fraction of human brain from subjects with presenilin 1 (PS1) mutations. Aggregates of U1 snRNP-immunoreactivity formed cytoplasmic tangle-like structures in cortex of AD subjects with PS1 and amyloid precursor protein (APP) mutations as well as trisomy 21. Ultrastructural analysis with electron microscopy in an APP mutation case demonstrated snRNP immunogold labeling of paired helical filaments (PHF). Conclusions These studies identify U1 snRNP pathologic changes in brain of early onset genetic forms of AD. Since dominant genetic mutations and trisomy 21 result in dysfunctional amyloid processing, the findings suggest that aberrant β-amyloid processing may influence U1 snRNP aggregate formation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - James J Lah
- Department of Neurology, Emory University School of Medicine, Atlanta 30322, Georgia.
| |
Collapse
|
12
|
Abstract
Atomic force microscopy (AFM) has been used in numerous studies to visualize and analyze the structure and conformation of biological samples, from single molecules to biopolymers to cells. The possibility to analyze native samples without fixation, staining and in physiological buffer conditions, combined with the sub-nanometer resolution, makes AFM a versatile tool for the analysis of protein aggregation and amyloid structures. Here, we describe the application of AFM to study fibrillar Tau protein aggregates.
Collapse
|
13
|
Moore CL, Huang MH, Robbennolt SA, Voss KR, Combs B, Gamblin TC, Goux WJ. Secondary nucleating sequences affect kinetics and thermodynamics of tau aggregation. Biochemistry 2011; 50:10876-86. [PMID: 22085312 DOI: 10.1021/bi2014745] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tau protein was scanned for highly amyloidogenic sequences in amphiphilic motifs (X)(n)Z, Z(X)(n)Z (n ≥ 2), or (XZ)(n) (n ≥ 2), where X is a hydrophobic residue and Z is a charged or polar residue. N-Acetyl peptides homologous to these sequences were used to study aggregation. Transmission electron microscopy (TEM) showed seven peptides, in addition to well-known primary nucleating sequences Ac(275)VQIINK (AcPHF6*) and Ac(306)VQIVYK (AcPHF6), formed fibers, tubes, ribbons, or rolled sheets. Of the peptides shown by TEM to form amyloid, Ac(10)VME, AcPHF6*, Ac(375)KLTFR, and Ac(393)VYK were found to enhance the fraction of β-structure of AcPHF6 formed at equilibrium, and Ac(375)KLTFR was found to inhibit AcPHF6 and AcPHF6* aggregation kinetics in a dose-dependent manner, consistent with its participation in a hybrid steric zipper model. Single site mutants were generated which transformed predicted amyloidogenic sequences in tau into non-amyloidogenic ones. A M11K mutant had fewer filaments and showed a decrease in aggregation kinetics and an increased lag time compared to wild-type tau, while a F378K mutant showed significantly more filaments. Our results infer that sequences throughout tau, in addition to PHF6 and PHF6*, can seed amyloid formation or affect aggregation kinetics or thermodynamics.
Collapse
Affiliation(s)
- Christopher L Moore
- Department of Chemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | | | | | | | | | | | | |
Collapse
|
14
|
Furukawa Y, Kaneko K, Nukina N. Tau protein assembles into isoform- and disulfide-dependent polymorphic fibrils with distinct structural properties. J Biol Chem 2011; 286:27236-46. [PMID: 21659525 DOI: 10.1074/jbc.m111.248963] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Tauopathies are neurodegenerative diseases in which insoluble fibrillar aggregates of a microtubule-binding protein, Tau, are abnormally accumulated. Pathological Tau fibrils often exhibit structural polymorphisms that differ among phenotypically distinct tauopathies; however, a molecular mechanism to generate polymorphic Tau fibrils remains obscure. Here, we note the formation of a disulfide bond in isoforms of full-length Tau and show that the thiol-disulfide status as well as the isoform composition determines structural and morphological properties of Tau fibrils in vitro. Mainly two regions in a Tau primary sequence are found to act as structural blocks for building a protease-resistant core of Tau fibrils. Interactions among those two blocks for building a core structure depend upon the thiol-disulfide status in each isoform of Tau, which results in the formation of polymorphic fibrils with distinct structural properties. Furthermore, we have found that more diverse structures of Tau fibrils emerge through a cross-seeded fibrillation between heterologous pairs of Tau isoforms. We thus propose that isoform- and disulfide-dependent combinatorial interactions among multiple regions in a Tau sequence endow Tau fibrils with various structures, i.e. polymorphism.
Collapse
Affiliation(s)
- Yoshiaki Furukawa
- Department of Chemistry, Keio University, Yokohama, Kanagawa 223-8522, Japan.
| | | | | |
Collapse
|
15
|
Goldsbury C, Baxa U, Simon MN, Steven AC, Engel A, Wall JS, Aebi U, Müller SA. Amyloid structure and assembly: insights from scanning transmission electron microscopy. J Struct Biol 2010; 173:1-13. [PMID: 20868754 DOI: 10.1016/j.jsb.2010.09.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 10/19/2022]
Abstract
Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).
Collapse
Affiliation(s)
- Claire Goldsbury
- The Brain and Mind Research Institute, University of Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Xu S, Brunden KR, Trojanowski JQ, Lee VMY. Characterization of tau fibrillization in vitro. Alzheimers Dement 2010; 6:110-7. [PMID: 20298971 PMCID: PMC2842604 DOI: 10.1016/j.jalz.2009.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 06/02/2009] [Accepted: 06/23/2009] [Indexed: 11/26/2022]
Abstract
BACKGROUND The assembly of tau proteins into paired helical filaments, the building blocks of neurofibrillary tangles, is linked to neurodegeneration in Alzheimer's disease and related tauopathies. A greater understanding of this assembly process could identify targets for the discovery of drugs to treat Alzheimer's disease and related disorders. By using recombinant human tau, we have delineated events leading to the conversion of normal soluble tau into tau fibrils. METHODS Atomic force microscopy and transmission electron microscopy methodologies were used to determine the structure of tau assemblies that formed when soluble tau was incubated with heparin for increasing lengths of time. RESULTS Tau initially oligomerizes into spherical nucleation units of 18- to 21-nm diameter that appear to assemble linearly into nascent fibrils. Among the earliest tau fibrils are species that resemble a string of beads formed by linearly aligned spheres that with time seem to coalesce to form straight and twisted ribbon-like filaments, as well as paired helical filaments similar to those found in human tauopathies. An analysis of fibril cross sections at later incubation times revealed three fundamental axial structural features. CONCLUSIONS By monitoring tau fibrillization, we showed that different tau filament morphologies coexist. Temporal changes in the predominant tau structural species suggest that tau fibrillization involves the generation of structural intermediates, resulting in the formation of tau fibrils with verisimilitude to their authentic human counterparts.
Collapse
Affiliation(s)
| | - Kurt R. Brunden
- The Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, and Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - John Q. Trojanowski
- The Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, and Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Virginia M.-Y. Lee
- The Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, and Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
17
|
Meraz-Ríos MA, Lira-De León KI, Campos-Peña V, De Anda-Hernández MA, Mena-López R. Tau oligomers and aggregation in Alzheimer's disease. J Neurochem 2009; 112:1353-67. [PMID: 19943854 DOI: 10.1111/j.1471-4159.2009.06511.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We are analyzing the physiological function of Tau protein and its abnormal pathological behavior when this protein is self-assemble into pathological filaments. These aggregates of Tau protein are the main components in many diseases such as Alzheimer's disease (AD). Recent studies suggest that Tau acquires complex oligomeric conformations which may be toxic. In this review, we emphasized the possible phenomena implicated in the formation of these oligomers. Studies with chemical inductors indicates that the microtubule-binding domain is the most important region involved in Tau aggregation and showed the requirement of a pre-arrange Tau in abnormal conformation to promote self-assembly. Transgenic animal models and AD neuropathology studies showed that post-translational modifications are also implicated in Tau aggregation and neural cell death during AD development. Therefore, we analyzed some events that could be present during Tau aggregation. Finally, we included a brief discussion of the possible relation between glucose metabolism dysfunction in AD, and data of Tau aggregation by using aggregation inhibitors. In conclusion, the process Tau aggregation deserves further investigations to design possible therapeutic targets to inhibit the toxicity of these aggregates and it is possible that could be extended to other diseases with similar etiology.
Collapse
Affiliation(s)
- Marco A Meraz-Ríos
- Department of Molecular Biomedicine, Center of Research and Advanced Studies CINVESTAV-IPN, México DF, Mexico.
| | | | | | | | | |
Collapse
|
18
|
Chang E, Honson NS, Bandyopadhyay B, Funk KE, Jensen JR, Kim S, Naphade S, Kuret J. Modulation and detection of tau aggregation with small-molecule ligands. Curr Alzheimer Res 2009; 6:409-14. [PMID: 19874263 DOI: 10.2174/156720509789207976] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 01/16/2009] [Indexed: 11/22/2022]
Abstract
Recent results from high-throughput and other screening approaches reveal that small molecules can directly interact with recombinant full-length tau monomers and fibrillar tau aggregates in three distinct modes. First, in the high concentration regime (>10 micromolar), certain anionic molecules such as Congo red efficiently promote tau filament formation through a nucleation-elongation mechanism involving a dimeric nucleus and monomer-mediated elongation. These compounds are useful for modeling tau aggregation in vitro and in biological models. Second, in the low concentration regime (<1 micromolar), other ligands, including cyanine dyes, display aggregation antagonist activity. Compounds that can prevent or reverse fibrillization are candidate modifiers of disease pathology. Finally, certain compounds bind mature tau fibrils with varying affinities at multiple binding sites without modulating the aggregation reaction. For some ligands, >10-fold selectivity for tau aggregates relative to filaments composed of beta-amyloid or alpha-synuclein can be demonstrated at the level of binding affinity. Together these observations suggest that small-molecules have utility for interrogating the tau aggregation pathway, for inhibiting neuritic lesion formation, and for selective pre-mortem detection of neurofibrillary lesions through whole brain imaging.
Collapse
Affiliation(s)
- Edward Chang
- Center for Molecular Neurobiology, Department of Molecular and Cellular Biochemistry, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Honson NS, Kuret J. Tau aggregation and toxicity in tauopathic neurodegenerative diseases. J Alzheimers Dis 2008; 14:417-22. [PMID: 18688092 DOI: 10.3233/jad-2008-14409] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since its discovery as a structural component of neurofibrillary lesions of Alzheimer's disease more than twenty years ago, tau protein has been implicated in the cascade of events associated with neurodegeneration. Specifically, the "tau hypothesis" posits that misfunction of tau, which occurs in response to unknown stimuli, results in its intracellular assembly into filaments that eventually prove toxic to the cells that produce them. The tau hypothesis is supported by numerous neuropathological and genetic observations of authentic human disease cases. However, experiments designed to study aggregate toxicity in biological models suggest that some aggregate species may be inert or could potentially serve a neuroprotective function. Distinguishing these possibilities experimentally has been complicated by currently available biological models, which do not fully recapitulate aggregation conditions seen in disease. Additional model systems which better approximate physiological conditions may help elucidate the molecular mechanisms involved in aggregation associated toxicity. Here we examine the accumulated evidence linking aggregation and neurodegeneration, and experimental approaches to the problem of tau aggregation-mediated toxicity.
Collapse
Affiliation(s)
- Nicolette S Honson
- Center for Molecular Neurobiology, and Department of Molecular & Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
20
|
Brunden KR, Trojanowski JQ, Lee VMY. Evidence that non-fibrillar tau causes pathology linked to neurodegeneration and behavioral impairments. J Alzheimers Dis 2008; 14:393-9. [PMID: 18688089 PMCID: PMC2789426 DOI: 10.3233/jad-2008-14406] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The discovery that mutations within the tau gene lead to frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) provided direct evidence that tau alterations can lead to neurodegenerative disease. While the presence of tau fibrils and tangles is a common feature of all tauopathies, including Alzheimer's disease (AD), data are emerging from biochemical, cell-based and transgenic mouse studies which suggest that a pre-fibrillar form of pathological tau may play a key role in eliciting central nervous system neurodegeneration and behavioral impairments. Herein we review recent findings that implicate diffusible tau pathology in the onset of neurodegeneration, and discuss the implications of these findings as they relate to tau tangles and possible therapeutic strategies for the treatment of AD and related tauopathies.
Collapse
Affiliation(s)
- Kurt R. Brunden
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, 3600 Spruce St., Maloney 3, Philadelphia, PA 19104
| | - John Q. Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, 3600 Spruce St., Maloney 3, Philadelphia, PA 19104
| | - Virginia M-Y. Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, 3600 Spruce St., Maloney 3, Philadelphia, PA 19104
| |
Collapse
|
21
|
Wall JS, Simon MN, Lin BY, Vinogradov SN. Mass mapping of large globin complexes by scanning transmission electron microscopy. Methods Enzymol 2008; 436:487-501. [PMID: 18237650 DOI: 10.1016/s0076-6879(08)36027-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Scanning transmission electron microscopy (STEM) of unstained, freeze-dried biological macromolecules in the dark-field mode provides an image based on the number of electrons elastically scattered by the constituent atoms of the macromolecule. The image of each isolated particle provides information about the projected structure of the latter, and its integrated intensity is directly related to the mass of the selected particle. Particle images can be sorted by shape, providing independent histograms of mass to study assembly/disassembly intermediates. STEM is optimized for low-dose imaging and is suitable for accurate measurement of particle masses over the range from about 30 kDa to 1,000 MDa. This article describes the details of the method developed at the Brookhaven National Laboratory STEM facility and illustrates its application to the mass mapping of large globin complexes.
Collapse
Affiliation(s)
- Joseph S Wall
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | | | | | | |
Collapse
|
22
|
Congdon EE, Kim S, Bonchak J, Songrug T, Matzavinos A, Kuret J. Nucleation-dependent tau filament formation: the importance of dimerization and an estimation of elementary rate constants. J Biol Chem 2008; 283:13806-16. [PMID: 18359772 DOI: 10.1074/jbc.m800247200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Filamentous inclusions composed of the microtubule-associated protein tau are found in Alzheimer disease and other tauopathic neurodegenerative diseases, but the mechanisms underlying their formation from full-length protein monomer under physiological conditions are unclear. To address this issue, the fibrillization of recombinant full-length four-repeat human tau was examined in vitro as a function of time and submicromolar tau concentrations using electron microscopy assay methods and a small-molecule inducer of aggregation, thiazine red. Data were then fit to a simple homogeneous nucleation model with rate constant constraints established from filament dissociation rate, critical concentration, and mass-per-unit length measurements. The model was then tested by comparing the predicted time-dependent evolution of length distributions to experimental data. Results indicated that once assembly-competent conformations were attained, the rate-limiting step in the fibrillization pathway was tau dimer formation. Filament elongation then proceeded by addition of tau monomers to nascent filament ends. Filaments isolated at reaction plateau contained approximately 2 tau protomers/beta-strand spacing on the basis of mass-per-unit length measurements. The model suggests four key steps in the aggregation pathway that must be surmounted for tau filaments to form in disease.
Collapse
Affiliation(s)
- Erin E Congdon
- Center for Molecular Neurobiology, Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
23
|
Yeast Rvb1 and Rvb2 are ATP-Dependent DNA Helicases that Form a Heterohexameric Complex. J Mol Biol 2008; 376:1320-33. [DOI: 10.1016/j.jmb.2007.12.049] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/17/2007] [Accepted: 12/19/2007] [Indexed: 11/20/2022]
|
24
|
Abstract
For almost four decades, the scanning transmission electron microscope (STEM) has made significant contributions to structural biology by providing accurate determinations of the molecular masses of large protein assemblies that have arbitrary shapes and sizes. Nevertheless, STEM mass mapping has been implemented in very few laboratories, most of which have employed cold field-emission gun (FEG) electron sources operating at acceleration voltages of 100 kV and lower. Here we show that a 300 kV commercial transmission electron microscope (TEM) equipped with a thermally assisted Shottky FEG can also provide accurate STEM mass measurements. Using the recently published database of elastic-scattering cross sections from the National Institute of Standards and Technology, we show that the measured absolute mass values for tobacco mosaic virus and limpet hemocyanin didecamers agree with the known values to within better than 10%. Applying the established approach, whereby tobacco mosaic virus is added to a specimen as a calibration standard, we find that the measured molecular weight of the hemocyanin assemblies agrees with the known value to within 3%. This accuracy is achievable although only a very small fraction ( approximately 0.002) of the incident probe current of 300 kV electrons is scattered onto the annular dark-field STEM detector. FEG TEMs operating at intermediate voltages (200-400 kV) are becoming common tools for determining the structure of frozen hydrated protein assemblies. The ability to perform mass determination with the same instrument can provide important complementary information about the numbers of subunits comprising the protein assemblies whose structure is being studied.
Collapse
Affiliation(s)
- Alioscka A Sousa
- National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD 20892, USA
| | | |
Collapse
|
25
|
Rankin CA, Sun Q, Gamblin TC. Tau phosphorylation by GSK-3beta promotes tangle-like filament morphology. Mol Neurodegener 2007; 2:12. [PMID: 17598919 PMCID: PMC1936422 DOI: 10.1186/1750-1326-2-12] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 06/28/2007] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Neurofibrillary tangles (NFTs) are intraneuronal aggregates associated with several neurodegenerative diseases including Alzheimer's disease. These abnormal accumulations are primarily comprised of fibrils of the microtubule-associated protein tau. During the progression of NFT formation, disperse and non-interacting tau fibrils become stable aggregates of tightly packed and intertwined filaments. Although the molecular mechanisms responsible for the conversion of disperse tau filaments into tangles of filaments are not known, it is believed that some of the associated changes in tau observed in Alzheimer's disease, such as phosphorylation, truncation, ubiquitination, glycosylation or nitration, may play a role. RESULTS We have investigated the effects of tau phosphorylation by glycogen synthase kinase-3beta (GSK-3beta) on tau filaments in an in vitro model system. We have found that phosphorylation by GSK-3beta is sufficient to cause tau filaments to coalesce into tangle-like aggregates similar to those isolated from Alzheimer's disease brain. CONCLUSION These results suggest that phosphorylation of tau by GSK-3beta promotes formation of tangle-like filament morphology. The in vitro cell-free experiments described here provide a new model system to study mechanisms of NFT development. Although the severity of dementia has been found to correlate with the presence of NFTs, there is some question as to the identity of the neurotoxic agents involved. This model system will be beneficial in identifying intermediates or side reaction products that might be neurotoxic.
Collapse
Affiliation(s)
- Carolyn A Rankin
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Qian Sun
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Truman C Gamblin
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
26
|
Mandelkow E, von Bergen M, Biernat J, Mandelkow EM. Structural principles of tau and the paired helical filaments of Alzheimer's disease. Brain Pathol 2007; 17:83-90. [PMID: 17493042 PMCID: PMC8095506 DOI: 10.1111/j.1750-3639.2007.00053.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Tau, a major microtubule-associated protein in brain, forms abnormal fibers in Alzheimer's disease and several other neurodegenerative diseases. Tau is highly soluble and adopts a natively unfolded structure in solution. In the paired helical filaments of Alzheimer's disease, small segments of tau adopt a beta-conformation and interact with other tau molecules. In the filament core, the microtubule-binding repeat region of tau has a cross-beta structure, while the rest of the protein retains its largely unfolded structure and gives rise to the fuzzy coat of the filaments.
Collapse
|
27
|
Eriksen JL, Janus CG. Plaques, tangles, and memory loss in mouse models of neurodegeneration. Behav Genet 2006; 37:79-100. [PMID: 17072762 DOI: 10.1007/s10519-006-9118-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 09/21/2006] [Indexed: 10/24/2022]
Abstract
Within the past decade, our understanding of the pathogenic mechanisms in Alzheimer's disease (AD) has dramatically advanced because of the development of transgenic mouse models that recapitulate the key pathological and behavioral phenotypes of the disease. These mouse models have allowed investigators to test detailed questions about how pathology develops and to evaluate potential therapeutic approaches that could slow down the development of this disease. In this review, we discuss the status of transgenic mouse models and review the complex relationship between pathology and behavior in the development of neuropathological syndromes in AD.
Collapse
Affiliation(s)
- Jason L Eriksen
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | |
Collapse
|
28
|
Baxa U, Cassese T, Kajava AV, Steven AC. Structure, function, and amyloidogenesis of fungal prions: filament polymorphism and prion variants. ADVANCES IN PROTEIN CHEMISTRY 2006; 73:125-80. [PMID: 17190613 DOI: 10.1016/s0065-3233(06)73005-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Infectious proteins (prions) became an important medical issue when they were identified as agents of the transmissible spongiform encephalopathies. More recently, prions have been found in fungi and their investigation has been facilitated by greater experimental tractability. In each case, the normal form of the prion protein may be converted into the infectious form (the prion itself) in an autocatalytic process; conversion may either occur spontaneously or by transmission from an already infected cell. Four fungal prion proteins have been studied in some depth-Ure2p, Sup35p, and Rnq1p of Saccharomyces cerevisiae and HET-s of Podospora anserina. Each has a "prion domain" that governs infectivity and a "functional domain" that contributes the protein's activity in a wild-type cell, if it has one. This activity is repressed in prion-infected cells for loss-of-activity prions, [URE3] (the prion of Ure2p) and [PSI] (the prion of Sup35p). For gain-of-activity prions, [PIN] (the prion of Rnq1p) and [Het-s] (the prion of HET-s), the prion domain is also involved in generating a new activity in infected cells. In prion conversion, prion domains polymerize into an amyloid filament, switching from a "natively unfolded" conformation into an amyloid conformation (stable, protease-resistant, rich in cross-beta structure). For Ure2p and probably also Sup35p, the functional domain retains its globular fold but is inactivated by a steric mechanism. We review the evidence on which this scenario is based with emphasis on filament structure, summarizing current experimental constraints and appraising proposed models. We conclude that the parallel superpleated beta-structure and a specific beta-helical formulation are valid candidates while other proposals are excluded. In both the Ure2p and Sup35p systems, prion domain amyloid filaments exhibit polymorphic variation. However, once a certain structure is nucleated, it is maintained throughout that filament. Electron microscopy of several Ure2p-related constructs indicates that the basis for polymorphism lies mainly if not entirely in the prion domain. Filament polymorphism appears to underlie the phenomenon of prion "variants" which differ in the severity of their phenotype, that is, for Ure2p and Sup35p, the stringency with which their activity is switched off. We discuss a possible structural basis for this phenomenon.
Collapse
Affiliation(s)
- Ulrich Baxa
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|