1
|
Liu SL, Zuo HY, Zhao BW, Guo JN, Liu WB, Lei WL, Li YY, Ouyang YC, Hou Y, Han ZM, Wang WZ, Sun QY, Wang ZB. A heterozygous ZP2 mutation causes zona pellucida defects and female infertility in mouse and human. iScience 2023; 26:107828. [PMID: 37736051 PMCID: PMC10509300 DOI: 10.1016/j.isci.2023.107828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
The zona pellucida (ZP) is an extracellular glycoprotein matrix surrounding mammalian oocytes. Recently, numerous mutations in genes encoding ZP proteins have been shown to be possibly related to oocyte abnormality and female infertility; few reports have confirmed the functions of these mutations in living animal models. Here, we identified a novel heterozygous missense mutation (NM_001376231.1:c.1616C>T, p.Thr539Met) in ZP2 from a primary infertile female. We showed that the mutation reduced ZP2 expression and impeded ZP2 secretion in cell lines. Furthermore, we constructed the mouse model with the mutation (Zp2T541M) using CRISPR-Cas9. Zp2WT/T541M female mice had normal fertility though generated oocytes with the thin ZP, whereas Zp2T541M female mice were completely infertile due to degeneration of oocytes without ZP. Additionally, ZP deletion impaired folliculogenesis and caused female infertility in Zp2T541M mice. Our study not only expands the spectrum of ZP2 mutation sites but also, more importantly, increases the understanding of pathogenic mechanisms of ZP2 mutations.
Collapse
Affiliation(s)
- Sai-Li Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hai-Yang Zuo
- The Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100048, China
| | - Bing-Wang Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jia-Ni Guo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wen-Bo Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhi-Ming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wei-Zhou Wang
- The Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100048, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
2
|
Domingo-Muelas A, Skory RM, Moverley AA, Ardestani G, Pomp O, Rubio C, Tetlak P, Hernandez B, Rhon-Calderon EA, Navarro-Sánchez L, García-Pascual CM, Bissiere S, Bartolomei MS, Sakkas D, Simón C, Plachta N. Human embryo live imaging reveals nuclear DNA shedding during blastocyst expansion and biopsy. Cell 2023; 186:3166-3181.e18. [PMID: 37413989 PMCID: PMC11170958 DOI: 10.1016/j.cell.2023.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Proper preimplantation development is essential to assemble a blastocyst capable of implantation. Live imaging has uncovered major events driving early development in mouse embryos; yet, studies in humans have been limited by restrictions on genetic manipulation and lack of imaging approaches. We have overcome this barrier by combining fluorescent dyes with live imaging to reveal the dynamics of chromosome segregation, compaction, polarization, blastocyst formation, and hatching in the human embryo. We also show that blastocyst expansion mechanically constrains trophectoderm cells, causing nuclear budding and DNA shedding into the cytoplasm. Furthermore, cells with lower perinuclear keratin levels are more prone to undergo DNA loss. Moreover, applying trophectoderm biopsy, a mechanical procedure performed clinically for genetic testing, increases DNA shedding. Thus, our work reveals distinct processes underlying human development compared with mouse and suggests that aneuploidies in human embryos may not only originate from chromosome segregation errors during mitosis but also from nuclear DNA shedding.
Collapse
Affiliation(s)
- Ana Domingo-Muelas
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Igenomix Foundation and Carlos Simon Foundation, Spain
| | - Robin M Skory
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam A Moverley
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; University College London, London WC1E 6BT, UK
| | | | - Oz Pomp
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Piotr Tetlak
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Blake Hernandez
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric A Rhon-Calderon
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Stephanie Bissiere
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Carlos Simón
- Igenomix Foundation and Carlos Simon Foundation, Spain; Department of Pediatrics Obstetrics & Gynecology, University of Valencia, Valencia 46010, Spain; INCLIVA Health Research Institute, Valencia 46010, Spain; Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Nicolas Plachta
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Lamont S, Fropier J, Abadie J, Piat E, Constantinescu A, Roux C, Vernerey F. Profiling oocytes with neural networks from images and mechanical data. J Mech Behav Biomed Mater 2023; 138:105640. [PMID: 36566663 DOI: 10.1016/j.jmbbm.2022.105640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The success rate of assisted reproductive technologies could be greatly improved by selectively choosing egg cells (oocytes) with the greatest chance of fertilization. The goal of mechanical profiling is, thus, to improve predictive oocyte selection by isolating the mechanical properties of oocytes and correlating them to their reproductive potential. The restrictions on experimental platforms, however - including minimal invasiveness and practicality in laboratory implementation - greatly limits the data that can be acquired from a single oocyte. In this study, we perform indentation studies on human oocytes and characterize the mechanical properties of the zona pellucida, the outer layer of the oocyte. We obtain excellent fitting with our physical model when indenting with a flat surface and clearly illustrate localized shear-thinning behavior of the zona pellucida, which has not been previously reported. We conclude by outlining a promising methodology for isolating the mechanical properties of the cytoplasm using neural networks and optical images taken during indentation.
Collapse
Affiliation(s)
- Samuel Lamont
- Department of Mechanical Engineering, Program of Materials Science and Engineering, University of Colorado Boulder, Boulder, CO 80309, United States of America
| | - Juliette Fropier
- Laboratoire de Mécanique des Solides - CNRS - École Polytechnique - Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Joel Abadie
- FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS, 15B avenue des Montboucons, 25030 Besançon, cedex, France
| | - Emmanuel Piat
- FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS, 15B avenue des Montboucons, 25030 Besançon, cedex, France
| | - Andrei Constantinescu
- Laboratoire de Mécanique des Solides - CNRS - École Polytechnique - Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Christophe Roux
- Service de Biologie et Médecine de la Reproduction - Cryobiologie - CECOS Franche-Comté Bourgogne, CHRU Jean Minjoz, 3 Bd Fleming, 25030 Besançon cedex, France
| | - Franck Vernerey
- Department of Mechanical Engineering, Program of Materials Science and Engineering, University of Colorado Boulder, Boulder, CO 80309, United States of America.
| |
Collapse
|
4
|
Zhou J, Wang M, Yang Q, Li D, Li Z, Hu J, Jin L, Zhu L. Can successful pregnancy be achieved and predicted from patients with identified ZP mutations? A literature review. Reprod Biol Endocrinol 2022; 20:166. [PMID: 36476320 PMCID: PMC9730648 DOI: 10.1186/s12958-022-01046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In mammals, normal fertilization depends on the structural and functional integrity of the zona pellucida (ZP), which is an extracellular matrix surrounding oocytes. Mutations in ZP may affect oogenesis, fertilization and early embryonic development, which may cause female infertility. METHODS A PubMed literature search using the keywords 'zona pellucida', 'mutation' and 'variant' limited to humans was performed, with the last research on June 30, 2022. The mutation types, clinical phenotypes and pregnancy outcomes were summarized and analyzed. The naive Bayes classifier was used to predict clinical pregnancy outcomes for patients with ZP mutations. RESULTS A total of 29 publications were included in the final analysis. Sixty-nine mutations of the ZP genes were reported in 87 patients with different clinical phenotypes, including empty follicle syndrome (EFS), ZP-free oocytes (ZFO), ZP-thin oocytes (ZTO), degenerated and immature oocytes. The phenotypes of patients were influenced by the types and location of the mutations. The most common effects of ZP mutations are protein truncation and dysfunction. Three patients with ZP1 mutations, two with ZP2 mutations, and three with ZP4 mutations had successful pregnancies through Intracytoplasmic sperm injection (ICSI) from ZFO or ZTO. A prediction model of pregnancy outcome in patients with ZP mutation was constructed to assess the chance of pregnancy with the area under the curve (AUC) of 0.898. The normalized confusion matrix showed the true positive rate was 1.00 and the true negative rate was 0.38. CONCLUSION Phenotypes in patients with ZP mutations might be associated with mutation sites or the degree of protein dysfunction. Successful pregnancy outcomes could be achieved in some patients with identified ZP mutations. Clinical pregnancy prediction model based on ZP mutations and clinical characteristics will be helpful to precisely evaluate pregnancy chance and provide references and guidance for the clinical treatment of relevant patients.
Collapse
Affiliation(s)
- Juepu Zhou
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Meng Wang
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Qiyu Yang
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Dan Li
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Zhou Li
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Juan Hu
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Lei Jin
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| | - Lixia Zhu
- grid.33199.310000 0004 0368 7223Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Road, Wuhan, 430030 China
| |
Collapse
|
5
|
Zou T, Xi Q, Liu Z, Li Z, Hou M, Zhu L, Jin L, Zhang X. A Novel Homozygous Nonsense Mutation in ZP1 Causes Female Infertility due to Empty Follicle Syndrome. Reprod Sci 2022; 29:3516-3520. [PMID: 35773450 DOI: 10.1007/s43032-022-01024-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
Abstract
ZP1 is a critical glycoprotein in the formation of the zona pellucida. It plays an indispensable role in the maturation of oocytes. To identify the causative gene of empty follicle syndrome (EFS) in a patient from a consanguineous family, whole-exome sequencing was performed in the proband. We identified a novel homozygous nonsense mutation c.1260C > G (p. Tyr420X) in the ZP1 gene from two primary infertile patients. Western blot showed that Y420X mutation in ZP1 gene produced a truncated protein. However, the mutation had no significant effect on subcellular localization of the mutant protein. Our findings confirmed the important role of the ZP1 gene in human female reproduction, enriched the mutation spectrums of ZP1 gene, and expanded its applications in the clinical and molecular diagnoses of EFS.
Collapse
Affiliation(s)
- Tingting Zou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Qingsong Xi
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Zhenxing Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Zhou Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Meiqi Hou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China.
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Xianqin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Clarke HJ. Transzonal projections: Essential structures mediating intercellular communication in the mammalian ovarian follicle. Mol Reprod Dev 2022; 89:509-525. [PMID: 36112806 DOI: 10.1002/mrd.23645] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 12/25/2022]
Abstract
The development of germ cells relies on contact and communication with neighboring somatic cells that provide metabolic support and regulatory signals. In females, contact is achieved through thin cytoplasmic processes that project from follicle cells surrounding the oocyte, extend through an extracellular matrix (ECM) that lies between them, and reach its surface. In mammals, the ECM is termed the zona pellucida and the follicular cell processes are termed transzonal projections (TZPs). TZPs become detectable when the zona pellucida is laid down during early folliculogenesis and subsequently increase in number as oocyte growth progresses. They then rapidly disappear at the time of ovulation, permanently breaking germ-soma contact. Here we review the life cycle and functions of the TZPs. We begin with an overview of the morphology and cytoskeletal structure of TZPs, in the context of actin- and tubulin-based cytoplasmic processes in other cell types. Next, we review the roles played by TZPs in mediating progression through successive stages of oocyte development. We then discuss two mechanisms that may generate TZPs-stretching at pre-existing points of granulosa cell-oocyte contact and elaboration of new processes that push through the zona pellucida-as well as gene products implicated in their formation or function. Finally, we describe the signaling pathways that cause TZPs to be retracted in response to signals that also trigger meiotic maturation and ovulation of the oocyte. The principles and mechanisms that govern TZP behavior may be relevant to understanding communication between physically separated cells in other physiological contexts.
Collapse
Affiliation(s)
- Hugh J Clarke
- Program in Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Yanagimachi R. Mysteries and unsolved problems of mammalian fertilization and related topics. Biol Reprod 2022; 106:644-675. [PMID: 35292804 PMCID: PMC9040664 DOI: 10.1093/biolre/ioac037] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian fertilization is a fascinating process that leads to the formation of a new individual. Eggs and sperm are complex cells that must meet at the appropriate time and position within the female reproductive tract for successful fertilization. I have been studying various aspects of mammalian fertilization over 60 years. In this review, I discuss many different aspects of mammalian fertilization, some of my laboratory's contribution to the field, and discuss enigmas and mysteries that remain to be solved.
Collapse
Affiliation(s)
- Ryuzo Yanagimachi
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii Medical School, Honolulu, HI 96822, USA
| |
Collapse
|
8
|
Poro-viscoelastic behaviour of the zona pellucida: Impact of three-dimensional modelling on material characterisation. J Mech Behav Biomed Mater 2022; 131:105211. [DOI: 10.1016/j.jmbbm.2022.105211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/07/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022]
|
9
|
Moghadam ARE, Moghadam MT, Hemadi M, Saki G. Oocyte quality and aging. JBRA Assist Reprod 2022; 26:105-122. [PMID: 34338482 PMCID: PMC8769179 DOI: 10.5935/1518-0557.20210026] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 04/15/2021] [Indexed: 11/20/2022] Open
Abstract
It is well known that female reproduction ability decreases during the forth decade of life due to age-related changes in oocyte quality and quantity; although the number of women trying to conceive has today increased remarkably between the ages of 36 to 44. The causes of reproductive aging and physiological aspects of this phenomenon are still elusive. With increase in the women's age, during Assisted Reproductive Technologies (ART) we have perceived a significant decline in the number and quality of retrieved oocytes, as well as in ovarian follicle reserves. This is because of increased aneuploidy due to factors such as spindle apparatus disruption; oxidative stress and mitochondrial damage. The aim of this review paper is to study data on the potential role of the aging process impacting oocyte quality and female reproductive ability. We present the current evidence that show the decreased oocyte quality with age, related to reductions in female reproductive outcome. The aging process is complicated and it is caused by many factors that control cellular and organism life span. Although the factors responsible for reduced oocyte quality remain unknown, the present review focuses on the potential role of ovarian follicle environment, oocyte structure and its organelles. To find a way to optimize oocyte quality and ameliorate clinical outcomes for women with aging-related causes of infertility.
Collapse
Affiliation(s)
- Ali Reza Eftekhari Moghadam
- Cellular & Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Taheri Moghadam
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Hemadi
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasem Saki
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Zona Pellucida Genes and Proteins: Essential Players in Mammalian Oogenesis and Fertility. Genes (Basel) 2021; 12:genes12081266. [PMID: 34440440 PMCID: PMC8391237 DOI: 10.3390/genes12081266] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
All mammalian oocytes and eggs are surrounded by a relatively thick extracellular matrix (ECM), the zona pellucida (ZP), that plays vital roles during oogenesis, fertilization, and preimplantation development. Unlike ECM surrounding somatic cells, the ZP is composed of only a few glycosylated proteins, ZP1–4, that are unique to oocytes and eggs. ZP1–4 have a large region of polypeptide, the ZP domain (ZPD), consisting of two subdomains, ZP-N and ZP-C, separated by a short linker region, that plays an essential role in polymerization of nascent ZP proteins into crosslinked fibrils. Both subdomains adopt immunoglobulin (Ig)-like folds for their 3-dimensional structure. Mouse and human ZP genes are encoded by single-copy genes located on different chromosomes and are highly expressed in the ovary by growing oocytes during late stages of oogenesis. Genes encoding ZP proteins are conserved among mammals, and their expression is regulated by cis-acting sequences located close to the transcription start-site and by the same/similar trans-acting factors. Nascent ZP proteins are synthesized, packaged into vesicles, secreted into the extracellular space, and assembled into long, crosslinked fibrils that have a structural repeat, a ZP2-ZP3 dimer, and constitute the ZP matrix. Fibrils are oriented differently with respect to the oolemma in the inner and outer layers of the ZP. Sequence elements in the ZPD and the carboxy-terminal propeptide of ZP1–4 regulate secretion and assembly of nascent ZP proteins. The presence of both ZP2 and ZP3 is required to assemble ZP fibrils and ZP1 and ZP4 are used to crosslink the fibrils. Inactivation of mouse ZP genes by gene targeting has a detrimental effect on ZP formation around growing oocytes and female fertility. Gene sequence variations in human ZP genes due to point, missense, or frameshift mutations also have a detrimental effect on ZP formation and female fertility. The latter mutations provide additional support for the role of ZPD subdomains and other regions of ZP polypeptide in polymerization of human ZP proteins into fibrils and matrix.
Collapse
|
11
|
Stracuzzi A, Dittmann J, Böl M, Ehret AE. Visco- and poroelastic contributions of the zona pellucida to the mechanical response of oocytes. Biomech Model Mechanobiol 2021; 20:751-765. [PMID: 33533999 PMCID: PMC7979617 DOI: 10.1007/s10237-020-01414-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/19/2020] [Indexed: 12/22/2022]
Abstract
Probing mechanical properties of cells has been identified as a means to infer information on their current state, e.g. with respect to diseases or differentiation. Oocytes have gained particular interest, since mechanical parameters are considered potential indicators of the success of in vitro fertilisation procedures. Established tests provide the structural response of the oocyte resulting from the material properties of the cell's components and their disposition. Based on dedicated experiments and numerical simulations, we here provide novel insights on the origin of this response. In particular, polarised light microscopy is used to characterise the anisotropy of the zona pellucida, the outermost layer of the oocyte composed of glycoproteins. This information is combined with data on volumetric changes and the force measured in relaxation/cyclic, compression/indentation experiments to calibrate a multi-phasic hyper-viscoelastic model through inverse finite element analysis. These simulations capture the oocyte's overall force response, the distinct volume changes observed in the zona pellucida, and the structural alterations interpreted as a realignment of the glycoproteins with applied load. The analysis reveals the presence of two distinct timescales, roughly separated by three orders of magnitude, and associated with a rapid outflow of fluid across the external boundaries and a long-term, progressive relaxation of the glycoproteins, respectively. The new results allow breaking the overall response down into the contributions from fluid transport and the mechanical properties of the zona pellucida and ooplasm. In addition to the gain in fundamental knowledge, the outcome of this study may therefore serve an improved interpretation of the data obtained with current methods for mechanical oocyte characterisation.
Collapse
Affiliation(s)
- Alberto Stracuzzi
- Institute for Mechanical Systems, ETH Zurich, 8092, Zurich, Switzerland
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - Johannes Dittmann
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig, 38106, Germany
| | - Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig, 38106, Germany.
| | - Alexander E Ehret
- Institute for Mechanical Systems, ETH Zurich, 8092, Zurich, Switzerland.
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600, Dübendorf, Switzerland.
| |
Collapse
|
12
|
Wang J, Yang X, Sun X, Ma L, Yin Y, He G, Zhang Y, Zhou J, Cai L, Liu J, Ma X. A novel homozygous nonsense mutation in zona pellucida 1 (ZP1) causes human female empty follicle syndrome. J Assist Reprod Genet 2021; 38:1459-1468. [PMID: 33665726 DOI: 10.1007/s10815-021-02136-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
PURPOSE To identify a pathogenic gene mutation in a female infertility proband characterized by empty follicle syndrome (EFS) and explore the genetic cause of EFS. METHODS Whole exome sequencing (WES) was performed to identify the candidate pathogenic mutation. Sanger sequencing was used to validate the mutation in family members. The pathogenicity of the identified variant and its possible effects on the protein were evaluated with in silico tools. Immunofluorescence staining was used to study the possible mechanism of the mutation on affected oocyte. RESULTS We identified a family with a novel homozygous nonsense mutation in zona pellucida 1 (ZP1) (c.199G > T [p.Glu67Ter]). Based on bioinformatics analysis, the mutation was predicted to be pathogenic. This variant generates a premature stop codon in exon 2 at the 199th nucleotide, and was inferred to result in a truncated ZP1 protein of 67 amino acids at the ZP-N1 domain. An in vitro study showed that the oocyte of the EFS proband was degenerated and the zona pellucida was absent. Additionally, the mutant ZP1 proteins were localized in the cytoplasm of the degenerated oocyte but not at the surface. CONCLUSIONS The novel mutation in ZP1 is a genetic cause of female infertility characterized by EFS. Our finding expands the genetic spectrum for EFS and will help justify the EFS diagnosis in patients.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xueping Sun
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Long Ma
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yaoxue Yin
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Guoxiang He
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuan Zhang
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jie Zhou
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lingbo Cai
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiang Ma
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
13
|
Lv C, Huang HL, Yi DJ, Peng TL, Tan HJ, Quan RP, Deng HW, Xiao HM. Mutant Zp1 impedes incorporation of ZP3 and ZP4 in the zona pellucida, resulting in zona absence and female infertility in rats†. Biol Reprod 2021; 104:1262-1270. [PMID: 33624742 DOI: 10.1093/biolre/ioab025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/02/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The zona pellucida (ZP) plays vital roles in reproductive processes including oogenesis, fertilization, and preimplantation development. Both human and rat ZP consist of four glycoproteins, called ZP1, ZP2, ZP3, and ZP4. Our previous research reported a novel Zp1 mutation in cases of human infertility, associated with an abnormal phenotype involving the absence of the ZP. Here, we developed a homologous rat strain to investigate the pathogenic effect. The ovaries of homozygous (Zp1MT/MT) females possessed both growing and fully grown oocytes; the oocytes completely lacked a ZP, but ZP1 was detectable inside the cytoplasm. Only 1-2 eggs were recovered from oviducts of superovulated Zp1MT/MT females, while an average of 21 eggs were recovered from superovulated Zp1WT/WT per female. The eggs of Zp1MT/MT females were not surrounded by a ZP and lost their fertilization capacity in vitro. Zp1MT/MT females mated with wild-type males failed to become pregnant. Studies in 293T cells showed that mutant Zp1 resulted in a truncated ZP1 protein, which might be intracellularly sequestered and interacted with wild-type ZP3 or ZP4. Our results suggest that the Zp1 point mutation led to infertility and loss of the ZP in oocytes in rats.
Collapse
Affiliation(s)
- Chao Lv
- School of Basic Medical Science, Institute of Reproductive & Stem Cell Engineering, Central South University, Changsha, China.,School of Basic Medical Science, Center of Reproductive Health, Central South University, Changsha, China.,Changsha Reproductive Medicine Hospital, Changsha, China
| | - Hua-Lin Huang
- School of Basic Medical Science, Institute of Reproductive & Stem Cell Engineering, Central South University, Changsha, China.,School of Basic Medical Science, Center of Reproductive Health, Central South University, Changsha, China
| | - Da-Jing Yi
- School of Basic Medical Science, Institute of Reproductive & Stem Cell Engineering, Central South University, Changsha, China.,School of Basic Medical Science, Center of Reproductive Health, Central South University, Changsha, China
| | - Tian-Liu Peng
- School of Basic Medical Science, Institute of Reproductive & Stem Cell Engineering, Central South University, Changsha, China.,School of Basic Medical Science, Center of Reproductive Health, Central South University, Changsha, China
| | - Hang-Jing Tan
- School of Basic Medical Science, Institute of Reproductive & Stem Cell Engineering, Central South University, Changsha, China.,School of Basic Medical Science, Center of Reproductive Health, Central South University, Changsha, China
| | - Ru-Ping Quan
- School of Basic Medical Science, Institute of Reproductive & Stem Cell Engineering, Central South University, Changsha, China.,School of Basic Medical Science, Center of Reproductive Health, Central South University, Changsha, China
| | - Hong-Wen Deng
- Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Center for Bioinformatics and Genomics, Tulane University, New Orleans, LA, USA.,School of Basic Medical Science, Center of System Biology and Data Information, Central South University, Changsha, China
| | - Hong-Mei Xiao
- School of Basic Medical Science, Institute of Reproductive & Stem Cell Engineering, Central South University, Changsha, China.,School of Basic Medical Science, Center of Reproductive Health, Central South University, Changsha, China
| |
Collapse
|
14
|
Elad D, Jaffa AJ, Grisaru D. Biomechanics of Early Life in the Female Reproductive Tract. Physiology (Bethesda) 2021; 35:134-143. [PMID: 32027564 DOI: 10.1152/physiol.00028.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Early human life that starts at the onset of fertilization and ends with implantation of the embryo in the uterine wall is the foundation for a successful pregnancy. The different stages during this period require biomechanical mechanisms, which are mostly unknown due to difficulties to conduct in vivo studies in humans.
Collapse
Affiliation(s)
- David Elad
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Ariel J Jaffa
- Department of Obstetrics and Gynecology, Lis Maternity Hospital, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dan Grisaru
- Gynecological Oncology Unit, Lis Maternity Hospital, Tel-Aviv Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Gupta SK. Human Zona Pellucida Glycoproteins: Binding Characteristics With Human Spermatozoa and Induction of Acrosome Reaction. Front Cell Dev Biol 2021; 9:619868. [PMID: 33681199 PMCID: PMC7928326 DOI: 10.3389/fcell.2021.619868] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/21/2021] [Indexed: 01/11/2023] Open
Abstract
Human zona pellucida (ZP) matrix is composed of four glycoproteins designated as ZP glycoprotein -1 (ZP1), -2 (ZP2), -3 (ZP3), and -4 (ZP4). Mutations in the genes encoding human ZP glycoproteins are one of the causative factors leading to abnormal ZP matrix and infertility in women. Relevance of the human ZP glycoproteins in 'sperm-oocyte' binding has been delineated by using either transgenic animal models expressing human zona proteins or purified native/recombinant human zona proteins. Studies based on the purified native/recombinant human zona proteins revealed that ZP1, ZP3, and ZP4 primarily bind to the capacitated acrosome-intact human spermatozoa whereas ZP2 binds to acrosome-reacted spermatozoa. On the contrary, human spermatozoa binds to the eggs obtained from transgenic mouse lines expressing human ZP2 but not to those expressing human ZP1, ZP3, and ZP4 suggesting that ZP2 has an important role in human 'sperm-oocyte' binding. Further studies using transgenic mouse lines showed that the N-terminus of human ZP2 mediate the taxon-specific human sperm-oocyte binding. Both glycans and protein-protein interactions have a role in human gamete interaction. Further studies have revealed that the purified native/recombinant human ZP1, ZP3, and ZP4 are competent to induce acrosome reaction. Human sperm binds to the mouse transgenic eggs expressing human ZP1-4 instead of mouse ZP1-3 proteins, penetrated the ZP matrix and accumulated in the perivitelline space, which were acrosome-reacted suggesting that human ZP2 in transgenic mouse model also induce acrosome reaction. In humans N-linked glycosylation of zona proteins have been shown to play an important role in induction of the acrosome reaction. Hence in humans, based on studies using transgenic mouse model as well as purified native/recombinant zona proteins, it is likely that more than one zona protein is involved in the 'sperm-oocyte' binding and induction of the acrosome reaction.
Collapse
Affiliation(s)
- Satish Kumar Gupta
- Reproductive Cell Biology Lab, National Institute of Immunology, New Delhi, India
| |
Collapse
|
16
|
Ravi RT, Leung MR, Zeev-Ben-Mordehai T. Looking back and looking forward: contributions of electron microscopy to the structural cell biology of gametes and fertilization. Open Biol 2020; 10:200186. [PMID: 32931719 PMCID: PMC7536082 DOI: 10.1098/rsob.200186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/25/2020] [Indexed: 01/22/2023] Open
Abstract
Mammalian gametes-the sperm and the egg-represent opposite extremes of cellular organization and scale. Studying the ultrastructure of gametes is crucial to understanding their interactions, and how to manipulate them in order to either encourage or prevent their union. Here, we survey the prominent electron microscopy (EM) techniques, with an emphasis on considerations for applying them to study mammalian gametes. We review how conventional EM has provided significant insight into gamete ultrastructure, but also how the harsh sample preparation methods required preclude understanding at a truly molecular level. We present recent advancements in cryo-electron tomography that provide an opportunity to image cells in a near-native state and at unprecedented levels of detail. New and emerging cellular EM techniques are poised to rekindle exploration of fundamental questions in mammalian reproduction, especially phenomena that involve complex membrane remodelling and protein reorganization. These methods will also allow novel lines of enquiry into problems of practical significance, such as investigating unexplained causes of human infertility and improving assisted reproductive technologies for biodiversity conservation.
Collapse
Affiliation(s)
- Ravi Teja Ravi
- Cryo-Electron Microscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Miguel Ricardo Leung
- Cryo-Electron Microscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584CH Utrecht, The Netherlands
- Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford OX3 7BN, UK
| | - Tzviya Zeev-Ben-Mordehai
- Cryo-Electron Microscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584CH Utrecht, The Netherlands
- Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
17
|
Bojic S, Falco MM, Stojkovic P, Ljujic B, Gazdic Jankovic M, Armstrong L, Markovic N, Dopazo J, Lako M, Bauer R, Stojkovic M. Platform to study intracellular polystyrene nanoplastic pollution and clinical outcomes. Stem Cells 2020; 38:1321-1325. [PMID: 32614127 DOI: 10.1002/stem.3244] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022]
Abstract
Increased pollution by plastics has become a serious global environmental problem, but the concerns for human health have been raised after reported presence of microplastics (MPs) and nanoplastics (NPs) in food and beverages. Unfortunately, few studies have investigate the potentially harmful effects of MPs/NPs on early human development and human health. Therefore, we used a new platform to study possible effects of polystyrene NPs (PSNPs) on the transcription profile of preimplantation human embryos and human induced pluripotent stem cells (hiPSCs). Two pluripotency genes, LEFTY1 and LEFTY2, which encode secreted ligands of the transforming growth factor-beta, were downregulated, while CA4 and OCLM, which are related to eye development, were upregulated in both samples. The gene set enrichment analysis showed that the development of atrioventricular heart valves and the dysfunction of cellular components, including extracellular matrix, were significantly affected after exposure of hiPSCs to PSNPs. Finally, using the HiPathia method, which uncovers disease mechanisms and predicts clinical outcomes, we determined the APOC3 circuit, which is responsible for increased risk for ischemic cardiovascular disease. These results clearly demonstrate that better understanding of NPs bioactivities and its implications for human health is of extreme importance. Thus, the presented platform opens further aspects to study interactions between different environmental and intracellular pollutions with the aim to decipher the mechanism and origin of human diseases.
Collapse
Affiliation(s)
- Sanja Bojic
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Faculty of Medical Sciences, Human Genetics, University of Kragujevac, Serbia
| | - Matias M Falco
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Seville, Spain.,Bioinformatics in Rare Diseases (BiER), Centro de Investigaciones Biomédicas en Red en Enfermedades Raras (CIBERER), Seville, Spain
| | | | - Biljana Ljujic
- Faculty of Medical Sciences, Human Genetics, University of Kragujevac, Serbia
| | | | - Lyle Armstrong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Joaquin Dopazo
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, Seville, Spain.,Bioinformatics in Rare Diseases (BiER), Centro de Investigaciones Biomédicas en Red en Enfermedades Raras (CIBERER), Seville, Spain.,Computational Systems Medicine group, Institute of Biomedicine of Seville (IBIS) Hospital Virgen del Rocío, Seville, Spain
| | - Majlinda Lako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Roman Bauer
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Miodrag Stojkovic
- SPEBO Medical Fertility Hospital, Leskovac, Serbia.,Faculty of Medical Sciences, Human Genetics, University of Kragujevac, Serbia
| |
Collapse
|
18
|
Abstract
The zona pellucida (ZP) is an extracellular matrix that surrounds all mammalian oocytes, eggs, and early embryos and plays vital roles during oogenesis, fertilization, and preimplantation development. The ZP is composed of three or four glycosylated proteins, ZP1–4, that are synthesized, processed, secreted, and assembled into long, cross-linked fibrils by growing oocytes. ZP proteins have an immunoglobulin-like three-dimensional structure and a ZP domain that consists of two subdomains, ZP-N and ZP-C, with ZP-N of ZP2 and ZP3 required for fibril assembly. A ZP2–ZP3 dimer is located periodically along ZP fibrils that are cross-linked by ZP1, a protein with a proline-rich N terminus. Fibrils in the inner and outer regions of the ZP are oriented perpendicular and parallel to the oolemma, respectively, giving the ZP a multilayered appearance. Upon fertilization of eggs, modification of ZP2 and ZP3 results in changes in the ZP's physical and biological properties that have important consequences. Certain structural features of ZP proteins suggest that they may be amyloid-like proteins.
Collapse
Affiliation(s)
- Eveline S. Litscher
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;,
| | - Paul M. Wassarman
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;,
| |
Collapse
|
19
|
Novel biallelic loss-of-function variants in ZP1 identified in an infertile female with empty follicle syndrome. J Assist Reprod Genet 2020; 37:2151-2157. [PMID: 32556881 DOI: 10.1007/s10815-020-01855-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/07/2020] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Empty follicle syndrome (EFS) refers to the inability to obtain mature oocytes after appropriate ovarian stimulation during the process of in vitro fertilization (IVF). However, the specific cause and mechanism of action underlying EFS remain to be further explored. Herein we aimed to investigate the clinical and genetic characteristics of EFS. METHODS After data were collected in an infertile family, we performed whole-exome sequencing (WES) on the patient and confirmed the pathogenic mutations through Sanger sequencing. Western immunoblotting, immunofluorescence staining, and minigene assay were further used to investigate the negative effects of these mutations. RESULTS Absence of oocytes was observed over 2 cycles of IVF in the patient, and we evaluated the novel compound heterozygous mutations c.2T>A (p. M1K) and c.1112+1G>T of the zona pellucida glycoprotein 1 gene (ZP1, MIM# 195000) by WES. For the family under study, EFS was classified as an autosomal recessive inheritance pattern. The results of western blotting and immunofluorescence staining analyses confirmed that the missense mutation of c.2T>A [p. M1K] resulted in almost missing protein production. Additionally, using a minigene assay, we demonstrated the deleterious effect on the ZP1 gene of the splice site mutation c.1112+1G>T, which caused truncation of ZP1 protein. CONCLUSIONS The compound heterozygous mutations of ZP1 gene identified in this study by genetic and functional experiments constituted a novel genetic cause of EFS, and further study will expand its use in the clinical and molecular diagnoses of EFS.
Collapse
|
20
|
Argudo DE, Tenemaza MA, Merchán SL, Balvoa JA, Méndez MS, Soria ME, Galarza LR, Ayala LE, Hernández-Fonseca HJ, Perea MS, Perea FP. Intraovarian influence of bovine corpus luteum on oocyte morphometry and developmental competence, embryo production and cryotolerance. Theriogenology 2020; 155:232-239. [PMID: 32758994 DOI: 10.1016/j.theriogenology.2020.05.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/28/2020] [Accepted: 05/30/2020] [Indexed: 12/25/2022]
Abstract
Three experiments were conducted to determine influence of the bovine corpus luteum (CL) on morphometric and functional characteristics of oocytes, and subsequent embryonic development. Cumulus-oocyte complexes were aspirated from two types of cows: 1) with a CL in one ovary (CL+) and without a CL in the contralateral ovary (CL-), 2) and from cows without CL in either ovary (C). Intracellular activity of the enzyme glucose-6-phosphate dehydrogenase (G6PDH), oocyte diameter and thickness of the zona pellucida were determined (Experiment 1). Then, the rate of in vitro oocyte maturation for each ovarian category was evaluated and oocyte diameter and zona pellucida thickness were measured after maturation (Experiment 2). In Experiment 3, in vitro embryo production and cryotolerance were assessed. The oocyte diameter was greater (P < 0.01) and the zona pellucida was thinner in CL+ than in CL- (P > 0.05) or C (P = 0.0131) ovaries. Activity of G6PDH was lower in oocytes from CL+ than CL- (P < 0.01) and C (P = 0.0148) ovaries. Rate of oocyte maturation, oocyte diameter and thickness of the zona pellucida after maturation did not differ among groups. Rate of cleavage was greater in zygotes from CL+ than from CL- or C (P < 0.01); and CL+ ovaries produced more total embryos on day 7 (P < 0.05) and more blastocysts (P < 0.01) than CL- and C ovaries. Rate of expansion and hatching of day-7 vitrified-warmed blastocysts at 24 and 48 h of culture did not differ among groups. In conclusion, oocytes collected from CL+ ovaries were larger and metabolically more prepared to continue maturation than those from ovaries lacking a CL. Also, rates of cleavage and yield of blastocysts were greater for oocytes from CL+ ovaries than from CL- and C ovaries. These findings indicate that a CL influenced oocyte developmental competence and embryonic development, presumably through intraovarian interactions.
Collapse
Affiliation(s)
- Daniel E Argudo
- Unidad Académica de Ciencias Agropecuarias, Universidad Católica de Cuenca, Ecuador
| | - Milton A Tenemaza
- Laboratorio de Biotecnologías de la Reproducción Animal, Facultad de Ciencias Agropecuarias. Universidad de Cuenca, Ecuador
| | - Shirley L Merchán
- Laboratorio de Biotecnologías de la Reproducción Animal, Facultad de Ciencias Agropecuarias. Universidad de Cuenca, Ecuador
| | - José A Balvoa
- Laboratorio de Biotecnologías de la Reproducción Animal, Facultad de Ciencias Agropecuarias. Universidad de Cuenca, Ecuador
| | - Maria S Méndez
- Laboratorio de Biotecnologías de la Reproducción Animal, Facultad de Ciencias Agropecuarias. Universidad de Cuenca, Ecuador
| | - Manuel E Soria
- Laboratorio de Biotecnologías de la Reproducción Animal, Facultad de Ciencias Agropecuarias. Universidad de Cuenca, Ecuador
| | - Luis R Galarza
- Laboratorio de Biotecnologías de la Reproducción Animal, Facultad de Ciencias Agropecuarias. Universidad de Cuenca, Ecuador
| | - Luis E Ayala
- Laboratorio de Biotecnologías de la Reproducción Animal, Facultad de Ciencias Agropecuarias. Universidad de Cuenca, Ecuador
| | | | - Mariana S Perea
- Facultad de Ciencias Veterinarias, Universidad del Zulia, Venezuela
| | - Fernando P Perea
- Departamento de Ciencias Agrarias, Universidad de Los Andes, Trujillo, Venezuela.
| |
Collapse
|
21
|
Báez F, Camargo ÁA, Gastal GDA. Ultrastructural Imaging Analysis of the Zona Pellucida Surface in Bovine Oocytes. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:1032-1036. [PMID: 31134876 DOI: 10.1017/s1431927619000692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aims of the present study were to: (i) evaluate the ultrastructural differences in the zona pellucida (ZP) surface between immature and mature bovine oocytes, and (ii) describe a new objective technique to measure the pores in the outer ZP. Intact cumulus-oocyte complexes (COCs) obtained from a local abattoir were immediately fixed (immature group) or submitted to in vitro maturation (IVM) at 38.5 °C for 24 h in a humidified atmosphere of 5% CO2 in air (mature group). Oocytes from both groups were morphologically evaluated via Scanning Electron Microscopy (SEM) and the images were processed in the Fiji/ImageJ software using a new objective methodology through the Trainable Weka Segmentation plugin. The average number of pores in ZP was greater (p 0.05) between groups. In conclusion, it has been shown that the number of pores highlighted the main ultrastructural change in the morphology of the ZP surface of bovine oocytes during the IVM process. We have described an objective method that can be used to evaluate ultrastructural modifications of the ZP surface during oocyte maturation and early embryo development.
Collapse
Affiliation(s)
- Francisco Báez
- University Center of Tacuarembó,UDELAR, Route 5, Km 386, Tacuarembó,Uruguay
| | - Álvaro A Camargo
- University Center of Tacuarembó,UDELAR, Route 5, Km 386, Tacuarembó,Uruguay
| | - Gustavo D A Gastal
- National Agricultural Research Institute,INIA, Route 50, Km 11, Colonia 70000,Uruguay
| |
Collapse
|
22
|
Xuan B, Li ZC, Wang QY, Xu M, Chen X, Jin Y. Inhibition of PSMD4 alters ZP1 ubiquitination state and sperm-oocyte-binding ability in pigs. Reprod Domest Anim 2018; 53:688-694. [PMID: 29575084 DOI: 10.1111/rda.13158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/19/2018] [Indexed: 12/29/2022]
Abstract
The aim of this study was to determine how the duration of culture affects the ubiquitination of zona pellucida (ZP) proteins (ZP1, ZP2 and ZP3) during porcine oocyte maturation in vitro. We analysed the changes in ZP protein ubiquitination under three conditions: (i) during oocyte maturation from stage GV to MII; (ii) in oocytes cultured for different periods of time; and (iii) in oocytes treated with an antibody against PSMD4. Our results show that ZP1 and ZP2 are ubiquitinated at the GV stage, while ZP1, ZP2 and ZP3 are ubiquitinated at the MII stage, and band intensities for these proteins were significantly different between the GV and MII stages (p < .05). We also found that ubiquitination occurs in ZP1, ZP2 and ZP3 after cultured for 46, 52, 58 and 64 hr, and that the level of ubiquitinated ZP1 was significantly different in oocytes that were cultured for different time periods. Finally, treatment with an antibody against PSMD4 resulted in a significant decrease in ZP1 ubiquitination (p < .05), without affecting ZP2 or ZP3. The number of attached sperms per oocyte was also significantly different between control and anti-PSMD4-treated groups. Thus, we concluded that ZP1 and ZP2 are ubiquitinated at the GV stage, and ZP1, ZP2 and ZP3 are ubiquitinated at the MII stage. As the duration of culture increases, the ubiquitination levels of ZP proteins decrease. We also found that PSMD4 improves ZP1 ubiquitination during in vitro culture of porcine oocytes and effectively inhibits sperm-oocyte binding.
Collapse
Affiliation(s)
- B Xuan
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Z C Li
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Q Y Wang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - M Xu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - X Chen
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| | - Y Jin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, China
| |
Collapse
|
23
|
Abstract
Human zona pellucida (ZP) matrix, a delicate network of thin interconnected filaments, is primarily composed of four glycoproteins, namely, ZP1, ZP2, ZP3, and ZP4. All four zona proteins share common structural elements such as signal peptide, "ZP domain," consensus furin cleavage site, transmembrane-like domain, and short cytoplasmic tail. In addition, ZP1 and ZP4 also have "Trefoil domain." Recombinant/native human zona proteins have been used to investigate their binding characteristics to the capacitated and/or acrosome-reacted spermatozoa. These investigations revealed that ZP1, ZP3, and ZP4 primarily bind to the head region of the capacitated human spermatozoa, whereas ZP2 binds to the acrosome-reacted sperm. However, using transgenic mice, N-terminal region of human ZP2 has also been shown to play an important role in binding of sperm to the egg. ZP1, ZP3, and ZP4 lead to dose-dependent increase in acrosome reaction, suggesting that in humans more than one ZP glycoprotein is responsible for induction of acrosome reaction. Glycosylation of these proteins, in particular, N-linked glycosylation as well as sialyl-Lewisx, is essential for inducing acrosome reaction. Studies delineating downstream signaling events associated with induction of acrosome reaction reveal subtle differences between ZP3 and ZP1/ZP4 with respect to activation of Gi protein-coupled receptor and protein kinase A. The role of mutations in the zona proteins and ZP autoantibodies leading to infertility in women is suggestive and needs more rigorous experimentations for confirming their role in female infertility. The above-mentioned aspects of the human ZP glycoproteins have been discussed in this review.
Collapse
Affiliation(s)
- Satish K Gupta
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
24
|
Canosa S, Adriaenssens T, Coucke W, Dalmasso P, Revelli A, Benedetto C, Smitz J. Zona pellucida gene mRNA expression in human oocytes is related to oocyte maturity, zona inner layer retardance and fertilization competence. Mol Hum Reprod 2018; 23:292-303. [PMID: 28204536 DOI: 10.1093/molehr/gax008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/09/2017] [Indexed: 12/23/2022] Open
Abstract
STUDY QUESTION Do the mRNA expression levels of zona pellucida (ZP) genes, ZP1, 2, 3 and 4 in oocyte and cumulus cells (CC) reveal relevant information on the oocyte? SUMMARY ANSWER The ZP mRNA expression in human oocytes is related to oocyte maturity, zona inner layer (IL) retardance and fertilization capacity. WHAT IS KNOWN ALREADY ZP structure and birefringence provide useful information on oocyte cytoplasmic maturation, developmental competence for embryonic growth, blastocyst formation and pregnancy. In order to understand the molecular basis of morphological changes in the ZP, in the current study, the polarized light microscopy (PLM) approach was combined with analysis of the expression of the genes encoding ZP1, 2, 3 and 4, both in the oocytes and in the surrounding CC. STUDY DESIGN, SIZE, DURATION This is a retrospective study comprising 98 supernumerary human cumulus oocyte complexes (COC) [80 Metaphase II (MII), 10 Metaphase I (MI) and 8 germinal vesicle (GV)] obtained from 39 patients (median age 33.4 years, range 22-42) after controlled ovarian stimulation. PARTICIPANTS/MATERIALS, SETTING, METHODS Single oocytes and their corresponding CC were analysed. Oocytes were examined using PLM, and quantitative RT-PCR was performed for ZP1, 2, 3 and 4 in these individual oocytes and their CC. Ephrin-B2 (EFNB2) mRNA was measured in CC as a control. Presence of ZP3 protein in CC and oocytes was investigated using immunocytochemistry. Data were analysed using one-parametric and multivariate analysis and were corrected for the potential impact of patient and cycle characteristics. MAIN RESULTS AND THE ROLE OF CHANCE Oocytes contained ZP1/2/3 and 4 mRNA while in CC only ZP3 was quantifiable. Also ZP3 protein was detected in human CC. When comparing mature (MII) and immature oocytes (MI/GV) or their corresponding CC, ZP1/2 and 4 expression was lower in mature oocytes compared to the expression in immature oocytes (all P < 0.05) and ZP3 expression was lower in the CC of mature oocytes compared to the expression in CC of immature oocytes (P < 0.05). This coincided with a significantly smaller IL-ZP area and thickness in mature oocytes than in immature oocytes (all P < 0.05). In mature oocytes, IL-ZP retardance was significantly correlated with the expression of all four ZP mRNAs (all P < 0.05). The oocyte ZP3 expression was the main predictor of the fertilization capacity, next to IL-retardance and IL-thickness. Using stepwise regression analysis, IL-thickness combined with EFNB2 expression in CC and the patient's ovarian response resulted in a noninvasive oocyte fertilization prediction model. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION This is a retrospective study and the relation of oocyte mRNA levels to fertilization capacity is indirect as oocyte gene expression analysis required lysis of the oocyte. WIDER IMPLICATIONS OF THE FINDINGS Overall relations between PLM observations, mRNA expression changes and intrinsic oocyte competence were successfully documented. As such PLM and CC gene expression are confirmed as valuable noninvasive techniques to evaluate oocyte competence. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by University of Torino, Italy, WFWG UZ-Brussel and Agentschap voor Innovatie door Wetenschap en Technologie IWT 110680, Belgium. All authors declare that their participation in the study did not involve actual or potential conflicts of interests.
Collapse
Affiliation(s)
- S Canosa
- Chair Gynecology and Obstetrics 1, Physiopathology of Reproduction and IVF Unit, University Department of Surgical Sciences, S. Anna Hospital, Via Ventimiglia 3, 10126 Torino, Italy
| | - T Adriaenssens
- Follicle Biology Laboratory, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| | - W Coucke
- Department of Clinical Biology, Scientific Institute of Public Health, 1050 Brussels, Belgium
| | - P Dalmasso
- Medical Statistics Unit, Department of Public Health and Paediatrics, University of Torino, Via Santena 5b, 10126 Torino, Italy
| | - A Revelli
- Chair Gynecology and Obstetrics 1, Physiopathology of Reproduction and IVF Unit, University Department of Surgical Sciences, S. Anna Hospital, Via Ventimiglia 3, 10126 Torino, Italy
| | - C Benedetto
- Chair Gynecology and Obstetrics 1, Physiopathology of Reproduction and IVF Unit, University Department of Surgical Sciences, S. Anna Hospital, Via Ventimiglia 3, 10126 Torino, Italy
| | - J Smitz
- Follicle Biology Laboratory, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium
| |
Collapse
|
25
|
Dittmann J, Dietzel A, Böl M. Mechanical characterisation of oocytes - The influence of sample geometry on parameter identification. J Mech Behav Biomed Mater 2018; 77:764-775. [DOI: 10.1016/j.jmbbm.2017.07.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/07/2017] [Accepted: 07/25/2017] [Indexed: 01/24/2023]
|
26
|
Novel zona pellucida gene variants identified in patients with oocyte anomalies. Fertil Steril 2017; 107:1364-1369. [DOI: 10.1016/j.fertnstert.2017.03.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/21/2017] [Accepted: 03/24/2017] [Indexed: 01/17/2023]
|
27
|
Abstract
Fertilization is the culminating event of sexual reproduction, which involves the union of the sperm and egg to form a single, genetically distinct organism. Despite the fundamental role of fertilization, the basic mechanisms involved have remained poorly understood. However, these mechanisms must involve an ordered schedule of cellular recognition events between the sperm and egg to ensure successful fusion. In this article, we review recent progress in our molecular understanding of mammalian fertilization, highlighting the areas in which genetic approaches have been particularly informative and focusing especially on the roles of secreted and cell surface proteins, expressed in a sex-specific manner, that mediate sperm-egg interactions. We discuss how the sperm interacts with the female reproductive tract, zona pellucida, and the oolemma. Finally, we review recent progress made in elucidating the mechanisms that reduce polyspermy and ensure that eggs normally fuse with only a single sperm.
Collapse
Affiliation(s)
- Enrica Bianchi
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; ,
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; ,
| |
Collapse
|
28
|
Andolfi L, Masiero E, Giolo E, Martinelli M, Luppi S, Dal Zilio S, Delfino I, Bortul R, Zweyer M, Ricci G, Lazzarino M. Investigating the mechanical properties of zona pellucida of whole human oocytes by atomic force spectroscopy. Integr Biol (Camb) 2016; 8:886-93. [PMID: 27476747 DOI: 10.1039/c6ib00044d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The role of mechanics in numerous biological processes is nowadays recognized, while in others, such as the fertilization process, it is still neglected. In the case of oocytes the description of their mechanical properties could improve the comprehension of the oocyte-spermatozoon interaction and be helpful for application in in vitro fertilization (IVF) clinics. Herein the mechanical properties of whole human oocytes (HOs) immediately after retrieval are investigated by indentation measurements with atomic force spectroscopy under physiological conditions. Measurements are performed on immature (metaphase I - MI) and mature (metaphase II - MII) HOs. According to their morphological characteristics MII-HOs are classified as "suitable" and "rejected"; these latter would be usually rejected for intracytoplasmic sperm injection (ICSI). For all maturation stages we observe that the elastic response of the zona pellucida (ZP) outer layer was different and distinguishable from the rest of the ZP-HO. The elasticity of this ZP outer layer varies with maturation and quality: stiffness decreases from immature MI to good quality MII, up to poor-quality rejected MII. An indirect analysis with IVF outcome indicates that the ZP outer layer of analysed HOs donated by women who achieved pregnancy is stiffer than that of HOs from women with negative outcome. Our findings suggest that mechanical properties can represent important oocyte quality indicators that may be exploited for the design of innovative ICSI dedicated cell sorters.
Collapse
Affiliation(s)
- Laura Andolfi
- Istituto Officina dei Materiali-CNR, Basovizza, 34149 Trieste, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hedrih A, Banić M. The effect of friction and impact angle on the spermatozoa-oocyte local contact dynamics. J Theor Biol 2016; 393:32-42. [PMID: 26780648 DOI: 10.1016/j.jtbi.2015.12.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 11/17/2015] [Accepted: 12/17/2015] [Indexed: 01/08/2023]
Abstract
Although a large proportion of biomolecules involved in spermatozoa-oocyte interaction has been discovered so far, many details of fertilization mechanism remain unknown. Both biochemical and biomechanical components exist in the fertilization process. Mammalian sperm evolved a ZP (zona pelucida) thrust reduction penetration strategy probably in response to the ZP resilient elasticity. Using a biomechanical approach and FEM analysis, local contact stress, ZP deformations during impact and attempt of sperm head penetration relative to different sperm impact angles (SIA) were studied. The sperm-oocyte contact was defined as non-linear frictional contact. A transient structural analysis at 37°C revealed that, from the mechanical standpoint there are SIA that are more favorable for possible ZP penetration due to larger equivalent stress of ZP. An "slip-stick" resembling effect was identified for almost all examined SIA. The sperm head-ZP contact area increases as SIA decreases. Favorable ZP-stress state for sperm penetration regarding SIA are discussed.
Collapse
Affiliation(s)
- Andjelka Hedrih
- Department for Bio-Medical Science, State University of Novi Pazar, Vuka Karadzica bb, 36 300 Novi Pazar, Serbia.
| | - Milan Banić
- Department for Mechanical Design, Development and Engineering, Mechanical Engineering Faculty, University of Nis, Aleksandra Medvedeva 14, 18000 Nis, Serbia
| |
Collapse
|
30
|
Rizo G, Roldán-Olarte M, Miceli DC, Jiménez LE, Álvarez RMS. Structural modifications induced by an in vitro maturation process in zona pellucida glycoproteins of bovine oocytes. A Raman microspectroscopy analysis. RSC Adv 2016. [DOI: 10.1039/c6ra06243a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Raman microspectroscopy is useful for discrimination between immature and in vitro matured bovine oocytes. Modifications in the glycoproteins of the zona pellucida exerted by the maturation methods might influence the process of in vitro production.
Collapse
Affiliation(s)
- G. Rizo
- Instituto Superior de Investigaciones Biológicas (INSIBIO)
- CONICET-Universidad Nacional de Tucumán (UNT)
- Instituto de Biología ‘Dr Francisco D. Barbieri’
- Facultad de Bioquímica
- Química y Farmacia
| | - M. Roldán-Olarte
- Instituto Superior de Investigaciones Biológicas (INSIBIO)
- CONICET-Universidad Nacional de Tucumán (UNT)
- Instituto de Biología ‘Dr Francisco D. Barbieri’
- Facultad de Bioquímica
- Química y Farmacia
| | - D. C. Miceli
- Instituto Superior de Investigaciones Biológicas (INSIBIO)
- CONICET-Universidad Nacional de Tucumán (UNT)
- Instituto de Biología ‘Dr Francisco D. Barbieri’
- Facultad de Bioquímica
- Química y Farmacia
| | - L. E. Jiménez
- Instituto de Química del Noroeste Argentino (INQUINOA)
- CONICET-UNT
- Instituto de Química Física
- Facultad de Bioquímica
- Química y Farmacia
| | - R. M. S. Álvarez
- Instituto de Química del Noroeste Argentino (INQUINOA)
- CONICET-UNT
- Instituto de Química Física
- Facultad de Bioquímica
- Química y Farmacia
| |
Collapse
|
31
|
Okumura H, Sato T, Sakuma R, Fukushima H, Matsuda T, Ujita M. Identification of distinctive interdomain interactions among ZP-N, ZP-C and other domains of zona pellucida glycoproteins underlying association of chicken egg-coat matrix. FEBS Open Bio 2015; 5:454-65. [PMID: 26106520 PMCID: PMC4475693 DOI: 10.1016/j.fob.2015.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 05/15/2015] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
Chicken ZP1 and ZP3 assemble through strong interactions between their ZP-C domains. ZP-C domains of chicken ZP1 and ZP3 are deeply embedded in the egg-coat matrix. Chicken ZP1 forms a homocomplex through non-covalent interaction between repeat domains. Chicken ZPD is deposited on the interstices of ZP1–ZP3 matrix in the egg coat. We propose a model for the architecture of chicken egg-coat matrix from these results.
The vertebrate egg coat, including mammalian zona pellucida, is an oocyte-specific extracellular matrix comprising two to six zona pellucida (ZP) glycoproteins. The egg coat plays important roles in fertilization, especially in species-specific interactions with sperm to induce the sperm acrosome reaction and to form the block to polyspermy. It is suggested that the physiological functions of the egg coat are mediated and/or regulated coordinately by peptide and carbohydrate moieties of the ZP glycoproteins that are spatially arranged in the egg coat, whereas a comprehensive understanding of the architecture of vertebrate egg-coat matrix remains elusive. Here, we deduced the orientations and/or distributions of chicken ZP glycoproteins, ZP1, ZP3 and ZPD, in the egg-coat matrix by confocal immunofluorescent microscopy, and in the ZP1–ZP3 complexes generated in vitro by co-immunoprecipitation assays. We further confirmed interdomain interactions of the ZP glycoproteins by far-Western blot analyses of the egg-coat proteins and pull-down assays of ZP1 in the serum, using recombinant domains of ZP glycoproteins as probes. Our results suggest that the ZP1 and ZP3 bind through their ZP-C domains to form the ZP1–ZP3 complexes and fibrils, which are assembled into bundles through interactions between the repeat domains of ZP1 to form the ZP1–ZP3 matrix, and that the ZPD molecules self-associate and bind to the ZP1–ZP3 matrix through its ZP-N and ZP-C domains to form the egg-coat matrix. Based on these results, we propose a tentative model for the architecture of the chicken egg-coat matrix that might be applicable to other vertebrate ones.
Collapse
Key Words
- CBB, Coomassie Brilliant Blue
- DIC, differential interference contrast
- DTT, dithiothreitol
- EGF, epidermal growth factor
- EHP, external hydrophobic patch
- Egg coat
- Extracellular matrix
- Fertilization
- His6, hexahistidine
- IHP, internal hydrophobic patch
- Interdomain interaction
- MBP, maltose binding protein
- RT, room temperature
- TGFR, transforming growth factor-β receptor
- THP, Tamm–Horsfall protein
- Trx, thioredoxin
- ZP, zona pellucida
- Zona pellucida
Collapse
Affiliation(s)
- Hiroki Okumura
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Meijo University, Nagoya 468-8502, Japan
- Corresponding author. Tel.: +81 52 838 2451; fax: +81 52 833 5524.
| | - Takahiro Sato
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Meijo University, Nagoya 468-8502, Japan
| | - Rio Sakuma
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Meijo University, Nagoya 468-8502, Japan
| | - Hideaki Fukushima
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Meijo University, Nagoya 468-8502, Japan
| | - Tsukasa Matsuda
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Minoru Ujita
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Meijo University, Nagoya 468-8502, Japan
| |
Collapse
|
32
|
Influence of sperm impact angle on successful fertilization through mZP oscillatory spherical net model. Comput Biol Med 2015; 59:19-29. [PMID: 25659799 DOI: 10.1016/j.compbiomed.2015.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/23/2014] [Accepted: 01/12/2015] [Indexed: 11/23/2022]
Abstract
According to the available literature, penetrating sperm creates an oblique path trough Zona pellucida (ZP)--the most outer surface of oocytes. Considering fertilization process as an oscillatory phenomenon, the influence of sperm impact angle relative to the oscillatory behavior of mouse ZP is described by using the discrete continuum mechanical model in the form of a spherical net model. A parametric frequency analysis of oscillatory behavior of knot material particles in the mouse ZP (mZP) spherical net model is conducted by using generalized Lussajous curves. The influence of impact angles of sperm cells on the corresponding knot mass particles' resultant trajectory is discussed. Favorable sperm impact angles for successful fertilization are identified.
Collapse
|
33
|
ASSIDI M, MONTAG M, SIRARD MA. Use of both cumulus cells' transcriptomic markers and zona pellucida birefringence to select developmentally competent oocytes in human assisted reproductive technologies. BMC Genomics 2015; 16 Suppl 1:S9. [PMID: 25923296 PMCID: PMC4315169 DOI: 10.1186/1471-2164-16-s1-s9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Selection of the best oocyte for subsequent steps of fertilization and embryo transfer was shown to be the crucial step in human infertility treatment procedure. Oocyte selection using morphological criteria mainly Zona pellucida (ZP) has been the gold standard method in assisted reproductive technologies (ART) clinics, but this selection approach has limitations in terms of accuracy, objectivity and constancy. Recent studies using OMICs-based approaches have allowed the identification of key molecular markers that quantitatively and non-invasively predict the oocyte quality for higher pregnancy rates and efficient infertility treatment. These biomarkers are a valuable reinforcement of the morphological selection criteria widely used in in vitro fertilization (IVF) clinics. In this context, this study was designed to investigate the relationship between transcriptomic predictors of oocyte quality found by our group and the conventional morphological parameters of oocyte quality mainly the ZP birefringence. RESULTS Microarray data revealed that 48 and 27 differentially expressed candidate genes in cumulus cells (CCs) were respectively overexpressed and underexpressed in the ZGP (Zona Good Pregnant) versus ZBNP (Zona Bad Non Pregnant) groups. More than 70% of previously reported transcriptomic biomarkers of oocyte developmental competence were confirmed in this study. The analysis of possible association between ZP birefringence versus molecular markers approach showed an absence of correlation between them using the current set of markers. CONCLUSIONS This study suggested a new integrative approach that matches morphological and molecular approaches used to select developmentally competent oocytes able to lead to successful pregnancy and the delivery of healthy baby. For each ZP birefringence score, oocytes displayed a particular CCs' gene expression pattern. However, no correlations were found between the 7 gene biomarkers of oocyte developmental potential and the ZP birefringence score. Further studies using larger lists of candidate markers are required to identify suitable genes that are highly correlated with the morphological criteria, and therefore able to reinforce the accuracy of oocyte selection and the effectiveness of infertility treatment.
Collapse
Affiliation(s)
- Mourad ASSIDI
- Center of Excellence in Genomic Medicine Research, King AbdulAziz University, Jeddah, 21589, Saudi Arabia
- KACST Technology Innovation Center in Personalized Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
- Centre de Recherche en Biologie de la Reproduction, Laval University, Quebec City, QC, G1K 7P4, Canada
| | - Markus MONTAG
- Department of Gynecological Endocrinology and Reproductive Medicine, Bonn University, Bonn, Germany
- Current address: ilabcomm Gm bH, Eisenachstr. 34; D-53757 St. Augustin; Germany
| | - Marc-André SIRARD
- Centre de Recherche en Biologie de la Reproduction, Laval University, Quebec City, QC, G1K 7P4, Canada
| |
Collapse
|
34
|
Chiu PCN, Lam KKW, Wong RCW, Yeung WSB. The identity of zona pellucida receptor on spermatozoa: an unresolved issue in developmental biology. Semin Cell Dev Biol 2014; 30:86-95. [PMID: 24747367 DOI: 10.1016/j.semcdb.2014.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 11/29/2022]
Abstract
Mammalian oocytes are surrounded by an acellular zona pellucida (ZP). Fertilization begins when a capacitated spermatozoon binds to the ZP. Defective sperm-ZP interaction is a cause of male infertility and reduced fertilization rates in clinical assisted reproduction treatment. Despite the importance of spermatozoa-ZP binding, the mechanisms and regulation of the interaction are unclear partly due to the failure in the identification of ZP receptor on spermatozoa. Most of the previous studies assumed that the sperm ZP receptor is a single molecular species, and a number of potential candidates had been suggested. Yet none of them can be considered as the sole sperm ZP receptor. Accumulated evidence suggested that the sperm ZP receptor is a dynamic multi-molecular structure requiring coordinated action of different proteins that are assembled into a functional complex during post-testicular maturation and capacitation. The complex components may include carbohydrate-binding, protein-binding and acrosomal matrix proteins which work as a suite to mediate spermatozoa-ZP interaction. This article aims to review the latest insights in the identification of the sperm ZP receptor. Continued investigation of the area will provide considerable understanding of the regulation of fertilization that will be useful for practical application in human contraception and reproductive medicine.
Collapse
Affiliation(s)
- Philip C N Chiu
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China; Centre of Reproduction, Development and Growth, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - Kevin K W Lam
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - Rachel C W Wong
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China; Centre of Reproduction, Development and Growth, LKS Faculty of Medicine, University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
35
|
Huang HL, Lv C, Zhao YC, Li W, He XM, Li P, Sha AG, Tian X, Papasian CJ, Deng HW, Lu GX, Xiao HM. Mutant ZP1 in familial infertility. N Engl J Med 2014; 370:1220-6. [PMID: 24670168 PMCID: PMC4076492 DOI: 10.1056/nejmoa1308851] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human zona pellucida is composed of four glycoproteins (ZP1, ZP2, ZP3, and ZP4) and has an important role in reproduction. Here we describe a form of infertility with an autosomal recessive mode of inheritance, characterized by abnormal eggs that lack a zona pellucida. We identified a homozygous frameshift mutation in ZP1 in six family members. In vitro studies showed that defective ZP1 proteins and normal ZP3 proteins colocalized throughout the cells and were not expressed at the cell surface, suggesting that the aberrant ZP1 results in the sequestration of ZP3 in the cytoplasm, thereby preventing the formation of the zona pellucida around the oocyte.
Collapse
Affiliation(s)
- Hua-Lin Huang
- From the Institute of Reproduction and Stem Cell Engineering, Central South University (H.-L.H., C.L., W.L., G.-X.L., H.-M.X.), Reproductive and Genetic Hospital of CITIC-Xiangya (W.L., G.-X.L., H.-M.X.), and the First High School of Changsha (X.T.), Changsha, and Xiamen Maternal and Child Health Care Hospital (X.-M.H., P.L.) and PLA Hospital No.174 (A.-G.S.), Xiamen - all in China; the Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans (H.-L.H., Y.-C.Z., H.-W.D.); and the School of Medicine, University of Missouri-Kansas City, Kansas City (C.J.P.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gupta SK, Bhandari B, Shrestha A, Biswal BK, Palaniappan C, Malhotra SS, Gupta N. Mammalian zona pellucida glycoproteins: structure and function during fertilization. Cell Tissue Res 2013; 349:665-78. [PMID: 22298023 DOI: 10.1007/s00441-011-1319-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 12/21/2011] [Indexed: 12/15/2022]
Abstract
Zona pellucida (ZP) is a glycoproteinaceous translucent matrix that surrounds the mammalian oocyte and plays a critical role in the accomplishment of fertilization. In humans, it is composed of 4 glycoproteins designated as ZP1, ZP2, ZP3 and ZP4, whereas mouse ZP is composed of ZP1, ZP2 and ZP3 (Zp4 being a pseudogene). In addition to a variable sequence identity of a given zona protein among various species, human ZP1 and ZP4 are paralogs and mature polypeptide chains share an identity of 47%. Employing either affinity purified native or recombinant human zona proteins, it has been demonstrated that ZP1, ZP3 and ZP4 bind to the capacitated human spermatozoa and induce an acrosome reaction, whereas in mice, ZP3 acts as the putative primary sperm receptor. Human ZP2 only binds to acrosome-reacted spermatozoa and thus may be acting as a secondary sperm receptor. In contrast to O-linked glycans of ZP3 in mice, N-linked glycans of human ZP3 and ZP4 are more relevant for induction of the acrosome reaction. Recent studies suggest that Sialyl-Lewis(x) sequence present on both N- and O-glycans of human ZP play an important role in human sperm-egg binding. There are subtle differences in the downstream signaling events associated with ZP3 versus ZP1/ZP4-mediated induction of the acrosome reaction. For example, ZP3 but not ZP1/ZP4-mediated induction of the acrosome reaction is dependent on the activation of the Gi protein-coupled receptor. Thus, various studies suggest that, in contrast to mice, in humans more than one zona protein binds to spermatozoa and induces an acrosome reaction.
Collapse
Affiliation(s)
- Satish K Gupta
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India.
| | | | | | | | | | | | | |
Collapse
|
37
|
Li L, Lu X, Dean J. The maternal to zygotic transition in mammals. Mol Aspects Med 2013; 34:919-38. [PMID: 23352575 DOI: 10.1016/j.mam.2013.01.003] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/08/2013] [Accepted: 01/11/2013] [Indexed: 11/15/2022]
Abstract
Prior to activation of the embryonic genome, the initiating events of mammalian development are under maternal control and include fertilization, the block to polyspermy and processing sperm DNA. Following gamete union, the transcriptionally inert sperm DNA is repackaged into the male pronucleus which fuses with the female pronucleus to form a 1-cell zygote. Embryonic transcription begins during the maternal to zygotic transfer of control in directing development. This transition occurs at species-specific times after one or several rounds of blastomere cleavage and is essential for normal development. However, even after activation of the embryonic genome, successful development relies on stored maternal components without which embryos fail to progress beyond initial cell divisions. Better understanding of the molecular basis of maternal to zygotic transition including fertilization, the activation of the embryonic genome and cleavage-stage development will provide insight into early human development that should translate into clinical applications for regenerative medicine and assisted reproductive technologies.
Collapse
Affiliation(s)
- Lei Li
- Division of Molecular Embryonic Development, State Key Laboratory of Reproductive Biology, Institute of Zoology/Chinese Academy of Sciences, Beijing 100101, PR China.
| | | | | |
Collapse
|
38
|
Novo S, Barrios L, Ibáñez E, Nogués C. The zona pellucida porosity: three-dimensional reconstruction of four types of mouse oocyte zona pellucida using a dual beam microscope. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:1442-1449. [PMID: 23237572 DOI: 10.1017/s1431927612013487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In the last decade, the applicability of focus ion beam-field emission scanning electron microscopy (FIB-FESEM) in the biological field has begun to get relevance. Among the possibilities offered by FIB-FESEM, high-resolution three-dimensional (3D) reconstruction of biological structures is one of the most interesting. Using this tool, the 3D porosity of four different types of mouse oocyte zona pellucida (ZP) was analyzed. A surface analysis of the mouse oocyte ZP was first performed by SEM. Next, one oocyte per ZP type was selected, and an area of its ZP was completely milled, using the cut and view mode, in the FIB-FESEM. Through a 3D reconstruction of the milled area, a map of the distribution of the pores across the ZP was established and the number and volume of pores were quantified, thus enabling for the first time the study of the inner porosity of the mouse ZP. Differences in ZP porosity observed among the four types analyzed allowed us to outline a model to explain the changes that the ZP undergoes through immature, mature, predegenerative, and degenerative stages.
Collapse
Affiliation(s)
- Sergi Novo
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | |
Collapse
|
39
|
Abstract
The viscoelastic properties of the zona pellucida (ZP), which is the extracellular coat surrounding an oocyte/embryo, are evaluated in this study. Previous studies demonstrate that ZP mechanical properties change during oocyte maturation, fertilization, and early embryo development, but linear pure elastic models currently being used do not satisfy the time-dependent mechanical behavior of the ZP. In this paper, nonlinear viscoelastic characterization was performed using the Hunt-Crossley model and the newly developed vision-based nanoforce estimation method. The results show that viscoelasticity is a physical property of the ZP that exhibits hysteresis. The stiffness and viscosity parameters simultaneously increase following fertilization, causing the stiffness and viscosity of the embryo ZP (ten samples) to be 2.57-fold and 4.44-fold greater, respectively, than that of the oocyte ZP (eleven samples). This behavior well describes the noncovalently cross-linked filamentous structure of the ZP, supporting zona hardening during fertilization as a mechanically relevant event.
Collapse
Affiliation(s)
- Jungsik Kim
- Convergence R&D Laboratory, LG Electronics, Seoul 137-130, Korea.
| | | |
Collapse
|
40
|
Papi M, Brunelli R, Familiari G, Frassanito MC, Lamberti L, Maulucci G, Monaci M, Pappalettere C, Parasassi T, Relucenti M, Sylla L, Ursini F, De Spirito M. Whole-depth change in bovine zona pellucida biomechanics after fertilization: how relevant in hindering polyspermy? PLoS One 2012; 7:e45696. [PMID: 23049839 PMCID: PMC3458926 DOI: 10.1371/journal.pone.0045696] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 08/22/2012] [Indexed: 01/25/2023] Open
Abstract
Polyspermy is a common problem in bovine in vitro fertilization (IVF) and has a still unclear etiology. In this specie, after IVF, despite the lack of a biochemical post-fertilization hardening, the stiffness of the outer ZP layer is significantly increased. Therefore, polyspermy might be related to an incomplete or insufficient stiffening of the ZP. We obtained, by using atomic force spectroscopy in physiological conditions, a complete characterization of the biomechanical changes of the inner and outer ZP layers occurring during oocyte maturation/fertilization and correlated them to the ultrastructural changes observed by transmission electron microscopy using ruthenium red and saponin technique. In both the inner and outer ZP layers, stiffness decreased at maturation while, conversely, increased after fertilization. Contextually, at the nanoscale, during maturation both ZP layers displayed a fine filaments network whose length increased while thickness decreased. After fertilization, filaments partially recovered the immature features, appearing again shorter and thicker. Overall, the observed biomechanical modifications were substantiated by ultrastructural findings in the ZP filament mesh. In fertilized ZP, the calculated force necessary to displace ZP filaments resulted quite similar to that previously reported as generated by bovine sperm flagellum. Therefore, in bovine IVF biomechanical modifications of ZP appear ineffective in hindering sperm transit, highlighting the relevance of additional mechanisms operating in vivo.
Collapse
Affiliation(s)
- Massimiliano Papi
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Roberto Brunelli
- Dipartimento di Scienze Ginecologico-Ostetriche e Scienze Urologiche, Università di Roma Sapienza, Roma, Italy
| | - Giuseppe Familiari
- Dipartimento di Scienze Anatomiche, Istologiche, Medico-Legali e dell’Apparato locomotore, Università di Roma Sapienza, Roma, Italy
| | | | - Luciano Lamberti
- Dipartimento di Ingegneria Meccanica e Gestionale, Politecnico di Bari, Bari, Italy
| | - Giuseppe Maulucci
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Maurizio Monaci
- Dipartimento di Patologia, Diagnostica e Clinica Veterinaria, Università di Perugia, Perugia, Italy
| | - Carmine Pappalettere
- Dipartimento di Ingegneria Meccanica e Gestionale, Politecnico di Bari, Bari, Italy
| | | | - Michela Relucenti
- Dipartimento di Scienze Anatomiche, Istologiche, Medico-Legali e dell’Apparato locomotore, Università di Roma Sapienza, Roma, Italy
| | - Lakamy Sylla
- Dipartimento di Patologia, Diagnostica e Clinica Veterinaria, Università di Perugia, Perugia, Italy
| | - Fulvio Ursini
- Dipartimento di Chimica Biologica, Università di Padova, Padova, Italy
| | - Marco De Spirito
- Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italy
- Fondazione di Ricerca e Cura Giovanni Paolo II, Fisica Sanitaria, Campobasso, Italy
- * E-mail:
| |
Collapse
|
41
|
Held E, Mertens EM, Mohammadi-Sangcheshmeh A, Salilew-Wondim D, Besenfelder U, Havlicek V, Herrler A, Tesfaye D, Schellander K, Hölker M. Zona pellucida birefringence correlates with developmental capacity of bovine oocytes classified by maturational environment, COC morphology and G6PDH activity. Reprod Fertil Dev 2012; 24:568-79. [PMID: 22541545 DOI: 10.1071/rd11112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/18/2011] [Indexed: 01/29/2023] Open
Abstract
In the present study we aimed to analyse structural changes during in vitro maturation of the bovine zona pellucida (ZP) by scanning electron microscopy (SEM) ands zona pellucida birefringence (ZPB). Here we show that alterations during in vitro maturation invasively analysed by SEM are reflected in ZPB. In vivo-matured oocytes displayed significantly lower birefringence parameters and significantly higher blastocyst rates compared with in vitro-derived oocytes (39.1% vs 21.6%). The same was observed for in vitro-matured oocytes with cumulus-oocyte complex (COC) Quality 1 (Q1) compared with Q3-COCs with respect to zona birefringence and developmental capacity. Immature oocytes with Q1-COCs displayed higher ZPB values and a higher developmental capacity to the blastocyst stage (27.7% vs 16.9%) compared with immature Q3-COCs. Considering in vitro-matured oocytes, only those with Q1-COC showed a trend for ZPB similar to in vivo-matured oocytes. Therefore, a decreasing trend for ZPB during in vitro maturation seems to be typical for high-quality oocytes and successful cytoplasmic maturation. In accordance, fully-grown immature oocytes reached significantly higher blastocyst rates (32.0% vs 11.5%) and lower ZPB values compared with still-growing ones. In conclusion, we successfully evaluated the applicability of zona imaging to bovine oocytes: alterations during in vitro maturation invasively analysed by scanning electron microscopy were reflected in the birefringence of the zona pellucida of bovine oocytes affecting developmental capacity at the same value. Therefore ZPB measurement by live zona imaging has potential to become a new tool to assess correctness of in vitro maturation and to predict developmental competence.
Collapse
Affiliation(s)
- Eva Held
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Boccaccio A, Frassanito MC, Lamberti L, Brunelli R, Maulucci G, Monaci M, Papi M, Pappalettere C, Parasassi T, Sylla L, Ursini F, De Spirito M. Nanoscale characterization of the biomechanical hardening of bovine zona pellucida. J R Soc Interface 2012; 9:2871-82. [PMID: 22675161 DOI: 10.1098/rsif.2012.0269] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The zona pellucida (ZP) is an extracellular membrane surrounding mammalian oocytes. The so-called zona hardening plays a key role in fertilization process, as it blocks polyspermy, which may also be caused by an increase in the mechanical stiffness of the ZP membrane. However, structural reorganization mechanisms leading to ZP's biomechanical hardening are not fully understood yet. Furthermore, a correct estimate of the elastic properties of the ZP is still lacking. Therefore, the aim of the present study was to investigate the biomechanical behaviour of ZP membranes extracted from mature and fertilized bovine oocytes to better understand the mechanisms involved in the structural reorganization of the ZP that may lead to the biomechanical hardening of the ZP. For that purpose, a hybrid procedure is developed by combining atomic force microscopy nanoindentation measurements, nonlinear finite element analysis and nonlinear optimization. The proposed approach allows us to determine the biomechanical properties of the ZP more realistically than the classical analysis based on Hertz's contact theory, as it accounts for the nonlinearity of finite indentation process, hyperelastic behaviour and material heterogeneity. Experimental results show the presence of significant biomechanical hardening induced by the fertilization process. By comparing various hyperelastic constitutive models, it is found that the Arruda-Boyce eight-chain model best describes the biomechanical response of the ZP. Fertilization leads to an increase in the degree of heterogeneity of membrane elastic properties. The Young modulus changes sharply within a superficial layer whose thickness is related to the characteristic distance between cross-links in the ZP filamentous network. These findings support the hypothesis that biomechanical hardening of bovine ZP is caused by an increase in the number of inter-filaments cross-links whose density should be higher in the ZP inner side.
Collapse
Affiliation(s)
- Antonio Boccaccio
- Dipartimento di Ingegneria Meccanica e Gestionale, Politecnico di Bari, , Bari 70126, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Marco-Jiménez F, Naturil-Alfonso C, Jiménez-Trigos E, Lavara R, Vicente JS. Influence of zona pellucida thickness on fertilization, embryo implantation and birth. Anim Reprod Sci 2012; 132:96-100. [PMID: 22607772 DOI: 10.1016/j.anireprosci.2012.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 04/17/2012] [Accepted: 04/19/2012] [Indexed: 10/28/2022]
Abstract
Defective sperm-zona pellucida binding and penetration are the main causes of IVF failure. The purpose of this study was to evaluate the effect of zona pellucida thickness in fertilization failure and test the influence of zona pellucida thickness on implantation and birth in rabbits. Embryos and oocytes were collected from 72 females on Day 2 post-insemination. A total of 559 normal embryos were recovered; 402 embryos were transferred by laparoscopy and 157 embryos were used to measure the zona pellucida thickness using the ImageJ program. Laparoscopies were also performed on all does at Day 12 of gestation to record the number of implanted embryos. Litter size at birth was recorded. The mean zona pellucida thickness of the 157 embryos and of the 64 control group oocytes (18.3 ± 0.2 and 18.5 ± 0.3 μm, respectively) was significantly less than the zona pellucida thickness of the 74 failed fertilization oocytes (19.2 ± 0.3 μm). The probabilities of the regression coefficient being positive were 0.72 and 0.74 for implantation and birth, respectively, and the subsequent means of the coefficient were 2.92 and 0.03 for implantation and birth, respectively. In conclusion, the zona pellucida thickness has an important influence on in vivo fertilization and implantation processes, but not on birth.
Collapse
Affiliation(s)
- F Marco-Jiménez
- Institute of Science and Animal Technology, Laboratorio de Biotecnología de la Reproducción, Universidad Politécnica de Valencia, Spain.
| | | | | | | | | |
Collapse
|
44
|
Koester M, Mohammadi-Sangcheshmeh A, Montag M, Rings F, Schimming T, Tesfaye D, Schellander K, Hoelker M. Evaluation of bovine zona pellucida characteristics in polarized light as a prognostic marker for embryonic developmental potential. Reproduction 2011; 141:779-87. [PMID: 21415090 DOI: 10.1530/rep-10-0471] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It has previously been demonstrated that zona pellucida imaging of human oocytes using polarized light microscopy is a clinically applicable method for the noninvasive assessment of oocyte quality. This study was designed to investigate whether zona pellucida characteristics of bovine oocytes and zygotes in polarized light may similarly serve as a useful marker for developmental competence in bovine reproductive biotechnologies. Zona birefringence intensity parameters of 2862 oocytes/zygotes were objectively evaluated with an automatic analysis system and correlated with oocyte/zygote quality. In detail, immature oocytes of good quality assessed with brilliant cresyl blue staining showed significantly lower zona birefringence than poor-quality counterparts (P<0.001). After in vitro maturation and classification according to maturational status, the birefringence intensity parameters were significantly different in those oocytes that reached metaphase II compared with arrested stages (P<0.001). Following either parthenogenetic activation or IVF with subsequent in vitro culture in a well-of-the-well system until day 9, superior development as determined by cleavage, blastocyst formation, and hatching ability was associated with lower zona birefringence intensity parameters. When early zygote-stage embryos were selected and assorted in groups based on zona birefringence (high/medium/low), the group of embryos derived from high-birefringence zygotes displayed a significantly compromised developmental potential compared with low-birefringence zygotes. These results clearly show that developmentally competent bovine oocytes/zygotes exhibit lower zona birefringence intensity parameters. Therefore, birefringence imaging of zona pellucida is a suitable technique to predict bovine preimplantation embryo development.
Collapse
Affiliation(s)
- M Koester
- Department of Gynecological Endocrinology and Reproductive Medicine, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ganguly A, Bansal P, Gupta T, Gupta SK. 'ZP domain' of human zona pellucida glycoprotein-1 binds to human spermatozoa and induces acrosomal exocytosis. Reprod Biol Endocrinol 2010; 8:110. [PMID: 20831819 PMCID: PMC2944174 DOI: 10.1186/1477-7827-8-110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 09/11/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The human egg coat, zona pellucida (ZP), is composed of four glycoproteins designated as zona pellucida glycoprotein-1 (ZP1), -2 (ZP2), -3 (ZP3) and -4 (ZP4) respectively. The zona proteins possess the archetypal 'ZP domain', a signature domain comprised of approximately 260 amino acid (aa) residues. In the present manuscript, attempts have been made to delineate the functional significance of the 'ZP domain' module of human ZP1, corresponding to 273-551 aa fragment of human ZP1. METHODS Baculovirus-expressed, nickel-nitrilotriacetic acid affinity chromatography purified 'ZP domain' of human ZP1 was employed to assess its capability to bind and subsequently induce acrosomal exocytosis in capacitated human spermatozoa using tetramethyl rhodamine isothiocyanate conjugated Pisum sativum Agglutinin in absence or presence of various pharmacological inhibitors. Binding characteristics of ZP1 'ZP domain' were assessed employing fluorescein isothiocyanate (FITC) labelled recombinant protein. RESULTS SDS-PAGE and immunoblot characterization of the purified recombinant protein (both from cell lysate as well as culture supernatant) revealed a doublet ranging from ~35-40 kDa. FITC- labelled 'ZP domain' of ZP1 binds primarily to the acrosomal cap of the capacitated human spermatozoa. A dose dependent increase in acrosomal exocytosis was observed when capacitated sperm were incubated with recombinant 'ZP domain' of human ZP1. The acrosome reaction mediated by recombinant protein was independent of Gi protein-coupled receptor pathway, required extra cellular calcium and involved both T- and L-type voltage operated calcium channels. CONCLUSIONS Results described in the present study suggest that the 'ZP domain' module of human ZP1 has functional activity and may have a role during fertilization in humans.
Collapse
Affiliation(s)
- Anasua Ganguly
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110 067, India
| | - Pankaj Bansal
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110 067, India
| | - Tripti Gupta
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110 067, India
| | - Satish K Gupta
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110 067, India
| |
Collapse
|
46
|
Liu X, Fernandes R, Jurisicova A, Casper RF, Sun Y. In situ mechanical characterization of mouse oocytes using a cell holding device. LAB ON A CHIP 2010; 10:2154-2161. [PMID: 20544113 DOI: 10.1039/c004706f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This paper presents a cellular force measurement technique that allows for mechanical characterization of mouse oocytes during microinjection (i.e., in situ) without requiring a separate characterization process. The technique employs an elastic cell holding device and a sub-pixel computer vision tracking algorithm to resolve cellular forces in real time with a nanonewton force measurement resolution (2 nN at 30 Hz). Mechanical properties (i.e., stiffness) of both healthy and defective mouse oocytes are characterized. The experimental results suggest that the in situ obtained force-deformation data are useful for distinguishing healthy mouse oocytes from those with aging-induced cellular defects, promising an approach for oocyte quality assessment during microinjection. Biomembrane and cytoskeleton structures of the healthy and defective oocytes are also investigated in an attempt to correlate the measured subtle mechanical difference to cellular structure changes.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, CanadaM5S 3G8
| | | | | | | | | |
Collapse
|
47
|
Ganguly A, Bukovsky A, Sharma RK, Bansal P, Bhandari B, Gupta SK. In humans, zona pellucida glycoprotein-1 binds to spermatozoa and induces acrosomal exocytosis. Hum Reprod 2010; 25:1643-56. [PMID: 20504872 DOI: 10.1093/humrep/deq105] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND It has been suggested that the zona pellucida (ZP) may mediate species-specific fertilization. In human the ZP is composed of four glycoproteins: ZP1, ZP2, ZP3 and ZP4. In the present study, the expression profile of ZP1 in human oocytes and ovaries, and its role during fertilization, is presented. METHODS Human ZP1 (amino acid residues 26-551) was cloned and expressed in both non-glycosylated and glycosylated forms and its ability to bind to the capacitated human spermatozoa and to induce acrosomal exocytosis was studied. Monoclonal antibodies (MAbs), specific for human ZP1 and devoid of reactivity with ZP2, ZP3 and ZP4 were generated and used to localize native ZP1 in oocytes and ovarian tissues. RESULTS The MAbs generated against ZP1 recognized specifically the zona matrix of secondary and antral follicles, ovulated oocytes, atretic follicles and degenerating intravascular oocytes, but failed to react with the Fallopian tube, endometrium, ectocervix and kidney. Escherichia coli and baculovirus-expressed recombinant human ZP1 revealed bands of approximately 75 and approximately 85 kDa, respectively, in western blot. Lectin binding studies revealed the presence of both N- and O-linked glycosylation in baculovirus-expressed ZP1. Fluorescein isothiocyanate-labelled E. coli- and baculovirus-expressed recombinant ZP1 bound to the anterior head of capacitated spermatozoa, however, only baculovirus-expressed ZP1 induced acrosomal exocytosis in capacitated sperm suggesting the importance of glycosylation in mediating the acrosome reaction. The human ZP1-mediated acrosome reaction involved the activation of both T- and L-type voltage-operated calcium channels, but does not activate the G(i)-coupled receptor pathway. Inhibition of protein kinase A and C significantly also reduced the ZP1-mediated induction of the acrosome reaction. CONCLUSION These studies revealed for the first time that in humans ZP1, in addition to ZP3 and ZP4, binds to capacitated spermatozoa and induces acrosomal exocytosis.
Collapse
Affiliation(s)
- Anasua Ganguly
- Reproductive Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
48
|
Litscher ES, Williams Z, Wassarman PM. Zona pellucida glycoprotein ZP3 and fertilization in mammals. Mol Reprod Dev 2009; 76:933-41. [DOI: 10.1002/mrd.21046] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
49
|
Abstract
All mammalian eggs are surrounded by a relatively thick extracellular coat, the zona pellucida, that plays vital roles during oogenesis, fertilization, and preimplantation development. The mouse zona pellucida consists of three glycoproteins that are synthesized solely by growing oocytes and assemble into long fibrils that constitute a matrix. Zona pellucida glycoproteins are responsible for species-restricted binding of sperm to unfertilized eggs, inducing sperm to undergo acrosomal exocytosis, and preventing sperm from binding to fertilized eggs. Many features of mammalian and non-mammalian egg coat polypeptides have been conserved during several hundred million years of evolution.
Collapse
Affiliation(s)
- Paul M Wassarman
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| |
Collapse
|
50
|
Abstract
Carl Hartman's title of 47 years ago is invoked in tribute to his first recovery of a bovine embryo 30 years before that, and his legacy of an emphasis on the value of descriptive and comparative studies in reproductive biology. The horse's qualification as a farm animal has waned since those times but, in a conference understandably dominated by research in ruminants and pigs, there are lessons to be learned from some peculiarities of equine embryonic development. Morphological and physiological features of the conceptus and its interaction with its environment during the first month of pregnancy are described and discussed, with emphasis on conceptus expansion, experimental study of the capsule and its associated proteins, and steroid production and metabolism by the various tissues within the conceptus. It is also suggested that easy access to entire conceptuses at advanced stages of development in horses offers valuable opportunities for comparative investigation of early organogenesis and fetal membrane differentiation and, possibly, how they are affected by embryo manipulation in vitro.
Collapse
Affiliation(s)
- K J Betteridge
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph Ontario N1G 2W1, Canada.
| |
Collapse
|