1
|
Bow JR, Sonoki Y, Uchiyama M, Dauskardt RH. Ectoine disperses keratin and alters hydration kinetics in stratum corneum. Biochem Biophys Rep 2021; 28:101134. [PMID: 34584987 PMCID: PMC8455723 DOI: 10.1016/j.bbrep.2021.101134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/02/2022] Open
Abstract
Moisturizing compounds are commonly applied topically to human stratum corneum (SC). Many types of molecular species are employed, most commonly including humectants and occlusives. We find new evidence of keratin dispersion caused by the moisturizing compound ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid), and provide the first characterization of its impacts on the hydration kinetics and biomechanics of SC. A second compound, 2-(2-hydroxyethoxy)ethylguanidine succinate (HEG) was investigated for comparison. A suite of biomechanical and biochemical assays including FTIR, drying stress, and cellular cohesion were used. Studies were conducted on normal, lipid-extracted, and lipid plus natural moisturizing factor extracted SC. Ectoine was found to improve the dispersity and hydration of keratin bundles in corneocytes. It also decreased rates of stress development in lipid extracted SC when exposed to a dry environment by ∼30% while improving stress reduction during rehydration by ∼20%. Peak stresses were increased in harsh drying environments of <5% RH, but SC swelling measurements suggest that water retention was improved in ambient conditions. Further, changes up to ∼4 J/m2 were seen in cohesion after ectoine treatments, suggesting corneodesmosome interactions. HEG was tested and found to disperse keratin without impacting corneodesmosomes. These results indicate that keratin dispersants produce beneficial effects on SC hydration kinetics, ultimately resulting in higher SC hydration under ambient conditions. First study demonstrating the biomechanical impact of keratin dispersion on human skin Ectoine disperses keratin bundles in human stratum corneum Rates of drying stress development are reduced in keratin-dispersed skin Rehydration rates are increased in keratin-dispersed skin Keratin dispersion alters corneocyte cohesion profiles
Collapse
Affiliation(s)
- Jacob R. Bow
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Yoshihiko Sonoki
- Skin Care Products Research Laboratory, Kao Corporation, Tokyo, Japan
| | - Masayuki Uchiyama
- Skin Care Products Research Laboratory, Kao Corporation, Tokyo, Japan
| | - Reinhold H. Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Corresponding author. Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305-2205.
| |
Collapse
|
2
|
Kawasaki T, Zen H, Ozaki K, Yamada H, Wakamatsu K, Ito S. Application of mid-infrared free-electron laser for structural analysis of biological materials. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:28-35. [PMID: 33399549 DOI: 10.1107/s160057752001406x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
A mid-infrared free-electron laser (MIR-FEL) is a synchrotron-radiation-based femto- to pico-second pulse laser. It has unique characteristics such as variable wavelengths in the infrared region and an intense pulse energy. So far, MIR-FELs have been utilized to perform multi-photon absorption reactions against various gas molecules and protein aggregates in physical chemistry and biomedical fields. However, the applicability of MIR-FELs for the structural analysis of solid materials is not well recognized in the analytical field. In the current study, an MIR-FEL is applied for the first time to analyse the internal structure of biological materials by using fossilized inks from cephalopods as the model sample. Two kinds of fossilized inks that were collected from different strata were irradiated at the dry state by tuning the oscillation wavelengths of the MIR-FEL to the phosphoryl stretching mode of hydroxyapatite (9.6 µm) and to the carbonyl stretching mode of melanin (5.8 µm), and the subsequent structural changes in those materials were observed by using infrared microscopy and far-infrared spectroscopy. The structural variation of these biological fossils is discussed based on the infrared-absorption spectral changes that were enhanced by the MIR-FEL irradiation, and the potential use of MIR-FELs for the structural evaluation of biomaterials is suggested.
Collapse
Affiliation(s)
- Takayasu Kawasaki
- IR Free Electron Laser Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Heishun Zen
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Kento Ozaki
- Photon Production Laboratory Ltd, 576-1 Anamura-cho, Kusatsu, Shiga 525-0012, Japan
| | - Hironari Yamada
- Photon Production Laboratory Ltd, 576-1 Anamura-cho, Kusatsu, Shiga 525-0012, Japan
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Shosuke Ito
- Department of Chemistry, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
3
|
Lee GJ, Kim HM, Song YM. Design and Fabrication of Microscale, Thin-Film Silicon Solid Immersion Lenses for Mid-Infrared Application. MICROMACHINES 2020; 11:mi11030250. [PMID: 32120857 PMCID: PMC7143082 DOI: 10.3390/mi11030250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 11/30/2022]
Abstract
Lens-based optical microscopes cannot resolve the sub-wavelength objects overpass diffraction limit. Recently, research on super-resolution imaging has been conducted to overcome this limitation in visible wavelength using solid immersion lenses. However, IR imaging, which is useful for chemical imaging, bio-imaging, and thermal imaging, has not been studied much in optical super-resolution by solid immersion lens owing to material limitations. Herein, we present the design and fabrication schemes of microscale silicon solid immersion lenses (µ-SIL) based on thin-film geometry for mid-infrared (MIR) applications. Compared with geometrical optics, a rigorous finite-difference time-domain (FDTD) calculation of proposed silicon microlenses at MIR wavelengths shows that the outstanding short focal lengths result in enhanced magnification, which allows resolving objects beyond the diffraction limit. In addition, the theoretical analyses evaluate the influences of various structural parameters, such as radius of curvature (RoC), refractive index, and substrate thickness, in µ-SIL. In particular, the high refractive index of µ-SIL is beneficial to implement the outstanding near-field focusing, which corresponds to a high numerical aperture. On the basis of this theoretical background, novel methods are developed for the fabrication of a printable, thin-film silicon microlens array and its integration with a specimen substrate. From the result, we provide a physical understanding of near-field focusing phenomena and offer a promising tool for super-resolution far-field imaging in the MIR range.
Collapse
|
4
|
Bunaciu AA, Hoang VD, Aboul-Enein HY. Vibrational Micro-Spectroscopy of Human Tissues Analysis: Review. Crit Rev Anal Chem 2016; 47:194-203. [PMID: 27786540 DOI: 10.1080/10408347.2016.1253454] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Vibrational spectroscopy (Infrared (IR) and Raman) and, in particular, micro-spectroscopy and micro-spectroscopic imaging have been used to characterize developmental changes in tissues, to monitor these changes in cell cultures and to detect disease and drug-induced modifications. The conventional methods for biochemical and histophatological tissue characterization necessitate complex and "time-consuming" sample manipulations and the results are rarely quantifiable. The spectroscopy of molecular vibrations using mid-IR or Raman techniques has been applied to samples of human tissue. This article reviews the application of these vibrational spectroscopic techniques for analysis of biological tissue published between 2005 and 2015.
Collapse
Affiliation(s)
- Andrei A Bunaciu
- a SCIENT-Research Center for Instrumental Analysis , Tancabesti-Snagov , Romania
| | - Vu Dang Hoang
- b Department of Analytical Chemistry and Toxicology , Hanoi University of Pharmacy , Hanoi , Vietnam
| | - Hassan Y Aboul-Enein
- c Pharmaceutical and Medicinal Chemistry Department , Pharmaceutical and Drug Industries Research Division , Egypt
| |
Collapse
|
5
|
Yu Y, Zhang B, Gai X, Zhai C, Qi S, Guo W, Yang Z, Wang R, Choi DY, Madden S, Luther-Davies B. 1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power. OPTICS LETTERS 2015; 40:1081-4. [PMID: 25768187 DOI: 10.1364/ol.40.001081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
By pumping an 11-cm-long step-index chalcogenide fiber with ∼330 fs pulses at 4.0 μm from an optical parametric amplifier, mid-infrared supercontinuum generation spanning from ∼1.8 to ∼10 μm within a dynamic range of ±15 dB has been demonstrated at a relatively low power threshold of ∼3000 W.
Collapse
|
6
|
Benard A, Desmedt C, Smolina M, Szternfeld P, Verdonck M, Rouas G, Kheddoumi N, Rothé F, Larsimont D, Sotiriou C, Goormaghtigh E. Infrared imaging in breast cancer: automated tissue component recognition and spectral characterization of breast cancer cells as well as the tumor microenvironment. Analyst 2014; 139:1044-56. [PMID: 24418921 DOI: 10.1039/c3an01454a] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Current evaluation of histological sections of breast cancer samples remains unsatisfactory. The search for new predictive and prognostic factors is ongoing. Infrared spectroscopy and its potential to probe tissues and cells at the molecular level without requirement for contrast agents could be an attractive tool for clinical and diagnostic analysis of breast cancer. In this study, we report the successful application of FTIR (Fourier transform infrared) imaging for breast tissue component characterization. We show that specific FTIR spectral signatures can be assigned to the major tissue components of breast tumor samples. We demonstrate that a tissue component classifier can be built based on a spectral database of well-annotated tissues and successfully validated on independent breast samples. We also demonstrate that spectral features can reveal subtle differences within a tissue component, capturing for instance lymphocytic and stromal activation. By investigating in parallel lymph nodes, tonsils and wound healing tissues, we prove the uniqueness of the signature of both lymphocytic infiltrate and tumor microenvironment in the breast disease context. Finally, we demonstrate that the biochemical information reflected in the epithelial spectra might be clinically relevant for the grading purpose, suggesting potential to improve breast cancer management in the future.
Collapse
Affiliation(s)
- Audrey Benard
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Bld du Triomphe 2, CP206/2, B1050 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Li JJ, Yip CM. Super-resolved FT-IR spectroscopy: Strategies, challenges, and opportunities for membrane biophysics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2272-82. [PMID: 23500349 DOI: 10.1016/j.bbamem.2013.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 02/25/2013] [Indexed: 01/16/2023]
Abstract
Direct correlation of molecular conformation with local structure is critical to studies of protein- and peptide-membrane interactions, particularly in the context of membrane-facilitated aggregation, and disruption or disordering. Infrared spectroscopy has long been a mainstay for determining molecular conformation, following folding dynamics, and characterizing reactions. While tremendous advances have been made in improving the spectral and temporal resolution of infrared spectroscopy, it has only been with the introduction of scanned-probe techniques that exploit the raster-scanning tip as either a source, scattering tool, or measurement probe that researchers have been able to obtain sub-diffraction limit IR spectra. This review will examine the history of correlated scanned-probe IR spectroscopies, from their inception to their use in studies of molecular aggregates, membrane domains, and cellular structures. The challenges and opportunities that these platforms present for examining dynamic phenomena will be discussed. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies.
Collapse
Affiliation(s)
- Jessica J Li
- Department of Chemical Engineering and Applied Chemistry, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada M5S 3E1
| | | |
Collapse
|
8
|
Huang C, Kino S, Katagiri T, Matsuura Y. Remote Fourier transform-infrared spectral imaging system with hollow-optical fiber bundle. APPLIED OPTICS 2012; 51:6913-6916. [PMID: 23052066 DOI: 10.1364/ao.51.006913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/28/2012] [Indexed: 06/01/2023]
Abstract
A spectral imaging system consisting of a Fourier transform-infrared spectrometer, a high-speed infrared camera, and a bundle of hollow-optical fibers transmitting infrared radiation images was constructed. Infrared transmission spectra were obtained by carefully processing multiple interferograms taken by high-speed photography. Infrared spectral images of a variety of samples captured by the system were measured. We successfully detected existence maps of the oil and fat of biological samples by mapping the transmission of specific wavelengths in the spectrum.
Collapse
Affiliation(s)
- Chenhui Huang
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
9
|
Biological applications of synchrotron radiation infrared spectromicroscopy. Biotechnol Adv 2012; 30:1390-404. [PMID: 22401782 DOI: 10.1016/j.biotechadv.2012.02.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/20/2012] [Indexed: 11/24/2022]
Abstract
Extremely brilliant infrared (IR) beams provided by synchrotron radiation sources are now routinely used in many facilities with available commercial spectrometers coupled to IR microscopes. Using these intense non-thermal sources, a brilliance two or three order of magnitude higher than a conventional source is achievable through small pinholes (<10 μm) with a high signal to-noise ratio. IR spectroscopy is a powerful technique to investigate biological systems and offers many new imaging opportunities. The field of infrared biological imaging covers a wide range of fundamental issues and applied researches such as cell imaging or tissue imaging. Molecular maps with a spatial resolution down to the diffraction limit may be now obtained with a synchrotron radiation IR source also on thick samples. Moreover, changes of the protein structure are detectable in an IR spectrum and cellular molecular markers can be identified and used to recognize a pathological status of a tissue. Molecular structure and functions are strongly correlated and this aspect is particularly relevant for imaging. We will show that the brilliance of synchrotron radiation IR sources may enhance the sensitivity of a molecular signal obtained from small biosamples, e.g., a single cell, containing extremely small amounts of organic matter. We will also show that SR IR sources allow to study chemical composition and to identify the distribution of organic molecules in cells at submicron resolution is possible with a high signal-to-noise ratio. Moreover, the recent availability of two-dimensional IR detectors promises to push forward imaging capabilities in the time domain. Indeed, with a high current synchrotron radiation facility and a Focal Plane Array the chemical imaging of individual cells can be obtained in a few minutes. Within this framework important results are expected in the next years using synchrotron radiation and Free Electron Laser (FEL) sources for spectro-microscopy and spectral-imaging, alone or in combination with Scanning Near-field Optical Microscopy methods to study the molecular composition and dynamic changes in samples of biomedical interest at micrometric and submicrometric scales, respectively.
Collapse
|
10
|
Alexeeva NV, Arnold MA. Impact of tissue heterogeneity on noninvasive near-infrared glucose measurements in interstitial fluid of rat skin. J Diabetes Sci Technol 2010; 4:1041-54. [PMID: 20920424 PMCID: PMC2956801 DOI: 10.1177/193229681000400503] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Movement of the optical interface used to collect noninvasive near-infrared spectra is known to dramatically increase prediction errors for glucose concentration measurements within the interstitial fluid of living rat skin. Prediction errors increase by more than 2.5-fold when the interface is moved before each non-invasive measurement compared to measurements where the interface position is constant throughout. Chemical heterogeneity of the skin matrix is examined as a possible mechanism for the strong sensitivity to the interface placement during noninvasive measurements conducted from transmission near-infrared absorption spectroscopy. METHOD Microspectroscopy was performed over a region of the near-infrared spectrum (4000-5000 cm(-1)) to map the concentrations of water, collagen protein, fat, and keratin protein within the skin tissue matrix through which noninvasive spectra are collected. Maps were created for multiple samples of skin excised from male and female animals. Sets of near-infrared spectra were constructed to simulate noninvasive spectra in accord with the basic tissue composition found from the microspectroscopic maps with added information corresponding to a span of glucose concentrations ranging from 5 to 35 mM and Gaussian-distributed noise. RESULTS Microspectroscopic maps of rat skin reveal similar patterns of heterogeneity for major chemical components of skin samples excised from both male and female animals. These maps demonstrate concentration domains with dimensions similar to the size of the fiber interface used to collect noninvasive spectra. Partial least squares calibration models generated from sets of simulated spectra demonstrate increases in prediction errors for glucose when the spectral matrix is changed in accord with the degree of chemical heterogeneity displayed in the skin maps. Prediction errors typically increase between 100 and 1000% when comparing errors generated from spectra that represent a single tissue composition versus spectra that represent a varied skin composition in accord with the distribution displayed in the skin maps. CONCLUSIONS The distribution of the major components of skin is not uniform, but establishes domains within the skin matrix that strongly impact prediction errors for the noninvasive spectroscopic measurement of glucose within the interstitial fluid of rat dermis tissue. The observed increase in prediction error (>2.5-fold) determined from actual noninvasive measurements is within the lower range of prediction error increases demonstrated by this simulation study. These findings implicate that chemical heterogeneity within the tissue matrix is a major factor in the sensitivity of the location of the fiber interface used to collect noninvasive spectral data.
Collapse
Affiliation(s)
- Natalia V Alexeeva
- Department of Chemistry, Optical Science & Technology Center, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
11
|
Bellisola G, Della Peruta M, Vezzalini M, Moratti E, Vaccari L, Birarda G, Piccinini M, Cinque G, Sorio C. Tracking InfraRed signatures of drugs in cancer cells by Fourier Transform microspectroscopy. Analyst 2010; 135:3077-86. [DOI: 10.1039/c0an00509f] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Namur J, Wassef M, Pelage JP, Lewis A, Manfait M, Laurent A. Infrared microspectroscopy analysis of ibuprofen release from drug eluting beads in uterine tissue. J Control Release 2009; 135:198-202. [PMID: 19367683 DOI: 10.1016/j.jconrel.2008.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ibuprofen loaded embolization beads (IBU-BB) have been developed to reduce inflammation and pain following uterine artery embolization for the treatment of uterine fibroids. The present work has investigated the elution properties of IBU-BB in situ after embolization with Fourier Transform Infrared Microspectroscopy (FTIRMS). Twelve sheep underwent uterine artery embolization with IBU-BB (485 mM) or control unloaded beads. IBU concentration was determined inside the beads and in the tissue surrounding the beads using FTIRMS of uterine tissue sections sampled 24 h or 1 week after embolization. After 24 h, IBU concentration inside the bead was only 18.6 mM out of the 485 mM initially loaded (p < 0.0001, univariate sign test). The concentration in the tissue around the beads was 8 mM, which is well above the in vitro therapeutic levels (6 microM). After one week the concentration of IBU had decreased to 4.9 mM in the beads (p = 0.0502, Mann Whitney) and no IBU was detected in the surrounding tissue. This work has demonstrated that IBU-BB can provide a sustained release of the anti-inflammatory drug over at least one week. The in vivo elution properties of IBU-BB may be suitable to alleviate pain and inflammation after embolization.
Collapse
Affiliation(s)
- J Namur
- MéDyC UMR CNRS 6237, Unité MéDIAN, Université de Reims Champagne Ardennes, 51 Rue Cognaq-Jay, 51096 Reims, France.
| | | | | | | | | | | |
Collapse
|