1
|
Becker W. Fluorescence lifetime imaging by multi-dimensional time correlated single photon counting. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.medpho.2015.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
2
|
Hiersemenzel K, Brown ER, Duncan RR. Imaging large cohorts of single ion channels and their activity. Front Endocrinol (Lausanne) 2013; 4:114. [PMID: 24027557 PMCID: PMC3762133 DOI: 10.3389/fendo.2013.00114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/16/2013] [Indexed: 01/16/2023] Open
Abstract
As calcium is the most important signaling molecule in neurons and secretory cells, amongst many other cell types, it follows that an understanding of calcium channels and their regulation of exocytosis is of vital importance. Calcium imaging using calcium dyes such as Fluo3, or FRET-based dyes that have been used widely has provided invaluable information, which combined with modeling has estimated the subtypes of channels responsible for triggering the exocytotic machinery as well as inferences about the relative distances away from vesicle fusion sites these molecules adopt. Importantly, new super-resolution microscopy techniques, combined with novel Ca(2+) indicators and imaginative imaging approaches can now define directly the nano-scale locations of very large cohorts of single channel molecules in relation to single vesicles. With combinations of these techniques the activity of individual channels can be visualized and quantified using novel Ca(2+) indicators. Fluorescently labeled specific channel toxins can also be used to localize endogenous assembled channel tetramers. Fluorescence lifetime imaging microscopy and other single-photon-resolution spectroscopic approaches offer the possibility to quantify protein-protein interactions between populations of channels and the SNARE protein machinery for the first time. Together with simultaneous electrophysiology, this battery of quantitative imaging techniques has the potential to provide unprecedented detail describing the locations, dynamic behaviors, interactions, and conductance activities of many thousands of channel molecules and vesicles in living cells.
Collapse
Affiliation(s)
- Katia Hiersemenzel
- Edinburgh Super-Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Euan R. Brown
- Edinburgh Super-Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Rory R. Duncan
- Edinburgh Super-Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
- *Correspondence: Rory R. Duncan, Edinburgh Super-Resolution Imaging Consortium (ESRIC), Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK e-mail:
| |
Collapse
|
3
|
Stringari C, Cinquin A, Cinquin O, Digman MA, Donovan PJ, Gratton E. Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proc Natl Acad Sci U S A 2011; 108:13582-7. [PMID: 21808026 PMCID: PMC3158156 DOI: 10.1073/pnas.1108161108] [Citation(s) in RCA: 277] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe a label-free imaging method to monitor stem-cell metabolism that discriminates different states of stem cells as they differentiate in living tissues. In this method we use intrinsic fluorescence biomarkers and the phasor approach to fluorescence lifetime imaging microscopy in conjunction with image segmentation, which we use to introduce the concept of the cell phasor. In live tissues we are able to identify intrinsic fluorophores, such as collagen, retinol, retinoic acid, porphyrin, flavins, and free and bound NADH. We have exploited the cell phasor approach to detect a trend in metabolite concentrations along the main axis of the Caenorhabditis elegans germ line. This trend is consistent with known changes in metabolic states during differentiation. The cell phasor approach to lifetime imaging provides a label-free, fit-free, and sensitive method to identify different metabolic states of cells during differentiation, to sense small changes in the redox state of cells, and may identify symmetric and asymmetric divisions and predict cell fate. Our method is a promising noninvasive optical tool for monitoring metabolic pathways during differentiation or disease progression, and for cell sorting in unlabeled tissues.
Collapse
Affiliation(s)
- Chiara Stringari
- Laboratory of Fluorescence Dynamics, Biomedical Engineering Department
| | - Amanda Cinquin
- Department of Developmental and Cell Biology
- Center for Complex Biological Systems, and
| | - Olivier Cinquin
- Department of Developmental and Cell Biology
- Center for Complex Biological Systems, and
| | | | - Peter J. Donovan
- Department of Developmental and Cell Biology
- Department of Biological Chemistry and the Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697
| | - Enrico Gratton
- Laboratory of Fluorescence Dynamics, Biomedical Engineering Department
| |
Collapse
|
4
|
Smyth AM, Rickman C, Duncan RR. Vesicle fusion probability is determined by the specific interactions of munc18. J Biol Chem 2010; 285:38141-8. [PMID: 20801887 PMCID: PMC2992247 DOI: 10.1074/jbc.m110.164038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian-regulated secretion is absolutely dependent on four evolutionarily conserved proteins: three SNARE proteins and munc18. Dissecting the functional outcomes of the spatially organized protein interactions between these factors has been difficult because of the close interrelationship between different binding modes. Here, we investigated the spatial distribution of single munc18 molecules at the plasma membrane of cells and the underlying interactions between syntaxin and munc18. Disruption of munc18 binding to the N-terminal peptide motif of syntaxin did not alter munc18 localization on the plasma membrane but had a pronounced influence on the behavior of secretory vesicles and their likelihood to undergo fusion. We therefore conclude that interaction with the syntaxin N-peptide can confer differential release probabilities to secretory vesicles and may contribute to the delineation of secretory vesicle pools.
Collapse
Affiliation(s)
- Annya M Smyth
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh EH8 9XD, United Kingdom
| | | | | |
Collapse
|
5
|
Single-photon atomic force microscopy. Anal Bioanal Chem 2010; 397:987-90. [PMID: 20066528 DOI: 10.1007/s00216-009-3426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
Abstract
In the last few years, an array of novel technologies, especially the big family of scanning probe microscopy, now often integrated with other powerful imaging tools such as laser confocal microscopy and total internal reflection fluorescence microscopy, have been widely applied in the investigation of biomolecular interactions and dynamics. But it is still a great challenge to directly monitor the dynamics of biomolecular interactions with high spatial and temporal resolution in living cells. An innovative method termed "single-photon atomic force microscopy" (SP-AFM), superior to existing techniques in tracing biomolecular interactions and dynamics in vivo, was proposed on the basis of the combination of atomic force microscopy with the technologies of carbon nanotubes and single-photon detection. As a unique tool, SP-AFM, capable of simultaneous topography imaging and molecular identification at the subnanometer level by synchronous acquisitions and analyses of the surface topography and fluorescent optical signals while scanning the sample, could play a very important role in exploring biomolecular interactions and dynamics in living cells or in a complicated biomolecular background.
Collapse
|
6
|
Altenbach K, Duncan RR, Valkonen M. In vivo FLIM-FRET measurements of recombinant proteins expressed in filamentous fungi. FUNGAL BIOL REV 2009. [DOI: 10.1016/j.fbr.2009.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Lee JD, Huang PC, Lin YC, Kao LS, Huang CC, Kao FJ, Lin CC, Yang DM. In-depth fluorescence lifetime imaging analysis revealing SNAP25A-Rabphilin 3A interactions. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2008; 14:507-18. [PMID: 18986604 DOI: 10.1017/s1431927608080628] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The high sensitivity and spatial resolution enabled by two-photon excitation fluorescence lifetime imaging microscopy/fluorescence resonance energy transfer (2PE-FLIM/FRET) provide an effective approach that reveals protein-protein interactions in a single cell during stimulated exocytosis. Enhanced green fluorescence protein (EGFP)-labeled synaptosomal associated protein of 25 kDa (SNAP25A) and red fluorescence protein (mRFP)-labeled Rabphillin 3A (RPH3A) were co-expressed in PC12 cells as the FRET donor and acceptor, respectively. The FLIM images of EGFP-SNAP25A suggested that SNAP25A/RPH3A interaction was increased during exocytosis. In addition, the multidimensional (three-dimensional with time) nature of the 2PE-FLIM image datasets can also resolve the protein interactions in the z direction, and we have compared several image analysis methods to extract more accurate and detailed information from the FLIM images. Fluorescence lifetime was fitted by using one and two component analysis. The lifetime FRET efficiency was calculated by the peak lifetime (taupeak) and the left side of the half-peak width (tau1/2), respectively. The results show that FRET efficiency increased at cell surface, which suggests that SNAP25A/RPH3A interactions take place at cell surface during stimulated exocytosis. In summary, we have demonstrated that the 2PE-FLIM/FRET technique is a powerful tool to reveal dynamic SNAP25A/RPH3A interactions in single neuroendocrine cells.
Collapse
Affiliation(s)
- Jiung-De Lee
- Department of Medical Research and Education, Taipei Veterans General Hospital, National Yang-Ming University, Taipei 11217, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Medine CN, Rickman C, Chamberlain LH, Duncan RR. Munc18-1 prevents the formation of ectopic SNARE complexes in living cells. J Cell Sci 2008; 120:4407-15. [PMID: 18057031 DOI: 10.1242/jcs.020230] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Membrane trafficking in eukaryotic cells must be strictly regulated both temporally and spatially. The assembly at the plasma membrane of the ternary SNARE complex, formed between syntaxin1a, SNAP-25 and VAMP, is essential for efficient exocytotic membrane fusion. These exocytotic SNAREs are known to be highly promiscuous in their interactions with other non-cognate SNAREs. It is therefore an important cellular requirement to traffic exocytotic SNARE proteins through the endoplasmic reticulum and Golgi complex while avoiding ectopic interactions between SNARE proteins. Here, we show that syntaxin1a traffics in an inactive form to the plasma membrane, requiring a closed-form interaction, but not N-terminal binding, with munc18-1. If syntaxin is permitted to interact with SNAP-25, both proteins fail to traffic to the plasma membrane, becoming trapped in intracellular compartments. The munc18-1-syntaxin interactions must form before syntaxin encounters SNAP-25 in the Golgi complex, preventing the formation of intracellular exocytotic SNARE complexes there. Upon delivery to the plasma membrane, most SNARE clusters in resting cells do not produce detectable FRET between t-SNARE proteins. These observations highlight the crucial role that munc18-1 plays in trafficking syntaxin through the secretory pathway.
Collapse
Affiliation(s)
- Claire N Medine
- Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | | | | | | |
Collapse
|
9
|
A novel fluorescence lifetime imaging system that optimizes photon efficiency. Microsc Res Tech 2008; 71:201-13. [DOI: 10.1002/jemt.20540] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Lee JD, Chang YF, Kao FJ, Kao LS, Lin CC, Lu AC, Shyu BC, Chiou SH, Yang DM. Detection of the interaction between SNAP25 and rabphilin in neuroendocrine PC12 cells using the FLIM/FRET technique. Microsc Res Tech 2008; 71:26-34. [PMID: 17886343 DOI: 10.1002/jemt.20521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Exocytosis has been proposed to contain four sequential steps, namely docking, priming, fusion, and recycling, and to be regulated by various proteins-protein interactions. Synaptosomal-associated protein of 25 kDa (SNAP25) has recently been found to bind rabphilin, the Rab3A specific binding protein, in vitro. However, it is still unclear whether SNAP25 and rabphilin interact during exocytosis within cells in vivo. This problem was addressed by the integration of fluorescence resonance energy transfer (FRET) with high sensitivity fluorescence lifetime imaging microscopy (FLIM) to observe this protein-protein interaction. Enhanced green fluorescence protein-labeled SNAP25 (donor) and red fluorescence protein-labeled rabphilin (acceptor) were expressed in neuroendocrine PC12 cells as a FRET pair and ATP stimulation was carried out for various durations. With 10 s stimulation, a 0.17-ns left shift of the lifetime peak was found when compared with donor only. Analysis of the lifetime image further suggested that the lifetime recovered to a similar level as the donor only in a time dependent manner. Four-dimensional (4D) images by FLIM provided useful information indicating that the interaction of SNAP25 and rabphilin occurred particularly within optical sections near cell membrane. Together the results suggest that SNAP25 bound rabphilin loosely at docking step before exocytosis and the binding became tighter at the very start of exocytosis. Finally, these two proteins dissociated after stimulation. To our knowledge, this is the first report to demonstrate the interaction of SNAP25 and rabphilin in situ using the FLIM-FRET technique within neuroendocrine cells.
Collapse
Affiliation(s)
- Jiung-De Lee
- Institute of Biophotonics, School of Medical Technology and Engineering, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|