1
|
van Hoogstraten SWG, Kuik C, Arts JJC, Cillero-Pastor B. Molecular imaging of bacterial biofilms-a systematic review. Crit Rev Microbiol 2024; 50:971-992. [PMID: 37452571 PMCID: PMC11523921 DOI: 10.1080/1040841x.2023.2223704] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
The formation of bacterial biofilms in the human body and on medical devices is a serious human health concern. Infections related to bacterial biofilms are often chronic and difficult to treat. Detailed information on biofilm formation and composition over time is essential for a fundamental understanding of the underlying mechanisms of biofilm formation and its response to anti-biofilm therapy. However, information on the chemical composition, structural components of biofilms, and molecular interactions regarding metabolism- and communication pathways within the biofilm, such as uptake of administered drugs or inter-bacteria communication, remains elusive. Imaging these molecules and their distribution in the biofilm increases insight into biofilm development, growth, and response to environmental factors or drugs. This systematic review provides an overview of molecular imaging techniques used for bacterial biofilm imaging. The techniques included mass spectrometry-based techniques, fluorescence-labelling techniques, spectroscopic techniques, nuclear magnetic resonance spectroscopy (NMR), micro-computed tomography (µCT), and several multimodal approaches. Many molecules were imaged, such as proteins, lipids, metabolites, and quorum-sensing (QS) molecules, which are crucial in intercellular communication pathways. Advantages and disadvantages of each technique, including multimodal approaches, to study molecular processes in bacterial biofilms are discussed, and recommendations on which technique best suits specific research aims are provided.
Collapse
Affiliation(s)
- S. W. G. van Hoogstraten
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - C. Kuik
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, the Netherlands
| | - J. J. C. Arts
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, CAPHRI, Maastricht University Medical Centre, Maastricht, the Netherlands
- Department of Biomedical Engineering, Orthopaedic Biomechanics, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - B. Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, the Netherlands
- Department of Cell Biology-Inspired Tissue Engineering, The MERLN Institute for Technology-Inspired Regenerative Medicine, University of Maastricht, Maastricht, the Netherlands
| |
Collapse
|
2
|
Tranfield EM, Fabig G, Kurth T, Müller-Reichert T. How to apply the broad toolbox of correlative light and electron microscopy to address a specific biological question. Methods Cell Biol 2024; 187:1-41. [PMID: 38705621 DOI: 10.1016/bs.mcb.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Correlative light and electron microscopy (CLEM) is an approach that combines the strength of multiple imaging techniques to obtain complementary information about a given specimen. The "toolbox" for CLEM is broad, making it sometimes difficult to choose an appropriate approach for a given biological question. In this chapter, we provide experimental details for three CLEM approaches that can help the interested reader in designing a personalized CLEM strategy for obtaining ultrastructural data by using transmission electron microscopy (TEM). First, we describe chemical fixation of cells grown on a solid support (broadest approach). Second, we apply high-pressure freezing/freeze substitution to describe cellular ultrastructure (cryo-immobilization approach). Third, we give a protocol for a ultrastructural labeling by immuno-electron microscopy (immuno-EM approach). In addition, we also describe how to overlay fluorescence and electron microscopy images, an approach that is applicable to each of the reported different CLEM strategies. Here we provide step-by step descriptions prior to discussing possible technical problems and variations of these three general schemes to suit different models or different biological questions. This chapter is written for electron microscopists that are new to CLEM and unsure how to begin. Therefore, our protocols are meant to provide basic information with further references that should help the reader get started with applying a tailored strategy for a specific CLEM experiment.
Collapse
Affiliation(s)
- Erin M Tranfield
- Electron Microscopy Facility, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thomas Kurth
- Core Facility Electron Microscopy and Histology Facility, Technology Platform, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
3
|
Péchoux C, Antigny F, Perros F. A correlated light and electron microscopy approach to study the subcellular localization of phosphorylated vimentin in human lung tissue. Methods Cell Biol 2024; 187:117-137. [PMID: 38705622 DOI: 10.1016/bs.mcb.2024.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Correlative microscopy is an important approach for bridging the resolution gap between fluorescence light and electron microscopy. Here, we describe a fast and simple method for correlative immunofluorescence and immunogold labeling on the same section to elucidate the localization of phosphorylated vimentin (P-Vim), a robust feature of pulmonary vascular remodeling in cells of human lung small arteries. The lung is a complex, soft and difficult tissue to prepare for transmission electron microscopy (TEM). Detailing the molecular composition of small pulmonary arteries (<500μm) would be of great significance for research and diagnostics. Using the classical methods of immunochemistry (either hydrophilic resin or thin cryosections), is difficult to locate small arteries for analysis by TEM. To address this problem and to observe the same structures by both light and electron microscopy, correlative microscopy is a reliable approach. Immunofluorescence enables us to know the distribution of P-Vim in cells but does not provide ultrastructural detail on its localization. Labeled structures selected by fluorescence microscope can be identified and further analyzed by TEM at high resolution. With our method, the morphology of the arteries is well preserved, enabling the localization of P-Vim inside pulmonary endothelial cells. By applying this approach, fluorescent signals can be directly correlated to the corresponding subcellular structures in areas of interest.
Collapse
Affiliation(s)
- Christine Péchoux
- Université Paris-Saclay, INRAE, AgroparisTech, GABI, Jouy-en-Josas, France; MIMA2 Imaging Core Facility, Microscopie et Imagerie des Microorganismes, Animaux et Aliments, INRAE, Jouy-en-Josas, France.
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 "Hypertension Pulmonaire: Physiopathologie et Innovation Thérapeutique," Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Frédéric Perros
- Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon 1, Bron, France
| |
Collapse
|
4
|
Direct imaging of uncoated biological samples enables correlation of super-resolution and electron microscopy data. Sci Rep 2018; 8:11610. [PMID: 30072703 PMCID: PMC6072772 DOI: 10.1038/s41598-018-29970-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/23/2018] [Indexed: 11/08/2022] Open
Abstract
A simple method for imaging biological tissue samples by electron microscopy and its correlation with super-resolution light microscopy is presented. This room temperature protocol, based on protecting thin biological specimens with methylcellulose and imaging with low voltage scanning electron microscopy, circumvents complex classical electron microscopy sample preparation steps requiring dehydration, resin embedding and use of contrast agents. This technique facilitates visualization of subcellular structures e.g. synaptic clefts and synaptic vesicles in mouse brain tissue and the organization of mitochondrial cristae in the zebrafish retina. Application of immunogold protocols to these samples can determine the precise localization of synaptic proteins and, in combination with super-resolution light microscopy methods clearly pinpoints the subcellular distribution of several proteins in the tissue. The simplicity of the method, including section collection on a silicon wafer, reduces artefacts and correlates protein location with sample morphology.
Collapse
|
5
|
Müller A, Neukam M, Ivanova A, Sönmez A, Münster C, Kretschmar S, Kalaidzidis Y, Kurth T, Verbavatz JM, Solimena M. A Global Approach for Quantitative Super Resolution and Electron Microscopy on Cryo and Epoxy Sections Using Self-labeling Protein Tags. Sci Rep 2017; 7:23. [PMID: 28154417 PMCID: PMC5428382 DOI: 10.1038/s41598-017-00033-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/20/2016] [Indexed: 01/19/2023] Open
Abstract
Correlative light and electron microscopy (CLEM) is a powerful approach to investigate the molecular ultrastructure of labeled cell compartments. However, quantitative CLEM studies are rare, mainly due to small sample sizes and the sensitivity of fluorescent proteins to strong fixatives and contrasting reagents for EM. Here, we show that fusion of a self-labeling protein to insulin allows for the quantification of age-distinct insulin granule pools in pancreatic beta cells by a combination of super resolution and transmission electron microscopy on Tokuyasu cryosections. In contrast to fluorescent proteins like GFP organic dyes covalently bound to self-labeling proteins retain their fluorescence also in epoxy resin following high pressure freezing and freeze substitution, or remarkably even after strong chemical fixation. This enables for the assessment of age-defined granule morphology and degradation. Finally, we demonstrate that this CLEM protocol is highly versatile, being suitable for single and dual fluorescent labeling and detection of different proteins with optimal ultrastructure preservation and contrast.
Collapse
Affiliation(s)
- Andreas Müller
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Martin Neukam
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Anna Ivanova
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Anke Sönmez
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Carla Münster
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Susanne Kretschmar
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany.,Biotechnology Center of the TU Dresden (BIOTEC), Dresden, Germany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.,Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Thomas Kurth
- Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany.,Biotechnology Center of the TU Dresden (BIOTEC), Dresden, Germany
| | - Jean-Marc Verbavatz
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.,Institut Jacques Monod, Université Paris Diderot, Paris, France
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany. .,Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany. .,Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany.
| |
Collapse
|
6
|
Aguilera-Gomez A, van Oorschot MM, Veenendaal T, Rabouille C. In vivo vizualisation of mono-ADP-ribosylation by dPARP16 upon amino-acid starvation. eLife 2016; 5. [PMID: 27874829 PMCID: PMC5127640 DOI: 10.7554/elife.21475] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/21/2016] [Indexed: 01/08/2023] Open
Abstract
PARP catalysed ADP-ribosylation is a post-translational modification involved in several physiological and pathological processes, including cellular stress. In order to visualise both Poly-, and Mono-, ADP-ribosylation in vivo, we engineered specific fluorescent probes. Using them, we show that amino-acid starvation triggers an unprecedented display of mono-ADP-ribosylation that governs the formation of Sec body, a recently identified stress assembly that forms in Drosophila cells. We show that dPARP16 catalytic activity is necessary and sufficient for both amino-acid starvation induced mono-ADP-ribosylation and subsequent Sec body formation and cell survival. Importantly, dPARP16 catalyses the modification of Sec16, a key Sec body component, and we show that it is a critical event for the formation of this stress assembly. Taken together our findings establish a novel example for the role of mono-ADP-ribosylation in the formation of stress assemblies, and link this modification to a metabolic stress. DOI:http://dx.doi.org/10.7554/eLife.21475.001
Collapse
Affiliation(s)
- Angelica Aguilera-Gomez
- Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Center Utrecht, Utrecht, Netherlands
| | - Marinke M van Oorschot
- Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Center Utrecht, Utrecht, Netherlands
| | - Tineke Veenendaal
- Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Catherine Rabouille
- Hubrecht Institute-KNAW, Utrecht, The Netherlands.,University Medical Center Utrecht, Utrecht, Netherlands.,Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
7
|
Topographic contrast of ultrathin cryo-sections for correlative super-resolution light and electron microscopy. Sci Rep 2016; 6:34062. [PMID: 27666401 PMCID: PMC5036093 DOI: 10.1038/srep34062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/07/2016] [Indexed: 01/19/2023] Open
Abstract
Fluorescence microscopy reveals molecular expression at nanometer resolution but lacks ultrastructural context information. This deficit often hinders a clear interpretation of results. Electron microscopy provides this contextual subcellular detail, but protein identification can often be problematic. Correlative light and electron microscopy produces complimentary information that expands our knowledge of protein expression in cells and tissue. Inherent methodological difficulties are however encountered when combining these two very different microscopy technologies. We present a quick, simple and reproducible method for protein localization by conventional and super-resolution light microscopy combined with platinum shadowing and scanning electron microscopy to obtain topographic contrast from the surface of ultrathin cryo-sections. We demonstrate protein distribution at nuclear pores and at mitochondrial and plasma membranes in the extended topographical landscape of tissue.
Collapse
|
8
|
Takizawa T, Powell RD, Hainfeld JF, Robinson JM. FluoroNanogold: an important probe for correlative microscopy. J Chem Biol 2015; 8:129-42. [PMID: 26884817 PMCID: PMC4744603 DOI: 10.1007/s12154-015-0145-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022] Open
Abstract
Correlative microscopy is a powerful imaging approach that refers to observing the same exact structures within a specimen by two or more imaging modalities. In biological samples, this typically means examining the same sub-cellular feature with different imaging methods. Correlative microscopy is not restricted to the domains of fluorescence microscopy and electron microscopy; however, currently, most correlative microscopy studies combine these two methods, and in this review, we will focus on the use of fluorescence and electron microscopy. Successful correlative fluorescence and electron microscopy requires probes, or reporter systems, from which useful information can be obtained with each of the imaging modalities employed. The bi-functional immunolabeling reagent, FluoroNanogold, is one such probe that provides robust signals in both fluorescence and electron microscopy. It consists of a gold cluster compound that is visualized by electron microscopy and a covalently attached fluorophore that is visualized by fluorescence microscopy. FluoroNanogold has been an extremely useful labeling reagent in correlative microscopy studies. In this report, we present an overview of research using this unique probe.
Collapse
Affiliation(s)
| | - Richard D. Powell
- />Nanoprobes, Incorporated, 95 Horseblock Road, Unit 1, Yaphank, NY 11980-9710 USA
| | - James F. Hainfeld
- />Nanoprobes, Incorporated, 95 Horseblock Road, Unit 1, Yaphank, NY 11980-9710 USA
| | - John M. Robinson
- />Department of Physiology and Cell Biology, Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
9
|
Bianchini P, Peres C, Oneto M, Galiani S, Vicidomini G, Diaspro A. STED nanoscopy: a glimpse into the future. Cell Tissue Res 2015; 360:143-50. [PMID: 25743695 PMCID: PMC4379395 DOI: 10.1007/s00441-015-2146-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 11/30/2022]
Abstract
The well-known saying of “Seeing is believing” became even more apt in biology when stimulated emission depletion (STED) nanoscopy was introduced in 1994 by the Nobel laureate S. Hell and coworkers. We presently stand at a juncture. Nanoscopy represented a revolution in fluorescence microscopy but now is a mature technique applied to many branches of biology, physics, chemistry, and materials science. We are currently looking ahead to the next generation of optical nanoscopes, to the new key player that will arise in the forthcoming years. This article gives an overview of the various cutting-edge implementations of STED nanoscopy and tries to shine a light into the future: imaging everything faster with unprecedented sensitivity and label-free.
Collapse
Affiliation(s)
- Paolo Bianchini
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy,
| | | | | | | | | | | |
Collapse
|
10
|
Zanella R, Zanghirati G, Cavicchioli R, Zanni L, Boccacci P, Bertero M, Vicidomini G. Towards real-time image deconvolution: application to confocal and STED microscopy. Sci Rep 2014; 3:2523. [PMID: 23982127 PMCID: PMC3755287 DOI: 10.1038/srep02523] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/08/2013] [Indexed: 01/28/2023] Open
Abstract
Although deconvolution can improve the quality of any type of microscope, the high computational time required has so far limited its massive spreading. Here we demonstrate the ability of the scaled-gradient-projection (SGP) method to provide accelerated versions of the most used algorithms in microscopy. To achieve further increases in efficiency, we also consider implementations on graphic processing units (GPUs). We test the proposed algorithms both on synthetic and real data of confocal and STED microscopy. Combining the SGP method with the GPU implementation we achieve a speed-up factor from about a factor 25 to 690 (with respect the conventional algorithm). The excellent results obtained on STED microscopy images demonstrate the synergy between super-resolution techniques and image-deconvolution. Further, the real-time processing allows conserving one of the most important property of STED microscopy, i.e the ability to provide fast sub-diffraction resolution recordings.
Collapse
Affiliation(s)
- R Zanella
- Laboratorio delle Tecnologie per Terapie Avanzate, Università di Ferrara, Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
11
|
Human cytomegalovirus UL50 and UL53 recruit viral protein kinase UL97, not protein kinase C, for disruption of nuclear lamina and nuclear egress in infected cells. J Virol 2013; 88:249-62. [PMID: 24155370 DOI: 10.1128/jvi.02358-13] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Herpesvirus nucleocapsids traverse the nuclear envelope into the cytoplasm in a process called nuclear egress that includes disruption of the nuclear lamina. In several herpesviruses, a key player in nuclear egress is a complex of two proteins, whose homologs in human cytomegalovirus (HCMV) are UL50 and UL53. However, their roles in nuclear egress during HCMV infection have not been shown. Based largely on transfection studies, UL50 and UL53 have been proposed to facilitate disruption of the nuclear lamina by recruiting cellular protein kinase C (PKC), as occurs with certain other herpesviruses, and/or the viral protein kinase UL97 to phosphorylate lamins. To investigate these issues during HCMV infection, we generated viral mutants null for UL50 or UL53. Correlative light electron microscopic analysis of null mutant-infected cells showed the presence of intranuclear nucleocapsids and the absence of cytoplasmic nucleocapsids. Confocal immunofluorescence microscopy revealed that UL50 and UL53 are required for disruption of the nuclear lamina. A subpopulation of UL97 colocalized with the nuclear rim, and this was dependent on UL50 and, to a lesser extent, UL53. However, PKC was not recruited to the nuclear rim, and its localization was not affected by the absence of UL50 or UL53. Immunoprecipitation from cells infected with HCMV expressing tagged UL53 detected UL97 but not PKC. In summary, HCMV UL50 and UL53 are required for nuclear egress and disruption of nuclear lamina during HCMV infection, and they recruit UL97, not PKC, for these processes. Thus, despite the strong conservation of herpesvirus nuclear egress complexes, a key function can differ among them.
Collapse
|
12
|
Wienert S, Heim D, Saeger K, Stenzinger A, Beil M, Hufnagl P, Dietel M, Denkert C, Klauschen F. Detection and segmentation of cell nuclei in virtual microscopy images: a minimum-model approach. Sci Rep 2012; 2:503. [PMID: 22787560 PMCID: PMC3394088 DOI: 10.1038/srep00503] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/25/2012] [Indexed: 01/17/2023] Open
Abstract
Automated image analysis of cells and tissues has been an active research field in medical informatics for decades but has recently attracted increased attention due to developments in computer and microscopy hardware and the awareness that scientific and diagnostic pathology require novel approaches to perform objective quantitative analyses of cellular and tissue specimens. Model-based approaches use a priori information on cell shape features to obtain the segmentation, which may introduce a bias favouring the detection of cell nuclei only with certain properties. In this study we present a novel contour-based “minimum-model” cell detection and segmentation approach that uses minimal a priori information and detects contours independent of their shape. This approach avoids a segmentation bias with respect to shape features and allows for an accurate segmentation (precision = 0.908; recall = 0.859; validation based on ∼8000 manually-labeled cells) of a broad spectrum of normal and disease-related morphological features without the requirement of prior training.
Collapse
Affiliation(s)
- Stephan Wienert
- Institute of Pathology, Charité University Hospital Berlin, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Direct image-based correlative microscopy technique for coupling identification and structural investigation of bacterial symbionts associated with metazoans. Appl Environ Microbiol 2011; 77:4172-9. [PMID: 21515722 DOI: 10.1128/aem.02461-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Coupling prokaryote identification with ultrastructural investigation of bacterial communities has proven difficult in environmental samples. Prokaryotes can be identified by using specific probes and fluorescence in situ hybridization (FISH), but resolution achieved by light microscopes does not allow ultrastructural investigation. In the case of symbioses involving bacteria associated with metazoan tissues, FISH-based studies often indicate the co-occurrence of several bacterial types within a single host species. The ultrastructure is then relevant to address host and bacterial morphology and the intra- or extracellular localization of symbionts. A simple protocol for correlative light and electron microscopy (CLEM) is presented here which allows FISH-based identification of specific 16S rRNA phylotypes and transmission electron microscopy to be performed on a same sample. Image analysis tools are provided to superimpose images obtained and generate overlays. This procedure has been applied to two symbiont-bearing metazoans, namely, aphids and deep-sea mussels. The FISH protocol was modified to take into account constraints associated with the use of electron microscopy grids, and intense and specific signals were obtained. FISH signals were successfully overlaid with bacterial morphotypes in aphids. We thus used the method to address the question of symbiont morphology and localization in a deep-sea mussel. Signals from a type I methanotroph-related phylotype were associated with morphotypes displaying the stacked internal membranes typical for this group and three-dimensional electron tomography was performed, confirming for the first time the correspondence between morphology and phylotype. CLEM is thus feasible and reliable and could emerge as a potent tool for the study of prokaryotic communities.
Collapse
|