1
|
Boix-Lemonche G, Hildebrand T, Haugen HJ, Petrovski G, Nogueira LP. Contrast-enhanced Micro-CT 3D visualization of cell distribution in hydrated human cornea. Heliyon 2024; 10:e25828. [PMID: 38356495 PMCID: PMC10865036 DOI: 10.1016/j.heliyon.2024.e25828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Background The cornea, a vital component of the human eye, plays a crucial role in maintaining visual clarity. Understanding its ultrastructural organization and cell distribution is fundamental for elucidating corneal physiology and pathology. This study comprehensively examines the microarchitecture of the hydrated human cornea using contrast-enhanced micro-computed tomography (micro-CT). Method Fresh human corneal specimens were carefully prepared and hydrated to mimic their in vivo state. Contrast enhancement with Lugol's iodine-enabled high-resolution Micro-CT imaging. The cells' three-dimensional (3D) distribution within the cornea was reconstructed and analyzed. Results The micro-CT imaging revealed exquisite details of the corneal ultrastructure, including the spatial arrangement of cells throughout its depth. This novel approach allowed for the visualization of cells' density and distribution in different corneal layers. Notably, our findings highlighted variations in cell distribution between non-hydrated and hydrated corneas. Conclusions This study demonstrates the potential of contrast-enhanced micro-CT as a valuable tool for non-destructive, 3D visualization and quantitative analysis of cell distribution in hydrated human corneas. These insights contribute to a better understanding of corneal physiology and may have implications for research in corneal diseases and tissue engineering.
Collapse
Affiliation(s)
- Gerard Boix-Lemonche
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | | | | | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
- Department of Ophthalmology, and Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
- UKLO Network, University St. Kliment Ohridski – Bitola, Bitola, Macedonia
| | - Liebert Parreiras Nogueira
- Oral Research Laboratory, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Moshirfar M, Tukan AN, Bundogji N, Liu HY, McCabe SE, Ronquillo YC, Hoopes PC. Ectasia After Corneal Refractive Surgery: A Systematic Review. Ophthalmol Ther 2021; 10:753-776. [PMID: 34417707 PMCID: PMC8589911 DOI: 10.1007/s40123-021-00383-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/02/2021] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION The incidence of ectasia following refractive surgery is unclear. This review sought to determine the worldwide rates of ectasia after photorefractive keratectomy (PRK), laser-assisted in situ keratomileusis (LASIK), and small incision lenticule extraction (SMILE) based on reports in the literature. METHODS A systematic review was conducted according to modified Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Publications were identified by a search of eight electronic databases for relevant terms between 1984 and 2021. Patient characteristics and preoperative values including manifest refractive spherical refractive equivalent (MRSE), central corneal thickness (CCT), anterior keratometry, postoperative residual stromal bed (RSB), and percent tissue altered (PTA) were summarized. In addition, annual rates of each refractive surgery were determined, and incidence of post-refractive ectasia for each type was calculated using the number of ectatic eyes identified in the literature. RESULTS In total, 57 eyes (70 eyes including those with preoperative risk factors for ectasia) were identified to have post-PRK ectasia, while 1453 eyes (1681 eyes including risk factors) had post-LASIK ectasia, and 11 eyes (19 eyes including risk factors) had post-SMILE ectasia. Cases of refractive surgery performed annually were estimated as 283,920 for PRK, 1,608,880 for LASIK, and 96,750 for SMILE. Reported post-refractive ectasia in eyes without preoperative identifiable risk factors occurred with the following incidences: 20 per 100,000 eyes in PRK, 90 per 100,000 eyes in LASIK, and 11 per 100,000 eyes in SMILE. The rate of ectasia in LASIK was found to be 4.5 times higher than that of PRK. CONCLUSION Post-refractive ectasia occurs at lower rates in eyes undergoing PRK than LASIK. Although SMILE appears to have the lowest rate of ectasia, the number of cases already reported since its recent approval suggests that post-SMILE ectasia may become a concern. Considering that keratoconus is a spectrum of disease, pre-existing keratoconus may play a larger role in postoperative ectasia than previously accounted for in the literature.
Collapse
Affiliation(s)
- Majid Moshirfar
- Hoopes Vision Research Center, Hoopes Vision, 11820 S. State Street Suite #200, Draper, UT, 84020, USA.
- John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Utah Lions Eye Bank, Murray, UT, USA.
| | - Alyson N Tukan
- University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Nour Bundogji
- University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Harry Y Liu
- McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shannon E McCabe
- Hoopes Vision Research Center, Hoopes Vision, 11820 S. State Street Suite #200, Draper, UT, 84020, USA
- Mission Hills Eye Center, Pleasant Hill, CA, USA
| | - Yasmyne C Ronquillo
- Hoopes Vision Research Center, Hoopes Vision, 11820 S. State Street Suite #200, Draper, UT, 84020, USA
| | - Phillip C Hoopes
- Hoopes Vision Research Center, Hoopes Vision, 11820 S. State Street Suite #200, Draper, UT, 84020, USA
| |
Collapse
|
3
|
The Communication between Ocular Surface and Nasal Epithelia in 3D Cell Culture Technology for Translational Research: A Narrative Review. Int J Mol Sci 2021; 22:ijms222312994. [PMID: 34884799 PMCID: PMC8657734 DOI: 10.3390/ijms222312994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
There is a lack of knowledge regarding the connection between the ocular and nasal epithelia. This narrative review focuses on conjunctival, corneal, ultrastructural corneal stroma, and nasal epithelia as well as an introduction into their interconnections. We describe in detail the morphology and physiology of the ocular surface, the nasolacrimal ducts, and the nasal cavity. This knowledge provides a basis for functional studies and the development of relevant cell culture models that can be used to investigate the pathogenesis of diseases related to these complex structures. Moreover, we also provide a state-of-the-art overview regarding the development of 3D culture models, which allow for addressing research questions in models resembling the in vivo situation. In particular, we give an overview of the current developments of corneal 3D and organoid models, as well as 3D cell culture models of epithelia with goblet cells (conjunctiva and nasal cavity). The benefits and shortcomings of these cell culture models are discussed. As examples for pathogens related to ocular and nasal epithelia, we discuss infections caused by adenovirus and measles virus. In addition to pathogens, also external triggers such as allergens can cause rhinoconjunctivitis. These diseases exemplify the interconnections between the ocular surface and nasal epithelia in a molecular and clinical context. With a final translational section on optical coherence tomography (OCT), we provide an overview about the applicability of this technique in basic research and clinical ophthalmology. The techniques presented herein will be instrumental in further elucidating the functional interrelations and crosstalk between ocular and nasal epithelia.
Collapse
|
4
|
Mercatelli R, Mattana S, Capozzoli L, Ratto F, Rossi F, Pini R, Fioretto D, Pavone FS, Caponi S, Cicchi R. Morpho-mechanics of human collagen superstructures revealed by all-optical correlative micro-spectroscopies. Commun Biol 2019; 2:117. [PMID: 30937399 PMCID: PMC6435656 DOI: 10.1038/s42003-019-0357-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 02/05/2019] [Indexed: 12/18/2022] Open
Abstract
In every biological tissue, morphological and topological properties strongly affect its mechanical features and behaviour, so that ultrastructure, composition and mechanical parameters are intimately connected. Overall, it is their correct interplay that guarantees the tissue functionality. The development of experimental methods able to correlate these properties would open new opportunities both in the biological and the biomedical fields. Here, we report a correlative study intended to map supramolecular morphology, biochemical composition and viscoelastic parameters of collagen by all-optical microscopies. In particular, using human corneal tissue as a benchmark, we correlate Second-Harmonic Generation maps with mechanical and biochemical imaging obtained by Brillouin and Raman micro-spectroscopy. The study highlights how subtle variations in supramolecular organization originate the peculiar mechanical behavior of different subtypes of corneal lamellae. The presented methodology paves the way to the non-invasive assessment of tissue morpho-mechanics in biological as well as synthetic materials.
Collapse
Affiliation(s)
- Raffaella Mercatelli
- National Institute of Optics, National Research Council (CNR-INO), Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
| | - Sara Mattana
- National Institute of Optics, National Research Council (CNR-INO), Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, I-06123 Perugia, Italy
| | - Laura Capozzoli
- Institute of Applied Physics “Nello Carrara”, National Research Council (CNR-IFAC), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
- Center of Electron Microscopy “Laura Bonzi” (Ce.M.E), Institute of Chemistry of Organometallic Compounds, National Research Council (CNR-ICCOM), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| | - Fulvio Ratto
- Institute of Applied Physics “Nello Carrara”, National Research Council (CNR-IFAC), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| | - Francesca Rossi
- Institute of Applied Physics “Nello Carrara”, National Research Council (CNR-IFAC), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| | - Roberto Pini
- Institute of Applied Physics “Nello Carrara”, National Research Council (CNR-IFAC), Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| | - Daniele Fioretto
- Department of Physics and Geology, University of Perugia, Via Alessandro Pascoli, I-06123 Perugia, Italy
- CEMIN-Center of Excellence for Innovative Nanostructured Material, Via Alessandro Pascoli, I-06123 Perugia, Italy
| | - Francesco Saverio Pavone
- National Institute of Optics, National Research Council (CNR-INO), Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
- Department of Physics, University of Florence, Via Giovanni Sansone 1, I-50019 Sesto Fiorentino, Italy
| | - Silvia Caponi
- Institute of Materials, National Research Council (CNR-IOM), Unit of Perugia, c/o Department of Physics and Geology, University of Perugia, Via A. Pascoli, I-06123 Perugia, Italy
| | - Riccardo Cicchi
- National Institute of Optics, National Research Council (CNR-INO), Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
5
|
Valdez-García JE, Hernandez-Camarena JC, Lozano-Ramírez JF, Zavala J, Loya-García D, Merayo-Lloves J. Correlation of age, corneal curvature and spherical equivalent with central corneal thickness. REVISTA MEXICANA DE OFTALMOLOGÍA 2017. [DOI: 10.1016/j.mexoft.2016.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
6
|
Pahuja NK, Shetty R, Deshmukh R, Sharma A, Nuijts RMMA, Jhanji V, Sethu S, Ghosh A. In vivo confocal microscopy and tear cytokine analysis in post-LASIK ectasia. Br J Ophthalmol 2017; 101:1604-1610. [PMID: 28450380 DOI: 10.1136/bjophthalmol-2016-309142] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 01/23/2017] [Accepted: 03/21/2017] [Indexed: 11/03/2022]
Abstract
AIM Corneal keratectasia is one of the complications associated with laser in situ keratomileusis (LASIK) that results in vision impairment. The pathogenesis of post-LASIK ectasia (PLE) remains underexplored. We report the tear cytokine profile and in vivo confocal microscopy (IVCM) findings in eyes with PLE. METHODS This retrospective study included age-matched 7 (14 eyes) post-LASIK controls (PLCs) and 6 (12 eyes) PLE subjects. Corneal topography was used to categorise the subjects into PLC and PLE groups. Ocular Surface Disease Index (OSDI) scores obtained were based on standard questionnaire and IVCM images were used to determine corneal dendritic cells density (DCD) and sub-basal nerve plexus morphology. Inflammatory cytokines/chemokines in the tears were quantified using flow cytometry based cytometric bead array. RESULTS Pentacam-based scores, OSDI scores and corneal DCD were significantly (p<0.05) higher in patients with PLE compared with PLC. Discomfort-related subscale of OSDI score exhibited a positive correlation with total corneal DCD in the PLE cohort. The fold difference of chemokine (C-C motif) ligand/monocyte chemotactic protein-1 (CCL2/MCP1) (3.4±0.6) was found to be significantly (p<0.05) higher in the PLE cohorts and a positive correlation between CCL2/MCP1 levels and total corneal DCD was also observed in the PLE cohort. CONCLUSION The current study found a significant difference in the tear film cytokine profile between normal and PLE eyes. Presence of increased corneal dendritic cells and altered tear cytokines suggests an ongoing inflammatory response in PLE.
Collapse
Affiliation(s)
| | - Rohit Shetty
- Cornea and Refractive Services, Narayana Nethralaya, Bangalore, India
| | - Rashmi Deshmukh
- Cornea and Refractive Services, Narayana Nethralaya, Bangalore, India
| | - Anupam Sharma
- Narayana Nethralaya Foundation, GROW Research Laboratory, Bangalore, India
| | - Rudy M M A Nuijts
- Cornea Clinic, Department of Ophthalmology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Vishal Jhanji
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,UPMC Eye Center, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Swaminathan Sethu
- Narayana Nethralaya Foundation, GROW Research Laboratory, Bangalore, India
| | - Arkasubhra Ghosh
- Narayana Nethralaya Foundation, GROW Research Laboratory, Bangalore, India.,Singapore Eye Research Institute, Singapore
| |
Collapse
|
7
|
Moshirfar M, Jehangir N, Fenzl CR, McCaughey M. LASIK Enhancement: Clinical and Surgical Management. J Refract Surg 2017; 33:116-127. [DOI: 10.3928/1081597x-20161202-01] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/26/2016] [Indexed: 11/20/2022]
|
8
|
Akhtar S, Alkhalaf M, Khan AA, Almubrad TM. Ultrastructure Features and Three-Dimensional Transmission Electron Tomography of Dhub Lizard (Uromastyx Aegyptia) Cornea and Its Adaptation to a Desert Environment. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:922-932. [PMID: 27619263 DOI: 10.1017/s1431927616011466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report ultrastructural features and transmission electron tomography of the dhub lizard (Uromastyx aegyptia) cornea and its adaptation to hot and dry environments. Six corneas of dhub lizards were fixed in 2.5% glutaraldehyde and processed for electron microscopy and tomography. The ultrathin sections were observed with a JEOL 1400 transmission electron microscope. The cornea of the dhub lizard is very thin (~28-30 µm). The epithelium constitutes ~14% of the cornea, whereas the stroma constitutes 80% of the cornea. The middle stromal lamellae are significantly thicker than anterior and posterior stromal lamellae. Collagen fibril (CF) diameters in the anterior stroma are variable in size (25-75 nm). Proteoglycans (PGs) are very large in the middle and posterior stroma, whereas they are small in the anterior stroma. Three-dimensional electron tomography was carried out to understand the structure and arrangement of the PG and CFs. The presence of large PGs in the posterior and middle stroma might help the animal retain a large amount of water to protect it from dryness. The dhub corneal structure is equipped to adapt to the dry and hot desert environment.
Collapse
Affiliation(s)
- Saeed Akhtar
- Cornea Research Chair,Department of Optometry,College of Applied Medical Science,King Saud University,PO Box 10219, Riyadh 11433,Saudi Arabia
| | - Mousa Alkhalaf
- Cornea Research Chair,Department of Optometry,College of Applied Medical Science,King Saud University,PO Box 10219, Riyadh 11433,Saudi Arabia
| | - Adnan A Khan
- Cornea Research Chair,Department of Optometry,College of Applied Medical Science,King Saud University,PO Box 10219, Riyadh 11433,Saudi Arabia
| | - Turki M Almubrad
- Cornea Research Chair,Department of Optometry,College of Applied Medical Science,King Saud University,PO Box 10219, Riyadh 11433,Saudi Arabia
| |
Collapse
|
9
|
Gronkiewicz KM, Giuliano EA, Kuroki K, Bunyak F, Sharma A, Teixeira LBC, Hamm CW, Mohan RR. Development of a novel in vivo corneal fibrosis model in the dog. Exp Eye Res 2015; 143:75-88. [PMID: 26450656 DOI: 10.1016/j.exer.2015.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/09/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022]
Abstract
The aim of this study was to develop a novel in vivo corneal model of fibrosis in dogs utilizing alkali burn and determine the ability of suberanilohydroxamic acid (SAHA) to inhibit corneal fibrosis using this large animal model. To accomplish this, we used seven research Beagle dogs. An axial corneal alkali burn in dogs was created using 1 N NaOH topically. Six dogs were randomly and equally assigned into 2 groups: A) vehicle (DMSO, 2 μL/mL); B) anti-fibrotic treatment (50 μM SAHA). The degree of corneal opacity, ocular health, and anti-fibrotic effects of SAHA were determined utilizing the Fantes grading scale, modified McDonald-Shadduck (mMS) scoring system, optical coherence tomography (OCT), corneal histopathology, immunohistochemistry (IHC), and transmission electron microscopy (TEM). The used alkali burn dose to produce corneal fibrosis was well tolerated as no significant difference in mMS scores between control and treatment groups (p = 0.89) were detected. The corneas of alkali burned dogs showed significantly greater levels of α-smooth muscle actin, the fibrotic marker, than the controls (p = 0.018). Total corneal thickness of all dogs post-burn was significantly greater than baseline OCT images irrespective of treatment (p = 0.004); TEM showed that alkali burned corneas had significantly greater minimum and maximum interfibrillar distances than the controls (p = 0.026, p = 0.018). The tested topical corneal alkali burn dose generated significant opacity and fibrosis in dog corneas without damaging the limbus as evidenced by histopathology, IHC, TEM, and OCT findings, and represents a viable large animal corneal fibrosis in vivo model. Additional in vivo SAHA dosing studies with larger sample size are warranted.
Collapse
Affiliation(s)
- K M Gronkiewicz
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Columbia, MO, USA; Harry S. Truman Memorial Veteran Hospital, Columbia, MO, USA
| | - E A Giuliano
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Columbia, MO, USA; Harry S. Truman Memorial Veteran Hospital, Columbia, MO, USA
| | - K Kuroki
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Columbia, MO, USA
| | - F Bunyak
- Department of Computer Science, University of Missouri, Columbia, MO, USA
| | - A Sharma
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Columbia, MO, USA; Harry S. Truman Memorial Veteran Hospital, Columbia, MO, USA
| | - L B C Teixeira
- Department of Pathological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI, USA
| | - C W Hamm
- Mason Eye Institute, University of Missouri, Columbia, MO, USA
| | - R R Mohan
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Columbia, MO, USA; Harry S. Truman Memorial Veteran Hospital, Columbia, MO, USA; Mason Eye Institute, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
10
|
Akhtar S, Alkatan HM, Kirat O, Khan AA, Almubrad T. Collagen Fibrils and Proteoglycans of Macular Dystrophy Cornea: Ultrastructure and 3D Transmission Electron Tomography. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:666-679. [PMID: 25939479 DOI: 10.1017/s1431927615000483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report the ultrastructure and 3D transmission electron tomography of collagen fibrils (CFs), proteoglycans (PGs), and microfibrils within the CF of corneas of patients with macular corneal dystrophy (MCD). Three normal corneas and three MCD corneas from three Saudi patients (aged 25, 31, and 49 years, respectively) were used for this study. The corneas were processed for light and electron microscopy studies. 3D images were composed from a set of 120 ultrastructural images using the program "Composer" and visualized using the program "Visuliser Kai". 3D image analysis of MCD cornea showed a clear organization of PGs around the CF at very high magnification and degeneration of the microfibrils within the CF. Within the MCD cornea, the PG area in the anterior stroma was significantly larger than in the middle and posterior stroma. The PG area in the MCD cornea was significantly larger compared with the PG area in the normal cornea. The CF diameter and inter-fibrillar spacing of the MCD cornea were significantly smaller compared with those of the normal cornea. Ultrastructural 3D imaging showed that the production of unsulfated keratin sulfate (KS) may lead to the degeneration of micro-CFs within the CFs. The effect of the unsulfated KS was higher in the anterior stroma compared with the posterior stroma.
Collapse
Affiliation(s)
- Saeed Akhtar
- 1Cornea Research Chair,Department of Optometry,College of Applied Medical Sciences,King Saud University,Riyadh,Saudi Arabia
| | - Hind M Alkatan
- 2King Khalid Eye Specialist Hospital,Riyadh,Saudi Arabia
| | - Omar Kirat
- 2King Khalid Eye Specialist Hospital,Riyadh,Saudi Arabia
| | - Adnan A Khan
- 1Cornea Research Chair,Department of Optometry,College of Applied Medical Sciences,King Saud University,Riyadh,Saudi Arabia
| | - Turki Almubrad
- 1Cornea Research Chair,Department of Optometry,College of Applied Medical Sciences,King Saud University,Riyadh,Saudi Arabia
| |
Collapse
|
11
|
Hanlon SD, Behzad AR, Sakai LY, Burns AR. Corneal stroma microfibrils. Exp Eye Res 2015; 132:198-207. [PMID: 25613072 DOI: 10.1016/j.exer.2015.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/15/2015] [Accepted: 01/17/2015] [Indexed: 12/12/2022]
Abstract
Elastic tissue was first described well over a hundred years ago and has since been identified in nearly every part of the body. In this review, we examine elastic tissue in the corneal stroma with some mention of other ocular structures which have been more thoroughly described in the past. True elastic fibers consist of an elastin core surrounded by fibrillin microfibrils. However, the presence of elastin fibers is not a requirement and some elastic tissue is comprised of non-elastin-containing bundles of microfibrils. Fibers containing a higher relative amount of elastin are associated with greater elasticity and those without elastin, with structural support. Recently it has been shown that the microfibrils, not only serve mechanical roles, but are also involved in cell signaling through force transduction and the release of TGF-β. A well characterized example of elastin-free microfibril bundles (EFMBs) is found in the ciliary zonules which suspend the crystalline lens in the eye. Through contraction of the ciliary muscle they exert enough force to reshape the lens and thereby change its focal point. It is believed that the molecules comprising these fibers do not turn-over and yet retain their tensile strength for the life of the animal. The mechanical properties of the cornea (strength, elasticity, resiliency) would suggest that EFMBs are present there as well. However, many authors have reported that, although present during embryonic and early postnatal development, EFMBs are generally not present in adults. Serial-block-face imaging with a scanning electron microscope enabled 3D reconstruction of elements in murine corneas. Among these elements were found fibers that formed an extensive network throughout the cornea. In single sections these fibers appeared as electron dense patches. Transmission electron microscopy provided additional detail of these patches and showed them to be composed of fibrils (∼10 nm diameter). Immunogold evidence clearly identified these fibrils as fibrillin EFMBs and EFMBs were also observed with TEM (without immunogold) in adult mammals of several species. Evidence of the presence of EFMBs in adult corneas will hopefully pique an interest in further studies that will ultimately improve our understanding of the cornea's biomechanical properties and its capacity to repair.
Collapse
Affiliation(s)
- Samuel D Hanlon
- College of Optometry, University of Houston, Houston, TX, 97204, USA.
| | - Ali R Behzad
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lynn Y Sakai
- Shiners Hospital for Children and Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Alan R Burns
- College of Optometry, University of Houston, Houston, TX, 97204, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|