1
|
Mokhtari F, Modaresi J, Bagheri A. Effect of blood contamination on marginal adaptation of cold ceramic and MTA angelus: a scanning electron microscopic study. BMC Oral Health 2023; 23:706. [PMID: 37777724 PMCID: PMC10543877 DOI: 10.1186/s12903-023-03437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND This study aimed to assess the effect of blood contamination on marginal adaptation of cold ceramic (CC) and mineral trioxide aggregate (MTA) Angelus using scanning electron microscopy (SEM). METHODS This in vitro experimental study was conducted on 24 extracted single-rooted human teeth. After cleaning and shaping, the root canals were filled with lateral compaction technique. The apical 3 mm of the roots was cut, and cavities with 3 mm depth were created at the apex. The teeth were randomly assigned to two group (n = 12) for the application of CC and MTA Angelus as retrograde filling materials. CC and MTA Angelus were prepared by mixing the powder with blood, and applied in the cavities. After 24 h, their marginal adaptation to the canal walls was assessed by SEM. Data were statistically analyzed by t-test (alpha = 0.05). RESULTS The mean marginal gap was 8.98 μm in the CC, and 16.26 μm in the MTA Angelus group; this difference was statistically significant (P < 0.001). CONCLUSIONS The present in vitro study revealed that following complete blood contamination of powder, CC showed significantly superior marginal adaptation than MTA Angelus as shown by SEM assessment.
Collapse
Affiliation(s)
- Fatemeh Mokhtari
- Department of Endodontics, Dental School of Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- School of Dentistry, Imam Reza Street, Yazd, 8914815667 Iran
| | - Jalil Modaresi
- Department of Endodontics, Dental School of Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- School of Dentistry, Imam Reza Street, Yazd, 8914815667 Iran
| | - Abbas Bagheri
- Department of Endodontics, Dental School of Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- School of Dentistry, Imam Reza Street, Yazd, 8914815667 Iran
| |
Collapse
|
2
|
Eskandari F, Razavian A, Hamidi R, Yousefi K, Borzou S. An Updated Review on Properties and Indications of Calcium Silicate-Based Cements in Endodontic Therapy. Int J Dent 2022; 2022:6858088. [PMID: 36349079 PMCID: PMC9637478 DOI: 10.1155/2022/6858088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
Regarding the common use of calcium silicate cements (CSCs) in root canal therapy, their position in the context of past and present dentistry agents can provide a better understanding of these materials for their further improvement. In this context, the present review article addresses a wide range of recent investigations in the field of CSC-based products and describes details of their composition, properties, and clinical applications. The need for maintaining or reconstructing tooth structure has increased in contemporary endodontic treatment approaches. This research thus discusses the attempts to create comprehensive data collection regarding calcium ion release, bond strength, alkalinizing activity and bioactivity, and the ability to stimulate the formation of hydroxyapatite as a bioactive feature of CSCs. Sealing ability is also highlighted as a predictor for apical and coronal microleakage which is crucial for the long-term prognosis of root canal treatment integrity. Other claimed properties such as radiopacity, porosity, and solubility are also investigated. Extended setting time is also mentioned as a well-known drawback of CSCs. Then, clinical applications of CSCs in vital pulp therapies such as pulpotomy, apexification, and direct pulp capping are reviewed. CSCs have shown their benefits in root perforation treatments and also as root canal sealers and end-filling materials. Nowadays, conventional endodontic treatments are replaced by regenerative therapies to save more dynamic and reliable hard and soft tissues. CSCs play a crucial role in this modern approach. This review article is an attempt to summarize the latest studies on the clinical properties of CSCs to shed light on the future generation of treatments.
Collapse
Affiliation(s)
- Fateme Eskandari
- Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Razavian
- Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rozhina Hamidi
- Department of Endodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khadije Yousefi
- Department of Dental Materials and Biomaterials Research Center, Shiraz Dental School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Susan Borzou
- University of Pennsylvania, College of Dentistry, Philadelphia, PA, USA
| |
Collapse
|
3
|
Ashi T, Mancino D, Hardan L, Bourgi R, Zghal J, Macaluso V, Al-Ashkar S, Alkhouri S, Haikel Y, Kharouf N. Physicochemical and Antibacterial Properties of Bioactive Retrograde Filling Materials. Bioengineering (Basel) 2022; 9:bioengineering9110624. [PMID: 36354535 PMCID: PMC9687475 DOI: 10.3390/bioengineering9110624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2022] Open
Abstract
The purpose of the present study was to evaluate the physicochemical properties and antibacterial activity of three calcium silicate cements. Mineral trioxide aggregate (MTA Biorep “BR”), Biodentine (BD) and Well-Root PT (WR) materials were investigated using scanning electron microscopy (SEM) at 24, 72 and 168 h of immersion in phosphate buffered saline (PBS). The antibacterial activity against Enterococcus faecalis (E. faecalis), the solubility, roughness, pH changes and water contact angle were also analyzed. All results were statistically analyzed using a one-way analysis of variance test. Statistically significant lower pH was detected for BD than WR and BR (p < 0.05). No statistical difference was found among the three materials for the efficacy of kill against E. faecalis (p > 0.05). Good antibacterial activity was observed (kill 50% of bacteria) after 24 h of contact. The wettability and the roughness of BR were higher than for the other cements (p < 0.05). BD was more soluble than WR and BR (p < 0.05). In conclusion, the use of bioceramic cements as retrograde materials may play an important role in controlling bacterial growth and in the development of calcium phosphate surface layer to support healing. Moreover, the premixed cement was easier to use than powder−liquid cement.
Collapse
Affiliation(s)
- Tarek Ashi
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
| | - Davide Mancino
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Louis Hardan
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon
| | - Rim Bourgi
- Department of Restorative Dentistry, School of Dentistry, Saint-Joseph University, Beirut 1107 2180, Lebanon
| | - Jihed Zghal
- Laboratoire Energetique Mecanique Electromagnetisme, University of Paris Ouest, 50 Rue de Sèvres, 92410 Ville d’Avray, France
- ICube Laboratory, UMR 7357 CNRS, Mechanics Department, University of Strasbourg, 67000 Strasbourg, France
| | | | - Sharif Al-Ashkar
- Faculty of Dentistry, Al Sham Private University (ASPU), Damascus 0100, Syria
| | - Sleman Alkhouri
- Division Regenerative Orofacial Medicine, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Youssef Haikel
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Naji Kharouf
- Department of Biomaterials and Bioengineering, INSERM UMR_S 1121, Biomaterials and Bioengineering, 67000 Strasbourg, France
- Department of Endodontics, Faculty of Dental Medicine, Strasbourg University, 67000 Strasbourg, France
- Correspondence: ; Tel.: +33-667522841
| |
Collapse
|
4
|
Bago I, Lucić R, Budimir A, Rajić V, Balić M, Anić I. Sealing Ability of Bioactive Root-End Filling Materials in Retro Cavities Prepared with Er,Cr:YSGG Laser and Ultrasonic Techniques. Bioengineering (Basel) 2022; 9:bioengineering9070314. [PMID: 35877365 PMCID: PMC9312248 DOI: 10.3390/bioengineering9070314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 12/03/2022] Open
Abstract
The aim of this in vitro study was to compare the apical sealing ability of total fill bioceramic root repair material (BC-RRM) and mineral trioxide aggregate (MTA), regarding the retrograde preparation technique used: ultrasonic or erbium, chromium: yttrium, scandium, gallium, or garnet (Er,Cr:YSGG) laser. The study sample consisted of 48 human single-rooted teeth. After root-end resection, the samples were divided into two groups, according to the retrograde preparation technique used: Group 1: ultrasonic; Group 2: Er,Cr:YSGG laser. In each group, half of the retrograde cavities were filled with BC-RRM, and the other half were filled with MTA. The specimens were mounted in tubes and sterilized in plasma. The root canals were inoculated with Enterococcus faecalis, and the tubes were filled with fetal bovine serum, leaving the apical part of the root in the serum. After 30 days, the canals were sampled and cultured, and the colony forming units (CFUs) were counted with the additional polymerase chain reaction (PCR analysis). There was no significant difference between ultrasonic groups and the Er,Cr:YSGG-MTA group, regarding the number of CFUs (p > 0.05). The Er,Cr:YSGG-BC-RRM group showed the highest number of remaining viable bacteria (p < 0.001). Both filling materials filled in ultrasonic preparations presented similar sealing abilities. The BC-RRM showed more leakage when used in retro cavities prepared with the Er,Cr:YSGG laser.
Collapse
Affiliation(s)
- Ivona Bago
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia; (V.R.); (I.A.)
- Correspondence: ; Tel.: +385-1-4802-128; Fax: +385-1-4802-116
| | - Ružica Lucić
- Health Centre Orašje, Orašje, Bosnia and Herzegovina, 76270 Orasje, Bosnia and Herzegovina;
| | - Ana Budimir
- Department of Clinical and Molecular Microbiology, Clinical Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia;
| | - Valentina Rajić
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia; (V.R.); (I.A.)
| | - Merima Balić
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Ivica Anić
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia; (V.R.); (I.A.)
| |
Collapse
|
5
|
Evaluation of a Novel Tool for Apical Plug Formation during Apexification of Immature Teeth. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095304. [PMID: 35564699 PMCID: PMC9102688 DOI: 10.3390/ijerph19095304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to compare the sealing ability and time required for the formation of Biodentine and mineral trioxide aggregation (MTA) apical plugs, using three different delivery methods: an amalgam carrier (AC), the Micro Apical Placement (MAP) System or a novel tool using a modified cannula (MC). Materials and Methods: A total of 60 uniformed molar roots were divided into three main groups, according to the technique of apical plug formation: AC, MAP, and MC. Each group was divided into two subgroups, according to the filling material used: MTA and Biodentine. A timer was used to calculate the required time for apical plug formation. After setting the filling materials, the apical microleakage of the formed plugs was quantified using the dye extraction method and spectrophotometry. The differences between the groups were analyzed using the one-way ANOVA and LSD post hoc tests. The significance level was set at 0.05. Results: No significant differences were reported in the time required to form the apical plugs in all groups (p > 0.05). However, the apical plugs formed by the AC method had significantly higher microleakage than those formed using the MAP and MC methods (p < 0.05). Conclusion: Within the limitations of this study, the sealing ability of the apical plugs formed by the MC method is comparable to the MAP method and better than the AC method.
Collapse
|
6
|
Comparison of MTA versus Biodentine in Apexification Procedure for Nonvital Immature First Permanent Molars: A Randomized Clinical Trial. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9030410. [PMID: 35327782 PMCID: PMC8946907 DOI: 10.3390/children9030410] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022]
Abstract
This study aimed to evaluate the radiological and clinical outcomes of Biodentine apical plugs compared to mineral trioxide aggregate (MTA) in treating immature molars with apical lesions in children. Materials and Methods: Thirty immature roots of 24 permanent lower first molars with apical lesions were randomly divided into two groups: group 1 (15 roots) treated with MTA apical plugs and group 2 (15 roots) treated with Biodentine apical plugs. Treatment radiological outcomes were assessed using the periapical index (PAI) scale after 6 and 12 months of treatment. The presence or absence of apical calcified barrier (ACB) was assessed after 12 months of treatment. The visual analog scale (VAS) was used to compare the postoperative pain between the two groups after 1, 3, 7, and 14 days of treatment. PAI scores between the two groups were compared using the Mann–Whitney U test, the presence or absence of the ACB was compared using the chi-square test, and the VAS scores were compared using the t-test. The statistical significance threshold was set at 0.05. Results: There were no statistically significant differences in the PAI between the two groups at 6 and 12 months postoperatively. After 12 months, four cases in the Biodentine group showed ACB formation, whereas ACB was not found in any case treated with MTA. The VAS scores were statistically lower in the MTA group on the first day after treatment. Nevertheless, these scores were not statistically significantly different after 3, 7, and 14 days of treatment between the two groups. Conclusions: Biodentine can be used as an apical plug to treat immature permanent molars with apical lesions in a single visit in children. Biodentine showed favorable outcomes in apical lesions healing, which was comparable to MTA but with a decreased treatment time associated with its use.
Collapse
|