1
|
Xu X, Jia S, Xi P. Raster-scanning Donut simplifies MINFLUX and provides alternative implement on other scanning-based microscopes. LIGHT, SCIENCE & APPLICATIONS 2022; 11:293. [PMID: 36216797 PMCID: PMC9550861 DOI: 10.1038/s41377-022-00983-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A donut excitation moves around a single molecule with a zigzag configuration lattice by lattice. Such a method implemented in scanning fluorescence microscopy simplifies the conventional MINFLUX process. Consisting of hollow zero-intensity excitation, single-pixel detection, time-correlated single photon counting, and drift stabilization, the system achieves localization precision and resolution very close to conventional MINFLUX theoretically and experimentally. An averaged high-SNR reference, and pixel-registered intensity from a single molecule is essential to reconstruct localization in maximum likelihood estimation. With performance reaching nearly conventional MINFLUX's, the proposed raster-scanning MINFLUX can inspire researchers expertized in STED or confocal setup to quickly transform to MINFLUX and develop for further exploring on bio-specimens or optical applications.
Collapse
Affiliation(s)
- Xinzhu Xu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
- UTS-SUStech Joint Research Centre for Bio-medical Materials & Devices, Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
| | - Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China.
- UTS-SUStech Joint Research Centre for Bio-medical Materials & Devices, Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| |
Collapse
|