1
|
Feng L, Wu Z, Jia X, Yang L, Wang M, Huang M, Ma Y. Screening, identification and targeted intervention of necroptotic biomarkers of asthma. Biochem Biophys Res Commun 2024; 735:150674. [PMID: 39270557 DOI: 10.1016/j.bbrc.2024.150674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND As a pivotal pathway of programmed cell death, necroptosis significantly contributes to the pathogenesis of respiratory disorders. However, its role in asthma is not yet fully elucidated. Therefore, this study aimed to identify markers associated with necroptosis, evaluate their functions in asthma, and explore potential therapeutic agents targeting necroptosis for the management of asthma. METHODS Firstly, machine learning algorithms, including Least Absolute Shrinkage and Selection Operator (LASSO), Random Forest, and Support Vector Machine-Recursive Feature Elimination (SVM-RFE), were utilized to identify necroptosis-related differentially expressed genes (NRDEGs) in asthma patients compared to healthy controls. Concurrently, the expression of NRDEGs was validated using external datasets, Western blot, and quantitative real-time polymerase chain reaction (qPCR). Secondly, the clinical relevance of NRDEGs was assessed through Receiver Operating Characteristic (ROC) curve analysis and correlation with clinical indicators. Thirdly, the relationship between NRDEGs and pulmonary immune cell infiltration, as well as the signaling interactions between different cells types, were analyzed through immune infiltration and single-cell analysis. Fourthly, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA), were conducted to elucidate the functional roles of NRDEGs. Finally, compounds targeting NRDEGs were screened, and their binding affinities were evaluated using molecular docking studies. RESULTS In asthma, necroptosis is activated, leading to the identification of four NRDEGs: NLRP3, PYCARD, ALOX15, and VDAC3. Among these, NLRP3, PYCARD, and ALOX15 are upregulated, whereas VDAC3 is downregulated in asthma. Comprehensive clinical evaluations indicated that NRDEGs hold diagnostic value for asthma. Specifically, NLRP3 was inversely correlated with forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC), while VDAC3 showed an inverse correlation with sputum neutrophils. Conversely, ALOX15 expression was positively correlated with fractional exhaled nitric oxide (FeNO) levels, as well as sputum eosinophils, blood eosinophils, and blood IgE levels. Subsequent immune infiltration analysis revealed associations between NRDEGs and activated dendritic cells, mast cells, and eosinophils. Single-cell RNA sequencing (scRNA-seq) further confirmed the communication signals between myeloid dendritic cells, fibroblasts, neutrophils, and helper T cells, predominantly related to fibrosis and immune-inflammatory responses. Pathway enrichment analysis demonstrated that NRDEGs are involved in ribosomal function, oxidative phosphorylation, and fatty acid metabolism. Finally, resveratrol and triptonide were identified as potential therapeutic agents targeting the proteins encoded by NRDEGs for asthma treatment. CONCLUSIONS The necroptosis pathway is activated in asthma, with NRDEGs-namely PYCARD, NLRP3, ALOX15, and VDAC3-correlated with declines in lung function and airway inflammation. These genes serve as reliable predictors of asthma risk and are involved in the regulation of the immune-inflammatory microenvironment. Resveratrol and triptolide have been identified as promising therapeutic candidates due to their potential to target the proteins encoded by these genes.
Collapse
Affiliation(s)
- Ling Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenzhen Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lan Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yuan Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Xue VW, Wong SCC, Zhao H, Cho WCS. Proteomic characterization of extracellular vesicles in programmed cell death. Proteomics 2024; 24:e2300024. [PMID: 38491383 DOI: 10.1002/pmic.202300024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/18/2024]
Abstract
Programmed cell death (PCD) is a fundamental biological process that plays a critical role in cell development, differentiation, and homeostasis. The secretion and uptake of extracellular vesicles (EVs) is one of the important regulatory mechanisms for PCD. EVs are natural membrane structures secreted by cells that contain a variety of proteins, lipids, nucleic acids, and other bioactive molecules. Due to their important roles in intercellular communication and disease progression, there is great interest in studying EVs and their cargo. Different protein components are sorted and packaged in EVs, allowing EVs to perform their functions. The study of EV proteomics helps us understand the role of PCD in the development of diseases. Meanwhile, proteomics is a powerful tool for studying the composition and function of EVs, which assists in the identification, quantification, and profiling of protein components of EVs, and provides insight into the molecular mechanisms involved in PCD and related diseases. In this review, we summarize the characteristics of EV proteomics in different types of PCD, compare different proteomic profiling strategies for EVs, and discuss the impact of EV proteomics on cell function and regulation during PCD, to understand its role in the pathogenesis of related diseases.
Collapse
Affiliation(s)
- Vivian Weiwen Xue
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, China
| | - Sze Chuen Cesar Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Huafu Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | | |
Collapse
|
3
|
Schramm WC, Bala N, Arekar T, Malik Z, Chacko KM, Lewis RL, Denslow ND, Scindia Y, Alli AA. Enrichment of Bioactive Lipids in Urinary Extracellular Vesicles and Evidence of Apoptosis in Kidneys of Hypertensive Diabetic Cathepsin B Knockout Mice after Streptozotocin Treatment. Biomedicines 2024; 12:1038. [PMID: 38791000 PMCID: PMC11117475 DOI: 10.3390/biomedicines12051038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Cathepsin B (CtsB) is a ubiquitously expressed cysteine protease that plays important roles in health and disease. Urinary extracellular vesicles (uEVs) are released from cells associated with urinary organs. The antibiotic streptozotocin (STZ) is known to induce pancreatic islet beta cell destruction, diabetic nephropathy, and hypertension. We hypothesized that streptozotocin-induced diabetic kidney disease and hypertension result in the release of bioactive lipids from kidney cells that induce oxidative stress and renal cell death. Lipidomics was performed on uEVs isolated from CtsB knockout mice treated with or without STZ, and their kidneys were used to investigate changes in proteins associated with cell death. Lysophosphatidylethanolamine (LPE) (18:1), lysophosphatidylserine (LPS) (22:6), and lysophosphatidylglycerol (LPG) (22:5) were among the bioactive lipids enriched in uEVs from CtsB knockout mice treated with STZ compared to untreated CtsB mice (n = 3 uEV preparations per group). Anti-oxidant programming was activated in the kidneys of the CtsB knockout mice treated with STZ, as indicated by increased expression of glutathione peroxidase 4 (GPX4) and the cystine/glutamate antiporter SLC7A11 (XCT) (n = 4 mice per group), which was supported by a higher reactivity to 4-hydroxy-2-nonenal (4-HNE), a marker for oxidative stress (n = 3 mice per group). Apoptosis but not ferroptosis was the ongoing form of cell death in these kidneys as cleaved caspase-3 levels were significantly elevated in the STZ-treated CtsB knockout mice (n = 4 mice per group). There were no appreciable differences in the pro-ferroptosis enzyme acyl-CoA synthetase long-chain family member 4 (ACSL4) or the inflammatory marker CD93 in the kidneys (n = 3 mice per group), which further supports apoptosis as the prevalent mechanism of pathology. These data suggest that STZ treatment leads to oxidative stress, inducing apoptotic injury in the kidneys during the development of diabetic kidney disease and hypertension.
Collapse
Affiliation(s)
- Whitney C. Schramm
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (W.C.S.); (N.B.); (T.A.); (Z.M.); (K.M.C.); (Y.S.)
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Niharika Bala
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (W.C.S.); (N.B.); (T.A.); (Z.M.); (K.M.C.); (Y.S.)
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tanmay Arekar
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (W.C.S.); (N.B.); (T.A.); (Z.M.); (K.M.C.); (Y.S.)
| | - Zeeshan Malik
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (W.C.S.); (N.B.); (T.A.); (Z.M.); (K.M.C.); (Y.S.)
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kevin M. Chacko
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (W.C.S.); (N.B.); (T.A.); (Z.M.); (K.M.C.); (Y.S.)
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Russell L. Lewis
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32608, USA; (R.L.L.); (N.D.D.)
| | - Nancy D. Denslow
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32608, USA; (R.L.L.); (N.D.D.)
| | - Yogesh Scindia
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (W.C.S.); (N.B.); (T.A.); (Z.M.); (K.M.C.); (Y.S.)
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Abdel A. Alli
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (W.C.S.); (N.B.); (T.A.); (Z.M.); (K.M.C.); (Y.S.)
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
4
|
Cappe B, Vadi M, Sack E, Wacheul L, Verstraeten B, Dufour S, Franck J, Xie W, Impens F, Hendrix A, Lafontaine DLJ, Vandenabeele P, Riquet FB. Systematic compositional analysis of exosomal extracellular vesicles produced by cells undergoing apoptosis, necroptosis and ferroptosis. J Extracell Vesicles 2023; 12:e12365. [PMID: 37807017 PMCID: PMC10560658 DOI: 10.1002/jev2.12365] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
Formation of extracellular vesicles (EVs) has emerged as a novel paradigm in cell-to-cell communication in health and disease. EVs are notably produced during cell death but it had remained unclear whether different modalities of regulated cell death (RCD) influence the biogenesis and composition of EVs. To this end, we performed a comparative analysis of steady-state (ssEVs) and cell death-associated EVs (cdEVs) following TNF-induced necroptosis (necEVs), anti-Fas-induced apoptosis (apoEVs), and ML162-induced ferroptosis (ferEVs) using the same cell line. For each RCD condition, we determined the biophysical and biochemical characteristics of the cell death-associated EVs (cdEVs), the protein cargo, and the presence of methylated ribosomal RNA. We found that the global protein content of all cdEVs was increased compared to steady-state EVs. Qualitatively, the isolated exosomal ssEVs and cdEVs, contained a largely overlapping protein cargo including some quantitative differences in particular proteins. All cdEVs were enriched for proteins involved in RNA splicing and nuclear export, and showed distinctive rRNA methylation patterns compared to ssEVs. Interestingly, necEVs and apoEVs, but strikingly not ferEVs, showed enrichment of proteins involved in ribosome biogenesis. Altogether, our work documents quantitative and qualitative differences between ssEVs and cdEVs.
Collapse
Affiliation(s)
- Benjamin Cappe
- Cell Death and Inflammation UnitVIB Center for Inflammation ResearchGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Mike Vadi
- Cell Death and Inflammation UnitVIB Center for Inflammation ResearchGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Eliza Sack
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS)Université libre de Bruxelles (ULB), Biopark campusGosseliesBelgium
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS)Université libre de Bruxelles (ULB), Biopark campusGosseliesBelgium
| | - Bruno Verstraeten
- Cell Death and Inflammation UnitVIB Center for Inflammation ResearchGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Sara Dufour
- VIB‐UGent Center for Medical BiotechnologyVIBGhentBelgium
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
- VIB Proteomics CoreVIBGhentBelgium
| | - Julien Franck
- University of Lille, Inserm U1192‐Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse‐PRISMLilleFrance
| | - Wei Xie
- Cell Death and Inflammation UnitVIB Center for Inflammation ResearchGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Francis Impens
- VIB‐UGent Center for Medical BiotechnologyVIBGhentBelgium
- Department of Biomolecular MedicineGhent UniversityGhentBelgium
- VIB Proteomics CoreVIBGhentBelgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
| | - Denis L. J. Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS)Université libre de Bruxelles (ULB), Biopark campusGosseliesBelgium
| | - Peter Vandenabeele
- Cell Death and Inflammation UnitVIB Center for Inflammation ResearchGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
| | - Franck B. Riquet
- Cell Death and Inflammation UnitVIB Center for Inflammation ResearchGhentBelgium
- Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
- University of Lille, CNRS, UMR 8523‐PhLAM‐Physique des Lasers Atomes et MoléculesLilleFrance
| |
Collapse
|