Cobbs JS, Pinsker HM. In vivo responses of paired giant mechanoreceptor neurons in Aplysia abdominal ganglion.
JOURNAL OF NEUROBIOLOGY 1978;
9:121-41. [PMID:
209129 DOI:
10.1002/neu.480090204]
[Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two neurons with cell bodies symmetrically located in the abdominal ganglion and giant axons in the left (L1) and right (R1) pleurovisceral connectives of Aplysia californica were examined in vivo and in vitro. Direct stimulation of R1 and L1 in the intact animal does not elicit any observable behavior, suggesting that they are neither motoneurons nor command neurons. These cells respond in vivo to sudden onset mechanical stimulation of widespread regions of the body. R1 and L1 spikes are initiated in at least three different loci: (1) the peripheral axon in the foot, (2) the neuropil of the pleural and/or pedal ganglion, and (3) the neuropil of the abdominal ganglion. Furthermore, R1 and L1 probably have two different mechanisms for spike initiation: (1) sensory (foot), and (2) synaptic (abdominal and/or head ganglia). The different loci for spike initiation account for the bidirectional conduction of R1 and L1 spikes. As sensory (mechanoreceptor) neurons, R1 and L1 have peripheral axons in the ipsilateral posterior pedal nerve, show low threshold responses to stimulation of the ipsilateral posterior foot, they are rapidly adapting their responses do not decrease with repetition, and they are not blocked by high Mg++/low Ca++ solutions. As synaptically-driven neurons, R1 and L1 have widespread bilateral responsiveness, their responses decrease with repetition and their inputs are blocked with high Mg++/low Ca++ solutions. These neurons integrate sensory and synaptic inputs and conduct bidirectionally, however, their output connections must be specified before their behavioral function can be understood.
Collapse