1
|
Stanojevic S, Kaminsky DA, Miller MR, Thompson B, Aliverti A, Barjaktarevic I, Cooper BG, Culver B, Derom E, Hall GL, Hallstrand TS, Leuppi JD, MacIntyre N, McCormack M, Rosenfeld M, Swenson ER. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur Respir J 2022; 60:2101499. [PMID: 34949706 DOI: 10.1183/13993003.01499-2021] [Citation(s) in RCA: 508] [Impact Index Per Article: 169.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/18/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Appropriate interpretation of pulmonary function tests (PFTs) involves the classification of observed values as within/outside the normal range based on a reference population of healthy individuals, integrating knowledge of physiological determinants of test results into functional classifications and integrating patterns with other clinical data to estimate prognosis. In 2005, the American Thoracic Society (ATS) and European Respiratory Society (ERS) jointly adopted technical standards for the interpretation of PFTs. We aimed to update the 2005 recommendations and incorporate evidence from recent literature to establish new standards for PFT interpretation. METHODS This technical standards document was developed by an international joint Task Force, appointed by the ERS/ATS with multidisciplinary expertise in conducting and interpreting PFTs and developing international standards. A comprehensive literature review was conducted and published evidence was reviewed. RESULTS Recommendations for the choice of reference equations and limits of normal of the healthy population to identify individuals with unusually low or high results are discussed. Interpretation strategies for bronchodilator responsiveness testing, limits of natural changes over time and severity are also updated. Interpretation of measurements made by spirometry, lung volumes and gas transfer are described as they relate to underlying pathophysiology with updated classification protocols of common impairments. CONCLUSIONS Interpretation of PFTs must be complemented with clinical expertise and consideration of the inherent biological variability of the test and the uncertainty of the test result to ensure appropriate interpretation of an individual's lung function measurements.
Collapse
Affiliation(s)
- Sanja Stanojevic
- Dept of Community Health and Epidemiology, Dalhousie University, Halifax, NS, Canada
| | - David A Kaminsky
- Pulmonary Disease and Critical Care Medicine, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Martin R Miller
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Bruce Thompson
- Physiology Service, Dept of Respiratory Medicine, The Alfred Hospital and School of Health Sciences, Swinburne University of Technology, Melbourne, Australia
| | - Andrea Aliverti
- Dept of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy
| | - Igor Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, University of California, Los Angeles, CA, USA
| | - Brendan G Cooper
- Lung Function and Sleep, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Bruce Culver
- Dept of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Eric Derom
- Dept of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Graham L Hall
- Children's Lung Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute and School of Allied Health, Faculty of Health Science, Curtin University, Bentley, Australia
| | - Teal S Hallstrand
- Dept of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Joerg D Leuppi
- University Clinic of Medicine, Cantonal Hospital Basel, Liestal, Switzerland
- University Clinic of Medicine, University of Basel, Basel, Switzerland
| | - Neil MacIntyre
- Division of Pulmonary, Allergy, and Critical Care Medicine, Dept of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Meredith McCormack
- Pulmonary Function Laboratory, Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Erik R Swenson
- Dept of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
- VA Puget Sound Health Care System, Seattle, WA, USA
| |
Collapse
|
2
|
Feldman T, Yakovleva M, Viljanen M, Lindström M, Donner K, Ostrovsky M. Dark-adaptation in the eyes of a lake and a sea population of opossum shrimp (Mysis relicta): retinoid isomer dynamics, rhodopsin regeneration, and recovery of light sensitivity. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:871-889. [PMID: 32880702 PMCID: PMC7603447 DOI: 10.1007/s00359-020-01444-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 11/30/2022]
Abstract
We have studied dark-adaptation at three levels in the eyes of the crustacean Mysis relicta over 2-3 weeks after exposing initially dark-adapted animals to strong white light: regeneration of 11-cis retinal through the retinoid cycle (by HPLC), restoration of native rhodopsin in photoreceptor membranes (by MSP), and recovery of eye photosensitivity (by ERG). We compare two model populations ("Sea", Sp, and "Lake", Lp) inhabiting, respectively, a low light and an extremely dark environment. 11-cis retinal reached 60-70% of the pre-exposure levels after 2 weeks in darkness in both populations. The only significant Lp/Sp difference in the retinoid cycle was that Lp had much higher levels of retinol, both basal and light-released. In Sp, rhodopsin restoration and eye photoresponse recovery parallelled 11-cis retinal regeneration. In Lp, however, even after 3 weeks only ca. 25% of the rhabdoms studied had incorporated new rhodopsin, and eye photosensitivity showed only incipient recovery from severe depression. The absorbance spectra of the majority of the Lp rhabdoms stayed constant around 490-500 nm, consistent with metarhodopsin II dominance. We conclude that sensitivity recovery of Sp eyes was rate-limited by the regeneration of 11-cis retinal, whilst that of Lp eyes was limited by inertia in photoreceptor membrane turnover.
Collapse
Affiliation(s)
- Tatiana Feldman
- Department of Molecular Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, Russia, 119991.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st. 4, Moscow, Russia, 119334
| | - Marina Yakovleva
- Department of Molecular Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, Russia, 119991
| | - Martta Viljanen
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Magnus Lindström
- Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kristian Donner
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Mikhail Ostrovsky
- Department of Molecular Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskie Gory 1, Moscow, Russia, 119991.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin st. 4, Moscow, Russia, 119334
| |
Collapse
|
3
|
Raghupathy RK, Gautier P, Soares DC, Wright AF, Shu X. Evolutionary Characterization of the Retinitis Pigmentosa GTPase Regulator Gene. Invest Ophthalmol Vis Sci 2015; 56:6255-64. [PMID: 26431479 PMCID: PMC5841567 DOI: 10.1167/iovs.15-17726] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
PURPOSE The evolutionary conservation of the retinitis pigmentosa GTPase regulator (RPGR) gene was examined across vertebrate and invertebrate lineages to elucidate its function. METHODS Orthologous RPGR sequences from vertebrates and invertebrates were selected. Multiple sequence alignments, phylogenetic analyses, synteny, and gene structure comparisons were carried out. Expression of the alternatively spliced constitutive (RPGR(const) or RPGR(ex1-19)) and RPGR(ORF15) isoforms was examined in developing and adult zebrafish. RESULTS Phylogenetic analyses and syntenic relationships were consistent with the selected sequences being true orthologues, although whole genome duplications in teleost fish resulted in a more complex picture. The splice form RPGR(const) was present in all vertebrate and invertebrate species but the defining carboxyl (C)-terminal exon of RPGR(ORF15) was absent from all invertebrates. The regulator of chromosome condensation (RCC1)-like domain adopts a seven-bladed β-propeller structure, which was present in both major splice forms and strongly conserved across evolution. The repetitive acidic region of RPGR(ORF15) showed a high rate of in-frame deletions/insertions across nine primate species, compared with flanking sequences, consistent with an unstable and rapidly evolving region. In zebrafish, RPGR(const) transcripts were most strongly expressed in early development, while the RPGR(ORF15) isoform showed highest expression in adult eye. CONCLUSIONS The regulator of chromosome condensation 1-like domain of RPGR was conserved in vertebrates and invertebrates, but RPGR(ORF15) was unique to vertebrates, consistent with a proposed role in the ciliary-based transport of cargoes such as rhodopsin, which is ∼10 times more abundant in vertebrate than invertebrate photoreceptors. The repetitive acidic region of RPGR(ORF15) shows a rapid rate of evolution, consistent with a mutation "hot spot."
Collapse
Affiliation(s)
| | - Philippe Gautier
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Dinesh C. Soares
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan F. Wright
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| |
Collapse
|