1
|
Dzyuba V, Shelton WL, Kholodnyy V, Boryshpolets S, Cosson J, Dzyuba B. Fish sperm biology in relation to urogenital system structure. Theriogenology 2019; 132:153-163. [PMID: 31022605 DOI: 10.1016/j.theriogenology.2019.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 04/14/2019] [Indexed: 12/15/2022]
Abstract
Morphology of the urogenital system has evolved during fish speciation. Chondrostei (sturgeons and paddlefishes) possess an excretory system which is called "primitive" in that the sperm ducts enter the kidneys and share the excretory ducts where sperm is mixed with urine before it is released into the spawning environment. Further, in this group of fishes there are also physiological characteristics which are associated with these anatomical features where the mixing of sperm and urine is a prerequisite for the final sperm maturation rather than contamination. In the Holostei (gars and bowfins) which are closely related to the Chondrostei, sperm also naturally mixed with urine, but the physiological role of such mixing for sperm biology has not been described. In contrast, urinary and sperm ducts in the more evolved Teleostei are completely separate, and sperm and urine are not mixed before being released during spawning. Thus, urine constitutes an inappropriate environment which can be a source of problems when sperm is collected during fisheries practices. In this review, the consequences of such divergent conditions in the urogenital anatomy will be considered in relation to general features of fish sperm biology and in relation to aquaculture and fisheries practices.
Collapse
Affiliation(s)
- Viktoriya Dzyuba
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - William L Shelton
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic; University of Oklahoma, Department of Biology, 730 Van Vleet Oval, Norman, OK, 73019, USA
| | - Vitaliy Kholodnyy
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Sergii Boryshpolets
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Jacky Cosson
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Borys Dzyuba
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
2
|
|
4
|
Mello CC, Barrick D. Measuring the stability of partly folded proteins using TMAO. Protein Sci 2003; 12:1522-9. [PMID: 12824497 PMCID: PMC2323936 DOI: 10.1110/ps.0372903] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2003] [Revised: 04/16/2003] [Accepted: 04/16/2003] [Indexed: 10/27/2022]
Abstract
Standard methods for measuring free energy of protein unfolding by chemical denaturation require complete folding at low concentrations of denaturant so that a native baseline can be observed. Alternatively, proteins that are completely unfolded in the absence of denaturant can be folded by addition of the osmolyte trimethylamine N-oxide (TMAO), and the unfolding free energy can then be calculated through analysis of the refolding transition. However, neither chemical denaturation nor osmolyte-induced refolding alone is sufficient to yield accurate thermodynamic unfolding parameters for partly folded proteins, because neither method produces both native and denatured baselines in a single transition. Here we combine urea denaturation and TMAO stabilization as a means to bring about baseline-resolved structural transitions in partly folded proteins. For Barnase and the Notch ankyrin domain, which both show two-state equilibrium unfolding, we found that DeltaG degrees for unfolding depends linearly on TMAO concentration, and that the sensitivity of DeltaG degrees to urea (the m-value) is TMAO independent. This second observation confirms that urea and TMAO exert independent effects on stability over the range of cosolvent concentrations required to bring about baseline-resolved structural transitions. Thermodynamic parameters calculated using a global fit that assumes additive, linear dependence of DeltaG degrees on each cosolvent are similar to those obtained by standard urea-induced unfolding in the absence of TMAO. Finally, we demonstrate the applicability of this method to measurement of the free energy of unfolding of a partly folded protein, a fragment of the full-length Notch ankyrin domain.
Collapse
Affiliation(s)
| | - Doug Barrick
- T.C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
5
|
Evolutionary considerations of nitrogen metabolism and excretion. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1546-5098(01)20002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Kirschner LB. Extrarenal Mechanisms in Hydromineral and Acid‐Base Regulation in Aquatic Vertebrates. Compr Physiol 1997. [DOI: 10.1002/cphy.cp130109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Methods for assessing kidney and urinary bladder function in fish. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/b978-0-444-82033-4.50018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
8
|
Guppies, toadfish, lungfish, coelacanths and frogs: a scenario for the evolution of urea retention in fishes. ACTA ACUST UNITED AC 1991. [DOI: 10.1007/978-94-011-3194-0_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|