1
|
Olsson KH, Nilsson Sköld H, Merilaita S, Kvarnemo C. Dark-eyed females: sexually dimorphic prespawning coloration results from sex-specific physiological response to hormone exposure in the sand goby Pomatoschistus minutus (Gobiiformes: Gobiidae). Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blab166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The function and regulation of female nuptial colour signals are poorly understood. In fish, colour is often mediated by chromatophores, allowing for rapid and versatile signalling. Here, we examine a distinct but temporary black line around the eyes and snout (‘dark eyes’) displayed by female sand gobies before spawning and never observed in males. We investigate the regulatory mechanism of the display by analysing the number of melanophores in both sexes in vitro and their response to hormonal exposure. We also test the hypothesis that dark eyes serve an anti-glare function and focus the line of sight, by analysing the frequency, intensity and duration of the display in bright and dim light, with and without males present. We show that the sexes do not differ in terms of the number of melanophores, but that males and females respond in different ways to exposure to melanocyte-stimulating hormone, which has a stronger dilatory effect in females and results in a darker line. However, the darkness of the iris is not affected. Neither light levels nor the presence of potential mates affect the frequency of the dark eye display, but the display is longer lasting and more intense in the presence of smaller nest-holding males.
Collapse
Affiliation(s)
- Karin H Olsson
- Inter-University Institute for Marine Sciences in Eilat, Eilat, Israel
- School of Zoology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Sami Merilaita
- Department of Ecology and Evolutionary Biology, University of Turku, Turku, Finland
| | - Charlotta Kvarnemo
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- The Linnean Center for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Mizusawa K, Kasagi S, Takahashi A. Melanin-concentrating hormone is a major substance mediating light wavelength-dependent skin color change in larval zebrafish. Gen Comp Endocrinol 2018; 269:141-148. [PMID: 30195023 DOI: 10.1016/j.ygcen.2018.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/14/2023]
Abstract
Melanosome dispersion is important for protecting the internal organs of fish against ultraviolet light, especially in transparent larvae with underdeveloped skin. Melanosome dispersion leads to dark skin color in dim light. Melanosome aggregation, on the other hand, leads to pale skin color in bright light. Both of these mechanisms are therefore useful for camouflage. In this study, we investigated a hormone thought to be responsible for the light wavelength-dependent response of melanophores in zebrafish larvae. We irradiated larvae using light-emitting diode (LED) lights with peak wavelengths (λmax) of 355, 400, 476, 530, and 590 nm or fluorescent light (FL) 1-4 days post fertilization (dpf). Melanosomes in skin melanophores were more dispersed under short wavelength light (λmax ≤ 400 nm) than under FL. Conversely, melanosomes were more aggregated under mid-long wavelength light (λmax ≥ 476 nm) than under FL. In addition, long-term (1-12 dpf) irradiation of 400 nm light increased melanophores in the skin, whereas that of 530 nm light decreased them. In teleosts, melanin-concentrating hormone (MCH) aggregates melanosomes within chromatophores, whereas melanocyte-stimulating hormone, derived from proopiomelanocortin (POMC), disperses melanosomes. The expression of a gene for MCH was down-regulated by short wavelength light but up-regulated by mid-long wavelength light, whereas a gene for POMC was up-regulated under short wavelength light. Melanosomes in larvae (4 dpf) exposed to a black background aggregated when immersing the larvae in MCH solution. Yohimbine, an α2-adrenergic receptor antagonist, attenuated adrenaline-dependent aggregation in larvae exposed to a black background but did not induce melanosome dispersion in larvae exposed to a white background. These results suggest that MCH plays a key role in the light wavelength-dependent response of melanophores, flexibly mediating the transmission of light wavelength information between photoreceptors and melanophores.
Collapse
Affiliation(s)
- Kanta Mizusawa
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan.
| | - Satoshi Kasagi
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Akiyoshi Takahashi
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
3
|
Tsang B, Zahid H, Ansari R, Lee RCY, Partap A, Gerlai R. Breeding Zebrafish: A Review of Different Methods and a Discussion on Standardization. Zebrafish 2017; 14:561-573. [PMID: 28873037 DOI: 10.1089/zeb.2017.1477] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In recent years, a rapidly increasing number of scientific papers have been published that utilize zebrafish (Danio rerio) as an alternative model organism in the study of a wide range of biological phenomena from cancer to behavior. This is, in large part, due to the prolific nature, relative ease of maintenance, and sufficiently high genetic homology of zebrafish to humans. With the surge of zebrafish use in animal research, the variations in methodologies of breeding and husbandry of this species have also increased. Investigators usually focus on the development and implementation of rigorous laboratory control that is specific to their studies. We suggest that the same scrutiny and attention may be required for the methods of breeding and housing of zebrafish. This article reviews a variety of zebrafish husbandry and breeding techniques and conditions employed around the world. It discusses factors ranging from numerous aspects of rearing/housing conditions through the sex ratio of the breeding group to the composition of the diet of zebrafish that may vary across laboratories. It provides some feedback on the potential pros and cons of the different methods. It argues that there is a substantial need for systematic analysis of these methods, that is, the effects of environmental factors on zebrafish health and breeding. It also discusses the question as to whether some degree of standardization of these methods is needed to enhance cross-laboratory comparability of results.
Collapse
Affiliation(s)
- Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga , Mississauga, Canada
| | - Hifsa Zahid
- Department of Psychology, University of Toronto Mississauga , Mississauga, Canada
| | - Rida Ansari
- Department of Psychology, University of Toronto Mississauga , Mississauga, Canada
| | | | - Aman Partap
- Department of Psychology, University of Toronto Mississauga , Mississauga, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga , Mississauga, Canada
| |
Collapse
|
4
|
Kelley JL, Davies WIL. The Biological Mechanisms and Behavioral Functions of Opsin-Based Light Detection by the Skin. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
5
|
Sköld HN, Yngsell D, Mubashishir M, Wallin M. Hormonal regulation of colour change in eyes of a cryptic fish. Biol Open 2015; 4:206-11. [PMID: 25596278 PMCID: PMC4365489 DOI: 10.1242/bio.20149993] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Colour change of the skin in lower vertebrates such as fish has been a subject of great scientific and public interest. However, colour change also takes place in eyes of fish and while an increasing amount of data indicates its importance in behaviour, very little is known about its regulation. Here, we report that both eye and skin coloration change in response to white to black background adaptation in live sand goby Pomatoschistus minutes, a bentic marine fish. Through in vitro experiments, we show that noradrenaline and melanocyte concentrating hormone (MCH) treatments cause aggregation of pigment organelles in the eye chromatophores. Daylight had no aggregating effect. Combining forskolin to elevate intracellular cyclic adenosine monophosphate (cAMP) with MCH resulted in complete pigment dispersal and darkening of the eyes, whereas combining prolactin, adrenocorticotrophic hormone (ACTH) or melanocyte stimulating hormone (α-MSH) with MCH resulted in more yellow and red eyes. ACTH and MSH also induced dispersal in the melanophores, resulting in overall darker eyes. By comparing analysis of eyes, skin and peritoneum, we conclude that the regulation pattern is similar between these different tissues in this species which is relevant for the cryptic life strategy of this species. With the exception of ACTH which resulted in most prominent melanophore pigment dispersal in the eyes, all other treatments provided similar results between tissue types. To our knowledge, this is the first study that has directly analysed hormonal regulation of physiological colour change in eyes of fish.
Collapse
Affiliation(s)
- Helen Nilsson Sköld
- Sven Loven Centre for Marine Sciences, Kristineberg, University of Gothenburg, SE-450 34 Fiskebäckskil, Sweden
| | - Daniel Yngsell
- Department of Biomedicine, Kristianstad University, SE-291 88 Kristianstad, Sweden
| | - Muhmd Mubashishir
- Sven Loven Centre for Marine Sciences, Kristineberg, University of Gothenburg, SE-450 34 Fiskebäckskil, Sweden
| | - Margareta Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-40530 Gothenburg, Sweden
| |
Collapse
|
6
|
Regulation of melanopsins and Per1 by α -MSH and melatonin in photosensitive Xenopus laevis melanophores. BIOMED RESEARCH INTERNATIONAL 2014; 2014:654710. [PMID: 24959583 PMCID: PMC4052817 DOI: 10.1155/2014/654710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 12/21/2022]
Abstract
α-MSH and light exert a dispersing effect on pigment granules of Xenopus laevis melanophores; however, the intracellular signaling pathways are different. Melatonin, a hormone that functions as an internal signal of darkness for the organism, has opposite effects, aggregating the melanin granules. Because light functions as an important synchronizing signal for circadian rhythms, we further investigated the effects of both hormones on genes related to the circadian system, namely, Per1 (one of the clock genes) and the melanopsins, Opn4x and Opn4m (photopigments). Per1 showed temporal oscillations, regardless of the presence of melatonin or α-MSH, which slightly inhibited its expression. Melatonin effects on melanopsins depend on the time of application: if applied in the photophase it dramatically decreased Opn4x and Opn4m expressions, and abolished their temporal oscillations, opposite to α-MSH, which increased the melanopsins' expressions. Our results demonstrate that unlike what has been reported for other peripheral clocks and cultured cells, medium changes or hormones do not play a major role in synchronizing the Xenopus melanophore population. This difference is probably due to the fact that X. laevis melanophores possess functional photopigments (melanopsins) that enable these cells to primarily respond to light, which triggers melanin dispersion and modulates gene expression.
Collapse
|
7
|
Chapter 6 New Insights into Melanosome Transport in Vertebrate Pigment Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:245-302. [DOI: 10.1016/s1937-6448(08)01606-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Ban E, Kasai A, Sato M, Yokozeki A, Hisatomi O, Oshima N. The signaling pathway in photoresponses that may be mediated by visual pigments in erythrophores of Nile tilapia. ACTA ACUST UNITED AC 2005; 18:360-9. [PMID: 16162176 DOI: 10.1111/j.1600-0749.2005.00267.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to increase the synthesis or vary the distribution of pigment in response to light is an important feature of many pigment cells. Unlike other light-sensitive pigment cells, erythrophores of Nile tilapia change the direction of pigment migration depending on the peak wavelength of incident light: light near 365, 400 or 600 nm induces pigment aggregation, while dispersion occurs in response to light at 500 nm. How these phenomena are achieved is currently unknown. In the present study, the phototransduction involved in the pigment dispersion caused by light at 500 nm or the aggregation by light at 600 nm was examined, using pertussis toxin, cholera toxin, blockers of ion channels, various chemicals affecting serial steps of signaling pathways and membrane-permeable cAMP analog. The results show that light-induced bidirectional movements in tilapia erythrophores may be controlled by cytosolic cAMP levels via Gi- or Gs-type G proteins. In addition, RT-PCR demonstrated for the first time the expression of mRNAs encoding red and green opsins in tilapia fins, only where erythrophores exist. Here, we suggest that multiple cone-type visual pigments may be present in the erythrophores, and that unique cascades in which such opsins couple to Gi or Gs-type G proteins are involved in the photoresponses in these pigment cells. Thus, tilapia erythrophore system seems to be a nice model for understanding the photoresponses of cells other than visual cells.
Collapse
Affiliation(s)
- Eiko Ban
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama, Funabashi, Chiba 274-8510, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Sato M, Ishikura R, Oshima N. Direct Effects of Visible and UVA Light on Pigment Migration in Erythrophores of Nile Tilapia. ACTA ACUST UNITED AC 2004; 17:519-24. [PMID: 15357839 DOI: 10.1111/j.1600-0749.2004.00178.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Erythrophores derived from Nile tilapia (Oreochromis niloticus) are sensitive to visible light of defined wavelengths in primary culture in the same manner as erythrophores in the skin. Cultured erythrophores aggregate their pigment in response to light with peak wavelengths near 400 or 600 nm, while dispersion is caused by light near 500 nm. In this study, we report that ultraviolet A (UVA) with a peak wavelength near 365 nm also induces pigment aggregation in erythrophores in the skin and in primary culture. The responses of erythrophores in the skin or in culture depend on the light intensity, although the photo-sensitivity differs among individual cells. From the results, we conclude that the action of visible light and UVA light on tilapia erythrophores is direct, and that multiple types of visual pigments may coexist in individual erythrophores.
Collapse
Affiliation(s)
- Masako Sato
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama, Funabashi, Chiba, Japan
| | | | | |
Collapse
|
10
|
Miyashita Y, Moriya T, Kubota T, Yamada K, Asami K. Expression of opsin molecule in cultured murine melanocyte. J Investig Dermatol Symp Proc 2001; 6:54-7. [PMID: 11764286 DOI: 10.1046/j.0022-202x.2001.00018.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recently, we demonstrated the expression of rhodopsin in the tail fin of the Xenopus tadpole, in which photosensitive melanophores exist (Miyashita et al, The photoreceptor molecules in Xenopus tadpole tail fin, in which melanophores exist. Zool Sci 18:671-674, 2001). The presence of opsin molecules in pigment cells of lower vertebrates raises the possibility that pigment cells in animal skin function as photosensors generally. To explore this possibility in higher vertebrates, we tried to detect photoreception molecules in mammalian melanocytes. We extracted total RNA from Melan a2, a cell line of immortal murine melanocyte, which is derived from C57BL mice. The DNA sequence obtained by reverse transcriptase-polymerase chain reaction (RT-PCR) amplification was homologous to the corresponding portion of the sequence of ocular rhodopsin of mice. Western blotting and fluorescent immunocytochemistry showed the existence of the opsin protein in the melanocytes. Another cell line, EL4, which is derived from lymphoma of C57BL/6N, scarcely expresses opsin mRNA, as judged by RT-PCR. Thus expression of the opsin gene is not ubiquitous among immortal cell lines. Detection of rhodopsin mRNA in murine tissues of C57BL/6N by RT-PCR showed its presence in the eye and skin but not in the liver. The role of the opsin molecule in melanocyte is not known at present, but this will provide additional insight into photoreception systems in animal skin.
Collapse
Affiliation(s)
- Y Miyashita
- Department of Biology, Sapporo Medical University School of Medicine, Japan.
| | | | | | | | | |
Collapse
|
11
|
Katayama H, Morishita F, Matsushima O, Fujimoto M. beta-Adrenergic receptor subtypes in melanophores of the marine gobies Tridentiger trigonocephalus and Chasmichthys gulosus. PIGMENT CELL RESEARCH 1999; 12:206-17. [PMID: 10385918 DOI: 10.1111/j.1600-0749.1999.tb00515.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The subtype of beta-adrenergic receptors in melanophores of the marine gobies Tridentiger trigonocephalus and Chasmichthys gulosus was studied. Pigment of denervated melanophores in isolated, split caudal fins was preliminarily aggregated by incubating the specimens in a physiological saline containing 10 microM phentolamine and 30-100 microM verapamil or 2-10 nM melatonin, and the responses of the melanophores to a beta-adrenergic agonist added to the incubating medium were recorded photoelectrically. The beta-adrenergic agonists noradrenaline, adrenaline, isoproterenol, salbutamol and, dobutamine were all effective in evoking a dispersion of melanophore pigment in the presence of phentolamine and verapamil or melatonin. The pigment-dispersing effect of noradrenaline (beta 1-selective agonist) was inhibited by metoprolol (beta 1-selective antagonist), propranolol,- and butoxamine. Whereas, the effect of salbutamol (beta 2-selective agonist) was hardly inhibited by metoprolol, though it was considerably inhibited by propranolol and ICI-118551. It was estimated that beta 1- and beta 2-adrenergic receptors coexist at ratios of 8.6:91.4, in the melanophore of Tridentiger trigonocephalus, and 25:75, in the melanophore of Chasmichthys gulosus, through the analyses of Hofstee plots of the effects of the beta-adrenergic drugs. It was suggested that the relation between the pigment-dispersing effect of a beta-adrenergic agonist on the melanophores and the concentration of the drug follows mass action kinetics, when the effect is mainly caused by the activation of beta 2-adrenergic receptors of the melanophores. However, when it is mainly caused by the activation of beta 1-adrenergic receptors of the melanophores, the relation does not follow mass action kinetics.
Collapse
Affiliation(s)
- H Katayama
- Department of Biological Science, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | | | | | | |
Collapse
|
12
|
Oshima N, Nakata E, Ohta M, Kamagata S. Light-induced pigment aggregation in xanthophores of the medaka, Oryzias latipes. PIGMENT CELL RESEARCH 1998; 11:362-7. [PMID: 9870548 DOI: 10.1111/j.1600-0749.1998.tb00495.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The response mechanism of medaka xanthophores to light was examined at the cellular level. Innervated and denervated xanthophores of adult medakas responded to light (9,000 lux) within 30 sec by pigment aggregation, and this aggregation was not mediated through alpha-adrenoceptors on the cell membrane. Maximum sensitivity to light was at wavelengths of 410-420 nm, and the direct effect of light was reversible. Xanthophore responsiveness to light in summer was higher than that in winter. Ca2+ and calmodulin were not involved in the response, but rather, an important role for cAMP and phosphodiesterase (PDE) was suggested. It seems likely that photoreception by visual pigment which is sensitive to light at wavelengths of 410-420 nm increases PDE activity, probably via a G-protein, such as occurs with visual cells in the retina, which causes a decrease in levels of cytosolic cAMP, in turn leading to pigment aggregation within medaka xanthophores.
Collapse
Affiliation(s)
- N Oshima
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba, Japan
| | | | | | | |
Collapse
|
13
|
Factors Influencing Motile Activities of Fish Chromatophores. ADVANCES IN COMPARATIVE AND ENVIRONMENTAL PHYSIOLOGY 1994. [DOI: 10.1007/978-3-642-78598-6_1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Abstract
Solar radiation induces numerous biologic effects in skin but the mechanism underlying these responses is poorly understood. To study the etiology of these phenomena, we investigated the effect of light on cultured Xenopus laevis melanophores. Visible light stimulated a marked increase in intracellular cAMP levels within the first minute of irradiation. This light-induced elevation in cAMP was blocked by melatonin and was not seen in fibroblasts irradiated in a similar manner. These data show that the photoresponse of pigment cells from amphibian skin can be mediated by a cAMP-dependent mechanisms and suggest that a unique member of the rhodopsin family is involved in this process.
Collapse
Affiliation(s)
- A Daniolos
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | |
Collapse
|
15
|
Obika M, Meyer-Rochow VB. Dermal and epidermal chromatophores of the Antarctic teleost Trematomus bernacchii. PIGMENT CELL RESEARCH 1990; 3:33-7. [PMID: 2377579 DOI: 10.1111/j.1600-0749.1990.tb00259.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The physiological response and ultrastructure of the pigment cells of Trematomus bernacchii, an Antarctic teleost that lives under the sea ice north of the Ross Ice Shelf, were studied. In the integument, two types of epidermal chromatophores, melanophores and xanthophores, were found; in the dermis, typically three types of chromatophores--melanophores, xanthophores, and iridophores--were observed. The occurrence of epidermal xanthophore is reported for the first time in fish. Dermal melanophores and xanthophores have well-developed arrays of cytoplasmic microtubules. They responded rapidly to epinephrine and teleost melanin-concentrating hormone (MCH) with pigment aggregation and to theophylline with pigment dispersion. Total darkness elicited pigment aggregation in the majority of dermal xanthophores of isolated scales, whereas melanophores remained dispersed under both light and dark conditions. Pigment organelles of epidermal and dermal xanthophores that translocate during the pigmentary responses are carotenoid droplets of relatively large size. Dermal iridophores containing large reflecting platelets appeared to be immobile.
Collapse
Affiliation(s)
- M Obika
- Department of Biology, Keio University, Yokohama, Japan
| | | |
Collapse
|
16
|
Naora H, Takabatake I, Iga T. Spectral sensitivity of melanophores of a freshwater teleost, Zacco temmincki. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1988; 90:147-9. [PMID: 2900099 DOI: 10.1016/0300-9629(88)91020-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
1. The melanophores of a freshwater teleost, Zacco temmincki, responded to changes in illumination: in darkness the melanophores induced a melanosome aggregation and when subjected to light they caused a melanosome dispersion. 2. Using monochromatic light, the spectral sensitivity of the melanophores was examined. 3. The melanophores showed a different sensitivity to light between 400 and 600 nm with a maximum at about 525 nm. 4. The action spectrum closely resembled a porphyropsin absorbance curve, suggesting a porphyropsin or similar photopigment is active in the melanophore light response of Zacco temmincki.
Collapse
Affiliation(s)
- H Naora
- Department of Biology, Faculty of Science, Shimane University, Matuse, Japan
| | | | | |
Collapse
|
17
|
Iga T, Takabatake I. Local light stimulation of melanophores of a teleost, Zacco temmincki. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1986; 238:385-91. [PMID: 3723090 DOI: 10.1002/jez.1402380311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Responses of melanophores of the teleost, Zacco temmincki, to local light stimulation were examined in preparations of isolated scales. The melanophores induced the aggregation of melanosomes in darkness and their dispersion in light. Local illumination of a melanophore in the melanosome-dispersed state inhibited centripetal migration of melanosomes only in the stimulated area. Local illumination of a pigment-free branch of a melanophore with aggregated melanosomes generally brought about pigment dispersion into the stimulated area. However, when that area was at a significant distance from the edge of the central melanosome mass, the melanosomes never migrated into the irradiated area. Local illumination of the centrosphere of a cell inhibited the full aggregation of melanosomes in the dispersed and aggregated state. The degree of the inhibition depended on the size of the irradiated area. The results suggest that photoreceptive sites are distributed over the whole of a cell, and that the movements of melanosomes are regulated locally in a very precise manner.
Collapse
|
18
|
Negishi S. Light response of cultured melanophores of a teleost adult fish,Oryzias latipes. ACTA ACUST UNITED AC 1985. [DOI: 10.1002/jez.1402360310] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Abstract
The visual pigments in the rods do not have a special absorption that gives them maximal sensitivity. The visual pigments of "deep sea" fish are an exception for these do match the environmental light to give maximum sensitivity. At the low light intensities at which the rods operate, it is the number of photons that go to make up each element of the image that limits the ability of the eye to discriminate detail and contrast. Chemically induced isomerisation of the visual pigment molecule may cause spurious visual signals that limit the ability of the eye to detect contrasts in very dim light. In bright light the spurious visual signals become insignificant in number compared to the true photon-induced visual signals. Compared to the rods, cone visual pigments do match the spectral properties of the environment except that there appear to be no visual pigments with an absorption maximum beyond the 625 nm porphyropsins in cones. U.V. absorbing pigments are know in invertebrates, birds and fish that live in very shallow water. Animals have photoreceptors in parts of the body other than the eyes. In vertebrates these sites include the pineal, chromatophores, brain, skin and harderian gland. There is evidence based on immunocytochemistry and action spectra that at least some of the skin and pineal receptors contain visual pigments, but like those of the rods, these do not match the spectral quality of the environmental light.
Collapse
|