1
|
Mescher AL. Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration. ACTA ACUST UNITED AC 2017; 4:39-53. [PMID: 28616244 PMCID: PMC5469729 DOI: 10.1002/reg2.77] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 12/15/2022]
Abstract
This review provides a concise summary of the changing phenotypes of macrophages and fibroblastic cells during the local inflammatory response, the onset of tissue repair, and the resolution of inflammation which follow injury to an organ. Both cell populations respond directly to damage and present coordinated sequences of activation states which determine the reparative outcome, ranging from true regeneration of the organ to fibrosis and variable functional deficits. Recent work with mammalian models of organ regeneration, including regeneration of full‐thickness skin, hair follicles, ear punch tissues, and digit tips, is summarized and the roles of local immune cells in these systems are discussed. New investigations of the early phase of amphibian limb and tail regeneration, including the effects of pro‐inflammatory and anti‐inflammatory agents, are then briefly discussed, focusing on the transition from the normally covert inflammatory response to the initiation of the regeneration blastema by migrating fibroblasts and the expression of genes for limb patterning.
Collapse
Affiliation(s)
- Anthony L Mescher
- Department of Anatomy and Cell Biology, Indiana University School of Medicine - Bloomington Indiana University Center for Developmental and Regenerative Biology Bloomington IN 47405 USA
| |
Collapse
|
2
|
Cook AB, Seifert AW. Beryllium nitrate inhibits fibroblast migration to disrupt epimorphic regeneration. Development 2016; 143:3491-3505. [PMID: 27578793 DOI: 10.1242/dev.134882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/12/2016] [Indexed: 11/20/2022]
Abstract
Epimorphic regeneration proceeds with or without formation of a blastema, as observed for the limb and skin, respectively. Inhibition of epimorphic regeneration provides a means to interrogate the cellular and molecular mechanisms that regulate it. In this study, we show that exposing amputated limbs to beryllium nitrate disrupts blastema formation and causes severe patterning defects in limb regeneration. In contrast, exposing full-thickness skin wounds to beryllium only causes a delay in skin regeneration. By transplanting full-thickness skin from ubiquitous GFP-expressing axolotls to wild-type hosts, we demonstrate that beryllium inhibits fibroblast migration during limb and skin regeneration in vivo Moreover, we show that beryllium also inhibits cell migration in vitro using axolotl and human fibroblasts. Interestingly, beryllium did not act as an immunostimulatory agent as it does in Anurans and mammals, nor did it affect keratinocyte migration, proliferation or re-epithelialization, suggesting that the effect of beryllium is cell type-specific. While we did not detect an increase in cell death during regeneration in response to beryllium, it did disrupt cell proliferation in mesenchymal cells. Taken together, our data show that normal blastema organogenesis cannot occur without timely infiltration of local fibroblasts and highlights the importance of positional information to instruct pattern formation during regeneration. In contrast, non-blastemal-based skin regeneration can occur despite early inhibition of fibroblast migration and cell proliferation.
Collapse
Affiliation(s)
- Adam B Cook
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
3
|
Rao N, Song F, Jhamb D, Wang M, Milner DJ, Price NM, Belecky-Adams TL, Palakal MJ, Cameron JA, Li B, Chen X, Stocum DL. Proteomic analysis of fibroblastema formation in regenerating hind limbs of Xenopus laevis froglets and comparison to axolotl. BMC DEVELOPMENTAL BIOLOGY 2014; 14:32. [PMID: 25063185 PMCID: PMC4222900 DOI: 10.1186/1471-213x-14-32] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/03/2014] [Indexed: 01/01/2023]
Abstract
Background To gain insight into what differences might restrict the capacity for limb regeneration in Xenopus froglets, we used High Performance Liquid Chromatography (HPLC)/double mass spectrometry to characterize protein expression during fibroblastema formation in the amputated froglet hindlimb, and compared the results to those obtained previously for blastema formation in the axolotl limb. Results Comparison of the Xenopus fibroblastema and axolotl blastema revealed several similarities and significant differences in proteomic profiles. The most significant similarity was the strong parallel down regulation of muscle proteins and enzymes involved in carbohydrate metabolism. Regenerating Xenopus limbs differed significantly from axolotl regenerating limbs in several ways: deficiency in the inositol phosphate/diacylglycerol signaling pathway, down regulation of Wnt signaling, up regulation of extracellular matrix (ECM) proteins and proteins involved in chondrocyte differentiation, lack of expression of a key cell cycle protein, ecotropic viral integration site 5 (EVI5), that blocks mitosis in the axolotl, and the expression of several patterning proteins not seen in the axolotl that may dorsalize the fibroblastema. Conclusions We have characterized global protein expression during fibroblastema formation after amputation of the Xenopus froglet hindlimb and identified several differences that lead to signaling deficiency, failure to retard mitosis, premature chondrocyte differentiation, and failure of dorsoventral axial asymmetry. These differences point to possible interventions to improve blastema formation and pattern formation in the froglet limb.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - David L Stocum
- Department of Biology, and Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Mescher AL, Neff AW, King MW. Changes in the inflammatory response to injury and its resolution during the loss of regenerative capacity in developing Xenopus limbs. PLoS One 2013; 8:e80477. [PMID: 24278286 PMCID: PMC3835323 DOI: 10.1371/journal.pone.0080477] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/12/2013] [Indexed: 12/31/2022] Open
Abstract
Tissue and organ regeneration, unlike development, involves an injury that in postembryonic animals triggers inflammation followed by resolution. How inflammation affects epimorphic regeneration is largely uninvestigated. Here we examine inflammation and its resolution in Xenopus laevis hindlimb regeneration, which declines during larval development. During the first 5 days postamputation, both regeneration-competent stage 53 and regeneration-deficient stage 57 hindlimbs showed very rapid accumulation of leukocytes and cells expressing interleukin-1β and matrix metalloproteinase 9. Expression of genes for factors mediating inflammatory resolution appeared more persistent at stages 55 and 57 than at stage 53, suggesting changes in this process during development. FoxP3, a marker for regulatory T cells, was upregulated by amputation in limbs at all three stages but only persisted at stage 57, when it was also detected before amputation. Expression of genes for cellular reprogramming, such as SALL4, was upregulated in limbs at all 3 stages, but markers of limb patterning, such as Shh, were expressed later and less actively after amputation in regeneration-deficient limbs. Topical application of specific proinflammatory agents to freshly amputated limbs increased interleukin-1β expression locally. With aqueous solutions of the proinflammatory metal beryllium sulfate, this effect persisted through 7 days postamputation and was accompanied by inhibition of regeneration. In BeSO4-treated limbs expression of markers for both inflammation and resolution, including FoxP3, was prolonged, while genes for cellular reprogramming were relatively unaffected and those for limb patterning failed to be expressed normally. These data imply that in Xenopus hindlimbs postamputation inflammation and its resolution change during development, with little effect on cellular dedifferentiation or reprogramming, but potentially interfering with the expression of genes required for blastema patterning. The results suggest that developmental changes in the larval anuran immune system may be involved in the ontogenetic loss of epimorphic regeneration in this system.
Collapse
Affiliation(s)
- Anthony L. Mescher
- Indiana University Center for Regenerative Biology and Medicine, Indiana University School of Medicine, Bloomington, Indiana, United States of America
- * E-mail:
| | - Anton W. Neff
- Indiana University Center for Regenerative Biology and Medicine, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Michael W. King
- Indiana University School of Medicine, Terre Haute, Indiana, United States of America
| |
Collapse
|
5
|
King MW, Neff AW, Mescher AL. The developing Xenopus limb as a model for studies on the balance between inflammation and regeneration. Anat Rec (Hoboken) 2012; 295:1552-61. [PMID: 22933418 DOI: 10.1002/ar.22443] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 12/16/2011] [Indexed: 01/21/2023]
Abstract
The roles of inflammation and immune cell reactivity triggered by amputation have only recently begun to be addressed in investigations of epimorphic regeneration, although studies of tissue repair in mammals clearly show the importance of the immune system in determining the quality of the repair process. Here, we first review inflammation-related work in non-mammalian systems of epimorphic regeneration which suggests that regeneration of an amputated appendage requires continuous modulation of the local immune response, from the first hours after amputation through the period of blastema patterning. We then present data on the effects of anti-inflammatory and proinflammatory agents on regeneration of larval Xenopus hindlimbs. Treatment with the glucocorticoid beclomethasone immediately after amputation inhibits regeneration in regeneration-complete stage 53 limbs. Other anti-inflammatory agents, including the inhibitors of cyclooxygenase-2 (COX-2) activity celecoxib and diclofenac, applied similarly to larvae amputated at stage 55, when the capacity for limb regeneration is normally being lost, restore regenerative capacity. This suggests that although injury-related events sensitive to glucocorticoids are necessary for regeneration, resolution of the inflammatory response may also be required to allow the complete regenerative response and normal blastema patterning. Conversely, if resolution of inflammation is prevented by local treatment of amputated limbs with beryllium, a strong immunoadjuvant, regeneration is inhibited, and gene expression data suggest that this inhibition results from a failure of normal blastema patterning. Both positive and negative effects of immune- or inflammation-related activities occur during anuran limb regeneration and this underscores the importance of considering immune cells in studies of epimorphic regeneration.
Collapse
Affiliation(s)
- Michael W King
- Indiana University Center for Regenerative Biology and Medicine, Indiana University School of Medicine, Terre Haute, Indiana, USA
| | | | | |
Collapse
|
6
|
Stocum DL, Cameron JA. Looking proximally and distally: 100 years of limb regeneration and beyond. Dev Dyn 2011; 240:943-68. [DOI: 10.1002/dvdy.22553] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2010] [Indexed: 01/08/2023] Open
|
7
|
Santosh N, Windsor LJ, Mahmoudi BS, Li B, Zhang W, Chernoff EA, Rao N, Stocum DL, Song F. Matrix metalloproteinase expression during blastema formation in regeneration-competent versus regeneration-deficient amphibian limbs. Dev Dyn 2010; 240:1127-41. [DOI: 10.1002/dvdy.22503] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2010] [Indexed: 11/06/2022] Open
|
8
|
Rao N, Jhamb D, Milner DJ, Li B, Song F, Wang M, Voss SR, Palakal M, King MW, Saranjami B, Nye HLD, Cameron JA, Stocum DL. Proteomic analysis of blastema formation in regenerating axolotl limbs. BMC Biol 2009; 7:83. [PMID: 19948009 PMCID: PMC2794268 DOI: 10.1186/1741-7007-7-83] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 11/30/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Following amputation, urodele salamander limbs reprogram somatic cells to form a blastema that self-organizes into the missing limb parts to restore the structure and function of the limb. To help understand the molecular basis of blastema formation, we used quantitative label-free liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS)-based methods to analyze changes in the proteome that occurred 1, 4 and 7 days post amputation (dpa) through the mid-tibia/fibula of axolotl hind limbs. RESULTS We identified 309 unique proteins with significant fold change relative to controls (0 dpa), representing 10 biological process categories: (1) signaling, (2) Ca2+ binding and translocation, (3) transcription, (4) translation, (5) cytoskeleton, (6) extracellular matrix (ECM), (7) metabolism, (8) cell protection, (9) degradation, and (10) cell cycle. In all, 43 proteins exhibited exceptionally high fold changes. Of these, the ecotropic viral integrative factor 5 (EVI5), a cell cycle-related oncoprotein that prevents cells from entering the mitotic phase of the cell cycle prematurely, was of special interest because its fold change was exceptionally high throughout blastema formation. CONCLUSION Our data were consistent with previous studies indicating the importance of inositol triphosphate and Ca2+ signaling in initiating the ECM and cytoskeletal remodeling characteristic of histolysis and cell dedifferentiation. In addition, the data suggested that blastema formation requires several mechanisms to avoid apoptosis, including reduced metabolism, differential regulation of proapoptotic and antiapoptotic proteins, and initiation of an unfolded protein response (UPR). Since there is virtually no mitosis during blastema formation, we propose that high levels of EVI5 function to arrest dedifferentiated cells somewhere in the G1/S/G2 phases of the cell cycle until they have accumulated under the wound epidermis and enter mitosis in response to neural and epidermal factors. Our findings indicate the general value of quantitative proteomic analysis in understanding the regeneration of complex structures.
Collapse
Affiliation(s)
- Nandini Rao
- Department of Biology and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Deepali Jhamb
- School of Informatics and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Derek J Milner
- Department of Cell and Developmental Biology, and Regeneration Biology and Tissue Engineering Theme, Institute for Genomic Biology, University of Illinois-Urbana Champaign, Urbana, IL, USA
| | - Bingbing Li
- Department of Biology and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Fengyu Song
- Department of Oral Biology, School of Dentistry and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Mu Wang
- Department of Biochemistry, School of Medicine and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - S Randal Voss
- Department of Biology and Spinal Cord and Brain Injury Center, University of Kentucky at Lexington, Lexington, KY, USA
| | - Mathew Palakal
- School of Informatics and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Michael W King
- Department of Biochemistry, School of Medicine and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Behnaz Saranjami
- Department of Biology and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Holly LD Nye
- Department of Cell and Developmental Biology, and Regeneration Biology and Tissue Engineering Theme, Institute for Genomic Biology, University of Illinois-Urbana Champaign, Urbana, IL, USA
| | - Jo Ann Cameron
- Department of Cell and Developmental Biology, and Regeneration Biology and Tissue Engineering Theme, Institute for Genomic Biology, University of Illinois-Urbana Champaign, Urbana, IL, USA
| | - David L Stocum
- Department of Biology and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
9
|
Tassava RA, Mendenhall L, Apseloff G, Gerber N. Gallium nitrate: effects on cartilage during limb regeneration in the axolotl, Ambystoma mexicanum. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 293:384-94. [PMID: 12210121 DOI: 10.1002/jez.10116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gallium nitrate, a drug shown to have efficacy in Paget's disease of bone, hypercalcemia of malignancy, and a variety of experimental autoimmune diseases, also inhibits the growth of some types of cancer. We examined dose and timing of administration of gallium nitrate on limb regeneration in the Mexican axolotl, Ambystoma mexicanum. Administered by intraperitoneal injection, gallium nitrate inhibited limb regeneration in a dose-dependent manner. Gallium nitrate initially suppressed epithelial wound healing and subsequently distorted both anterior-posterior and proximo-distal chondrogenic patterns. Gallium nitrate given at three days after amputation severely inhibited regeneration at high doses (6.25 mg/axolotl) and altered the normal patterning of the regenerates at low doses (3.75 mg/axolotl). Administration of 6.25 mg of gallium nitrate at four or 14 days prior to amputation also inhibited regeneration. In amputated limbs of gallium-treated axolotls, the chondrocytes were lost from inside the radius/ulna. Limbs that regenerated after gallium treatment was terminated showed blastema formation preferentially over the ulna. New cartilage of the regenerate often attached to the sides of the existing radius/ulna proximally into the stump and less so to the distal cut ends. J. Exp. Zool. 293:384-394, 2002.
Collapse
Affiliation(s)
- Roy A Tassava
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | | | | | | |
Collapse
|