1
|
Mollusc Crystallins: Physical and Chemical Properties and Phylogenetic Analysis. DIVERSITY 2022. [DOI: 10.3390/d14100827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The purpose of the present study was to perform bioinformatic analysis of crystallin diversity in aquatic molluscs based on the sequences in the NCBI Protein database. The objectives were as follows: (1) analysis of some physical and chemical properties of mollusc crystallins, (2) comparison of mollusc crystallins with zebrafish and cubomedusa Tripedalia cystophora crystallins, and (3) determination of the most probable candidates for the role of gastropod eye crystallins. The calculated average GRAVY values revealed that the majority of the seven crystallin groups, except for μ- and ζ-crystallins, were hydrophilic proteins. The predominant predicted secondary structures of the crystallins in most cases were α-helices and coils. The highest values of refractive index increment (dn/dc) were typical for crystallins of aquatic organisms with known lens protein composition (zebrafish, cubomedusa, and octopuses) and for S-crystallin of Pomacea canaliculata. The evolutionary relationships between the studied crystallins, obtained from multiple sequence alignments using Clustal Omega and MUSCLE, and the normalized conservation index, calculated by Mirny, showed that the most conservative proteins were Ω-crystallins but the most diverse were S-crystallins. The phylogenetic analysis of crystallin was generally consistent with modern mollusc taxonomy. Thus, α- and S-, and, possibly, J1A-crystallins, can be assumed to be the most likely candidates for the role of gastropod lens crystallins.
Collapse
|
2
|
Irwin AR, Williams ST, Speiser DI, Roberts NW. The marine gastropod Conomurex luhuanus (Strombidae) has high-resolution spatial vision and eyes with complex retinas. J Exp Biol 2022; 225:275933. [PMID: 35796292 PMCID: PMC9482149 DOI: 10.1242/jeb.243927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
All species within the conch snail family Strombidae possess large camera-type eyes that are surprisingly well-developed compared with those found in most other gastropods. Although these eyes are known to be structurally complex, very little research on their visual function has been conducted. Here, we use isoluminant expanding visual stimuli to measure the spatial resolution and contrast sensitivity of a strombid, Conomurex luhuanus. Using these stimuli, we show that this species responds to objects as small as 1.06 deg in its visual field. We also show that C. luhuanus responds to Michelson contrasts of 0.07, a low contrast sensitivity between object and background. The defensive withdrawal response elicited by visual stimuli of such small angular size and low contrast suggests that conch snails may use spatial vision for the early detection of potential predators. We support these findings with morphological estimations of spatial resolution of 1.04 deg. These anatomical data therefore agree with the behavioural measures and highlight the benefits of integrating behavioural and morphological approaches in animal vision studies. Using contemporary imaging techniques [serial block-face scanning electron microscopy (SBF-SEM), in conjunction with transmission electron microscopy (TEM)], we found that C. luhuanus have more complex retinas, in terms of cell type diversity, than expected based on previous studies of the group using TEM alone. We find the C. luhuanus retina comprises six cell types, including a newly identified ganglion cell and accessory photoreceptor, rather than the previously described four cell types. Summary: Behavioural trials indicate the eyes of conch snail Conomurex luhuanus provide high-resolution spatial vision, and morphological examination reveals the retina contains more cell types than those of other gastropods.
Collapse
Affiliation(s)
- Alison R Irwin
- Department of Life Sciences, Natural History Museum, Cromwell Rd, London, SW7 5BD, UK.,School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
| | - Suzanne T Williams
- Department of Life Sciences, Natural History Museum, Cromwell Rd, London, SW7 5BD, UK
| | - Daniel I Speiser
- Department of Biological Sciences, University of South Carolina, 715 Sumter St, Columbia, SC 29208, USA
| | - Nicholas W Roberts
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
| |
Collapse
|
3
|
Abstract
Every aspect of vision, from the opsin proteins to the eyes and the ways that they serve animal behavior, is incredibly diverse. It is only with an evolutionary perspective that this diversity can be understood and fully appreciated. In this review, I describe and explain the diversity at each level and try to convey an understanding of how the origin of the first opsin some 800 million years ago could initiate the avalanche that produced the astonishing diversity of eyes and vision that we see today. Despite the diversity, many types of photoreceptors, eyes, and visual roles have evolved multiple times independently in different animals, revealing a pattern of eye evolution strictly guided by functional constraints and driven by the evolution of gradually more demanding behaviors. I conclude the review by introducing a novel distinction between active and passive vision that points to uncharted territories in vision research. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Dan-E Nilsson
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden;
| |
Collapse
|
4
|
Irwin AR, Strong EE, Kano Y, Harper EM, Williams ST. Eight new mitogenomes clarify the phylogenetic relationships of Stromboidea within the caenogastropod phylogenetic framework. Mol Phylogenet Evol 2021; 158:107081. [PMID: 33482382 DOI: 10.1016/j.ympev.2021.107081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/18/2020] [Accepted: 01/12/2021] [Indexed: 01/24/2023]
Abstract
Members of the gastropod superfamily Stromboidea (Littorinimorpha) are characterised by their elaborate shell morphologies, distinctive mode of locomotion, and often large and colourful eyes. This iconic group comprises over 130 species, including many large and charismatic species. The family Strombidae is of particular interest, largely due to its commercial importance and wide distribution in tropical and subtropical waters. Although a few strombid mitochondrial genomes have been sequenced, data for the other four Recent families in Stromboidea are lacking. In this study we report seven new stromboid mitogenomes obtained from transcriptomic and genomic data, with taxonomic representation from each Recent stromboid family, including the first mitogenomes for Aporrhaidae, Rostellariidae, Seraphsidae and Struthiolariidae. We also report a new mitogenome for the family Xenophoridae. We use these data, along with published sequences, to investigate the relationships among these and other caenogastropod groups. All analyses undertaken in this study support monophyly of Stromboidea as redefined here to include Xenophoridae, a finding consistent with morphological and behavioural data. Consistent with previous morphological and molecular analyses, including those based on mitogenomes, monophyly of Hypsogastropoda is confirmed but monophyly of Littorinimorpha is again rejected.
Collapse
Affiliation(s)
- Alison R Irwin
- Department of Life Sciences, Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom; School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol BS8 1TQ, United Kingdom.
| | - Ellen E Strong
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, D.C. 20560, United States.
| | - Yasunori Kano
- Department of Marine Ecosystems Dynamics, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
| | - Elizabeth M Harper
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom.
| | - Suzanne T Williams
- Department of Life Sciences, Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom.
| |
Collapse
|
5
|
Speiser DI, Gagnon YL, Chhetri RK, Oldenburg AL, Johnsen S. Examining the Effects of Chromatic Aberration, Object Distance, and Eye Shape on Image-Formation in the Mirror-Based Eyes of the Bay Scallop Argopecten irradians. Integr Comp Biol 2016; 56:796-808. [PMID: 27549200 PMCID: PMC5886045 DOI: 10.1093/icb/icw099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The eyes of scallops form images using a concave spherical mirror and contain two separate retinas, one layered on top of the other. Behavioral and electrophysiological studies indicate that the images formed by these eyes have angular resolutions of about 2°. Based on previous ray-tracing models, it has been thought that the more distal of the two retinas lies near the focal point of the mirror and that the proximal retina, positioned closer to the mirror at the back of the eye, receives light that is out-of-focus. Here, we propose three mechanisms through which both retinas may receive focused light: (1) chromatic aberration produced by the lens may cause the focal points for longer and shorter wavelengths to fall near the distal and proximal retinas, respectively; (2) focused light from near and far objects may fall on the distal and proximal retinas, respectively; and (3) the eyes of scallops may be dynamic structures that change shape to determine which retina receives focused light. To test our hypotheses, we used optical coherence tomography (OCT), a method of near-infrared optical depth-ranging, to acquire virtual cross-sections of live, intact eyes from the bay scallop Argopecten irradians. Next, we used a custom-built ray-tracing model to estimate the qualities of the images that fall on an eye’s distal and proximal retinas as functions of the wavelengths of light entering the eye (400–700 nm), object distances (0.01–1 m), and the overall shape of the eye. When we assume 550 nm wavelength light and object distances greater than 0.01 m, our model predicts that the angular resolutions of the distal and proximal retinas are 2° and 7°, respectively. Our model also predicts that neither chromatic aberration nor differences in object distance lead to focused light falling on the distal and proximal retinas simultaneously. However, if scallops can manipulate the shapes of their eyes, perhaps through muscle contractions, we speculate that they may be able to influence the qualities of the images that fall on their proximal retinas and—to a lesser extent—those that fall on their distal retinas as well.
Collapse
Affiliation(s)
- Daniel I Speiser
- *Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Yakir Luc Gagnon
- Queensland Brain Institute, Queensland University, Brisbane, Australia
| | - Raghav K Chhetri
- Department of Physics & Astronomy, University of North Carolina, Chapel Hill, NC, USA
| | - Amy L Oldenburg
- Department of Physics & Astronomy, University of North Carolina, Chapel Hill, NC, USA
| | - Sönke Johnsen
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
6
|
Williams ST. Molluscan shell colour. Biol Rev Camb Philos Soc 2016; 92:1039-1058. [DOI: 10.1111/brv.12268] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 01/27/2023]
|
7
|
Abstract
Eye evolution is driven by the evolution of visually guided behavior. Accumulation of gradually more demanding behaviors have continuously increased the performance requirements on the photoreceptor organs. Starting with nondirectional photoreception, I argue for an evolutionary sequence continuing with directional photoreception, low-resolution vision, and finally, high-resolution vision. Calculations of the physical requirements for these four sensory tasks show that they correlate with major innovations in eye evolution and thus work as a relevant classification for a functional analysis of eye evolution. Together with existing molecular and morphological data, the functional analysis suggests that urbilateria had a simple set of rhabdomeric and ciliary receptors used for directional photoreception, and that organ duplications, positional shifts and functional shifts account for the diverse patterns of eyes and photoreceptors seen in extant animals. The analysis also suggests that directional photoreception evolved independently at least twice before the last common ancestor of bilateria and proceeded several times independently to true vision in different bilaterian and cnidarian groups. This scenario is compatible with Pax-gene expression in eye development in the different animal groups. The whole process from the first opsin to high-resolution vision took about 170 million years and was largely completed by the onset of the Cambrian, about 530 million years ago. Evolution from shadow detectors to multiple directional photoreceptors has further led to secondary cases of eye evolution in bivalves, fan worms, and chitons.
Collapse
Affiliation(s)
- Dan-E Nilsson
- Department of Biology, Lund Vision Group, Lund University, Lund, Sweden.
| |
Collapse
|
8
|
Zhukov VV, Borissenko SL, Zieger MV, Vakoliuk IA, Meyer-Rochow VB. The eye of the freshwater prosobranch gastropod Viviparus viviparus: ultrastructure, electrophysiology and behaviour. ACTA ZOOL-STOCKHOLM 2006. [DOI: 10.1111/j.1463-6395.2006.00216.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Alterations of the eyes during ontogenesis inAporrhais pespelecani (Mollusca, Caenogastropoda). ZOOMORPHOLOGY 1996. [DOI: 10.1007/bf02526944] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|