1
|
Nickel J, Schell T, Holtzem T, Thielsch A, Dennis SR, Schlick-Steiner BC, Steiner FM, Möst M, Pfenninger M, Schwenk K, Cordellier M. Hybridization Dynamics and Extensive Introgression in the Daphnia longispina Species Complex: New Insights from a High-Quality Daphnia galeata Reference Genome. Genome Biol Evol 2021; 13:6448229. [PMID: 34865004 PMCID: PMC8695838 DOI: 10.1093/gbe/evab267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 01/02/2023] Open
Abstract
Hybridization and introgression are recognized as an important source of variation that influence adaptive processes; both phenomena are frequent in the genus Daphnia, a keystone zooplankton taxon in freshwater ecosystems that comprises several species complexes. To investigate genome-wide consequences of introgression between species, we provide here the first high-quality genome assembly for a member of the Daphnia longispina species complex, Daphnia galeata. We further resequenced 49 whole genomes of three species of the complex and their interspecific hybrids both from genotypes sampled in the water column and from single resting eggs extracted from sediment cores. Populations from habitats with diverse ecological conditions offered an opportunity to study the dynamics of hybridization linked to ecological changes and revealed a high prevalence of hybrids. Using phylogenetic and population genomic approaches, we provide first insights into the intra- and interspecific genome-wide variability in this species complex and identify regions of high divergence. Finally, we assess the length of ancestry tracts in hybrids to characterize introgression patterns across the genome. Our analyses uncover a complex history of hybridization and introgression reflecting multiple generations of hybridization and backcrossing in the Daphnia longispina species complex. Overall, this study and the new resources presented here pave the way for a better understanding of ancient and contemporary gene flow in the species complex and facilitate future studies on resting egg banks accumulating in lake sediment.
Collapse
Affiliation(s)
- Jana Nickel
- Institute of Zoology, Universität Hamburg, Germany
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Tania Holtzem
- Department of Ecology, University of Innsbruck, Austria
| | - Anne Thielsch
- Molecular Ecology, Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | - Stuart R Dennis
- Department of Aquatic Ecology, EAWAG, Dübendorf, Switzerland
| | | | | | - Markus Möst
- Department of Ecology, University of Innsbruck, Austria
| | - Markus Pfenninger
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany.,Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany.,IoME, Gutenberg University, Mainz, Germany
| | - Klaus Schwenk
- Molecular Ecology, Institute for Environmental Sciences, University Koblenz-Landau, Landau in der Pfalz, Germany
| | | |
Collapse
|
2
|
Zheng W, Shen F, Wang W, Wu B, Wang X, Xiao C, Tian Z, Yang X, Yang J, Wang Y, Wu T, Xu X, Han Z, Zhang X. Quantitative trait loci-based genomics-assisted prediction for the degree of apple fruit cover color. THE PLANT GENOME 2020; 13:e20047. [PMID: 33217219 DOI: 10.1002/tpg2.20047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Apple fruit cover color is an important appearance trait determining fruit quality, high degree of fruit cover color or completely red fruit skin is also the ultimate breeding goal. MdMYB1 has repeatedly been reported as a major gene controlling apple fruit cover color. There are also multiple minor-effect genes affecting degree of fruit cover color (DFC). This study was to identify genome-wide quantitative trait loci (QTLs) and to develop genomics-assisted prediction for apple DFC. The DFC phenotype data of 9,422 hybrids from five full-sib families of Malus asiatica 'Zisai Pearl', M. domestica 'Red Fuji', 'Golden Delicious', and 'Jonathan' were collected in 2014-2017. The phenotype varied considerably among hybrids with the same MdMYB1 genotype. Ten QTLs for DFC were identified using MapQTL and bulked segregant analysis via sequencing. From these QTLs, ten candidate genes were predicted, including MdMYB1 from a year-stable QTL on chromosome 9 of 'Zisai Pearl' and 'Red Fuji'. Then, kompetitive allele-specific polymerase chain reaction (KASP) markers were designed on these candidate genes and 821 randomly selected hybrids were genotyped. The genotype effects of the markers were estimated. MdMYB1-1 (represented by marker H162) exhibited a partial dominant allelic effect on MdMYB1-2 and showed non-allelic epistasis on markers H1245 and G6. Finally, a non-additive QTL-based genomics assisted prediction model was established for DFC. The Pearson's correlation coefficient between the genomic predicted value and the observed phenotype value was 0.5690. These results can be beneficial for apple genomics-assisted breeding and may provide insights for understanding the mechanism of fruit coloration.
Collapse
Affiliation(s)
- Wenyan Zheng
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Fei Shen
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Wuqian Wang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Bei Wu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Xuan Wang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Chen Xiao
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Zhendong Tian
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Xianglong Yang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Jing Yang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Yi Wang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Ting Wu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, China, 100193
| |
Collapse
|
3
|
Ravindran SP, Tams V, Cordellier M. Transcriptome‐wide genotype–phenotype associations in
Daphnia
in a predation risk environment. J Evol Biol 2020; 34:879-892. [DOI: 10.1111/jeb.13699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/03/2020] [Accepted: 08/29/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Suda Parimala Ravindran
- Department of Marine Sciences Tjärnö Marine Laboratory University of Gothenburg Strömstad Sweden
| | - Verena Tams
- Institute of Marine Ecosystem and Fishery Science Universität Hamburg Hamburg Germany
| | | |
Collapse
|
4
|
Tams V, Lüneburg J, Seddar L, Detampel JP, Cordellier M. Intraspecific phenotypic variation in life history traits of Daphnia galeata populations in response to fish kairomones. PeerJ 2018; 6:e5746. [PMID: 30356988 PMCID: PMC6195795 DOI: 10.7717/peerj.5746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022] Open
Abstract
Phenotypic plasticity is the ability of a genotype to produce different phenotypes depending on the environment. It has an influence on the adaptive potential to environmental change and the capability to adapt locally. Adaptation to environmental change happens at the population level, thereby contributing to genotypic and phenotypic variation within a species. Predation is an important ecological factor structuring communities and maintaining species diversity. Prey developed different strategies to reduce their vulnerability to predators by changing their behaviour, their morphology or their life history. Predator-induced life history responses in Daphnia have been investigated for decades, but intra-and inter-population variability was rarely addressed explicitly. We addressed this issue by conducting a common garden experiment with 24 clonal lines of European Daphnia galeata originating from four populations, each represented by six clonal lines. We recorded life history traits in the absence and presence of fish kairomones. Additionally, we looked at the shape of experimental individuals by conducting a geometric morphometric analysis, thus assessing predator-induced morphometric changes. Our data revealed high intraspecific phenotypic variation within and between four D. galeata populations, the potential to locally adapt to a vertebrate predator regime as well as an effect of the fish kairomones on morphology of D. galeata.
Collapse
Affiliation(s)
- Verena Tams
- Institut für Zoologie, Universität Hamburg, Hamburg, Germany
| | | | - Laura Seddar
- Institut für Zoologie, Universität Hamburg, Hamburg, Germany
| | | | | |
Collapse
|
5
|
Herrmann M, Ravindran SP, Schwenk K, Cordellier M. Population transcriptomics in Daphnia
: The role of thermal selection. Mol Ecol 2017; 27:387-402. [DOI: 10.1111/mec.14450] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 10/22/2017] [Accepted: 11/02/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Maike Herrmann
- Institute for Environmental Sciences; University Koblenz-Landau; Landau in der Pfalz Germany
| | | | - Klaus Schwenk
- Institute for Environmental Sciences; University Koblenz-Landau; Landau in der Pfalz Germany
| | | |
Collapse
|