1
|
Camacho-Jiménez L, Leyva-Carrillo L, Gómez-Jiménez S, Yepiz-Plascencia G. Naphthalene and phenanthrene affect differentially two glutathione S-transferases (GSTs) expression, GST activity, and glutathione content in white shrimp P. vannamei. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107005. [PMID: 38897074 DOI: 10.1016/j.aquatox.2024.107005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants ubiquitous in coastal ecosystems. The white shrimp Penaeus vannamei naturally inhabits in coastal areas and is cultivated in farms located nearby the oceans. PAHs can damage shrimp health, endanger natural populations, and lower shrimp aquaculture productivity. However, crustaceans have enzymes capable of metabolizing organic xenobiotics as PAHs and to neutralize reactive oxygen species (ROS) produced during xenobiotics metabolism. An important superfamily of xenobiotic-metabolizing and antioxidant enzymes are glutathione S-transferases (GSTs). In white shrimp, some GSTs are known, but they have been scarcely studied in response to PAHs. In this study we report the molecular cloning and bioinformatic characterization of two novel nucleotide sequences corresponding to cytosolic GSTs belonging the Delta and Theta classes (GSTD and GSTT). Both proteins genes have tissue-specific patterns of expression under normal conditions, that do not necessarily relate to GST activity and glutathione content. The expression of the GSTD and GSTT, GST activity and glutathione content was analyzed in juvenile P. vannamei exposed to two PAHs, naphthalene (NAP) and phenanthrene (PHE) in sub-lethal concentrations for 96 h. GSTD expression was up-regulated by the two PAHs, while GSTT expression was only induced by NAP. In contrast, GST activity towards CDNB was only up-regulated by PHE, suggesting differential effects of PAHs at gene and protein level. On the other hand, lower reduced glutathione content (GSH) caused by PAHs indicates its utilization for detoxification or antioxidant defenses. However, the GSH/GSSG did not change by PAHs treatment, indicating that shrimp can maintain redox balance during short-term sub-lethal exposure to NAP and PHE. Despite the variations in the responses to NAP and PHE, all these results suggest that the GSTD and GSTT genes could be useful biomarkers for PAH exposure in P. vannamei.
Collapse
Affiliation(s)
- Laura Camacho-Jiménez
- Group of Comparative Biochemistry and Physiology. Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, C.P. 83304, Mexico
| | - Lilia Leyva-Carrillo
- Group of Comparative Biochemistry and Physiology. Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, C.P. 83304, Mexico
| | - Silvia Gómez-Jiménez
- Group of Comparative Biochemistry and Physiology. Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, C.P. 83304, Mexico
| | - Gloria Yepiz-Plascencia
- Group of Comparative Biochemistry and Physiology. Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo, Sonora, C.P. 83304, Mexico.
| |
Collapse
|
2
|
Jia R, Quan D, Min X, Nie X, Huang X, Ge J, Ren Q. Glutathione S-transferase gene diversity and their regulation by Nrf2 in Chinese mitten crab (Eriocheir sinensis) during nitrite stress. Gene 2023; 864:147324. [PMID: 36863531 DOI: 10.1016/j.gene.2023.147324] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
Eriocheir sinensis is one of the most important economic aquatic products in China. However, nitrite pollution has become a serious threat to the healthy culture of E. sinensis. Glutathione S-transferase (GST) is an important phase II detoxification enzyme, which plays a leading role in the cellular detoxification of exogenous substances. In this study, we obtained 15 GST genes (designated as EsGST1-15) from E. sinensis, and their expression and regulation in E. sinensis under nitrite stress were studied. EsGST1-15 belonged to different GST subclasses. EsGST1, EsGST2, EsGST3, EsGST4, and EsGST5 belonged to Delta-class GSTs; EsGST6 and EsGST7 are Theta-class GSTs; EsGST8 is a mGST-3-class GST; EsGST9 belonged to mGST-1-class GSTs; EsGST10 and EsGST11 belonged to Sigma-class GSTs; EsGST12, EsGST13, and EsGST14 are Mu-class GSTs; EsGST15 is a Kappa-class GST. Tissue distribution experiments showed that EsGSTs were widely distributed in all detected tissues. The expression level of EsGST1-15 was significantly increased in the hepatopancreas under nitrite stress, indicating that EsGSTs were involved in the detoxification of E. sinensis under nitrite stress. Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a transcription factor that can activate the expression of detoxification enzyme. We detected the expression of EsGST1-15 after interfering with EsNrf2 in the hepatopancreas of E. sinensis with or without nitrite stress. Results showed that EsGST1-15 were all regulated by EsNrf2 with or without nitrite stress. Our study provides new information about the diversity, expression, and regulation of GSTs in E. sinensis under nitrite stress.
Collapse
Affiliation(s)
- Rui Jia
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Derun Quan
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Xiuwen Min
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Ximei Nie
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China.
| | - Jiachun Ge
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, Jiangsu Province 210017, China.
| | - Qian Ren
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, Jiangsu Province 210044, China.
| |
Collapse
|
3
|
Wang Y, Duan Y, Huang J, Wang J, Zhou C, Jiang S, Lin H, Zhang Z. Characterization and functional study of nuclear factor erythroid 2-related factor 2 (Nrf2) in black tiger shrimp (Penaeus monodon). FISH & SHELLFISH IMMUNOLOGY 2021; 119:289-299. [PMID: 34656756 DOI: 10.1016/j.fsi.2021.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a member of the Cap'n'collar basic region leucine zipper (CNC-bZIP) transcription factor family, and is activated by diverse oxidants, pro-oxidants, antioxidants and chemopreventive agents. The full-length cDNA of Nrf2 from Penaeus monodon (PmNrf2; 2024 bp long with 729 bp coding region, GenBank accession no. MW390830) was cloned. The 242-amino-acid polypeptide encoded by this gene had a predicted molecular mass of 27.80 kDa. Sequence homology and phylogenetic analysis showed that PmNrf2 was similar to the insect Cap'n'Collar (CNC) transcription factor and mammalian Nrf2. Tissue expression profile analyzed by quantitative real-time RT-PCR (qRT-PCR) demonstrated that PmNrf2 was constitutively expressed in all examined tissues, with the highest expression observed in the intestines and the weakest expression observed in the hemocyte. PmNrf2 expression profiles were detected in the hepatopancreas of shrimp after bacterial challenge. The results suggested that PmNrf2 was involved in the responses to bacterial challenge, but the temporal expression pattern trend of PmNrf2 differed between the gram-negative and gram-positive bacterial challenges in the shrimp hepatopancreas. The recombinant PmNrf2 protein was expressed and purified through affinity chromatography. Furthermore, an anti-PmNrf2 polyclonal antibody was obtained, which was able to clearly detect PmNrf2 protein expression in the hepatopancreas of shrimp. Knockdown of PmNrf2 by RNA interference (RNAi) resulted in a reduction in the expression of PmGPx gene. Taken together, the results of our study indicated that PmNrf2 played a role in regulation the transcription of PmGPx antioxidant enzyme genes.
Collapse
Affiliation(s)
- Yun Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, 510300, PR China
| | - Yafei Duan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Jianhua Huang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, PR China
| | - Jun Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Chuanpeng Zhou
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Shigui Jiang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, 510300, PR China
| | - Heizhao Lin
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, PR China
| | - Zhe Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, 510300, PR China.
| |
Collapse
|