1
|
Marchetti JR, French SS, Virgin EE, Lewis EL, Ki KC, Sermersheim LO, Brusch GA, Beard KH. Invading nonnative frogs use different microhabitats and change physiology along an elevation gradient. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:73-85. [PMID: 37902261 DOI: 10.1002/jez.2762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023]
Abstract
The coqui frog (Eleutherodactylus coqui) was introduced to the island of Hawai'i in the 1980s, and has spread across much of the island. There is concern they will invade higher elevation areas where negative impacts on native species are expected. It is not known if coqui change behavior and baseline physiology in ways that allow them to invade higher elevations. We investigated where coqui are found across the island and whether that includes recent invasion into higher elevations. We also investigated whether elevation is related to coqui's microhabitat use, including substrate use and height off the forest floor, and physiological metrics, including plasma osmolality, oxidative status, glucose, free glycerol, and triglycerides, that might be associated with invading higher elevations. We found coqui have increased the area they occupy along roads from 31% to 50% and have moved into more high-elevation locations (16% vs. 1%) compared to where they were found 14 years ago. We also found frogs at high elevation on different substrates and closer to the forest floor than frogs at lower elevations-perhaps in response to air temperatures which tended to be warmer close to the forest floor. We observed that blood glucose and triglycerides increase in frogs with elevation. An increase in glucose is likely an acclimation response to cold temperatures while triglycerides may also help frogs cope with the energetic demands of suboptimal temperatures. Finally, we found that female coqui have higher plasma osmolality, reactive oxygen metabolites (dROMs), free glycerol, and triglycerides than males. Our study suggests coqui behavior and physiology in Hawai'i may be influenced by elevation in ways that allow them to cope with lower temperatures and invade higher elevations.
Collapse
Affiliation(s)
- Jack R Marchetti
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah, USA
| | - Susannah S French
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah, USA
| | - Emily E Virgin
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah, USA
| | - Erin L Lewis
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah, USA
| | - Kwanho C Ki
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah, USA
| | - Layne O Sermersheim
- Department of Biology and the Ecology Center, Utah State University, Logan, Utah, USA
| | - George A Brusch
- Biological Sciences, California State University San Marcos, San Marcos, California, USA
| | - Karen H Beard
- Department of Wildland Resources, Utah State University, Logan, Utah, USA
| |
Collapse
|
2
|
Moeller KT, Brashears JA, Davies S, Demare G, Smith GD, Brusch Iv GA, Simpson RK, DeNardo DF. Corticosterone and immune responses to dehydration in squamate reptiles. J Exp Biol 2023; 226:jeb246257. [PMID: 37955054 DOI: 10.1242/jeb.246257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
Many environments present some degree of seasonal water limitations; organisms that live in such environments must be adapted to survive periods without permanent water access. Often this involves the ability to tolerate dehydration, which can have adverse physiological effects and is typically considered a physiological stressor. While having many functions, the hormone corticosterone (CORT) is often released in response to stressors, yet increasing plasma CORT while dehydrated could be considered maladaptive, especially for species that experience predictable bouts of dehydration and have related coping mechanisms. Elevating CORT could reduce immunocompetence and have other negative physiological effects. Thus, such species likely have CORT and immune responses adapted to experiencing seasonal droughts. We evaluated how dehydration affects CORT and immune function in eight squamate species that naturally experience varied water limitation. We tested whether hydric state affected plasma CORT concentrations and aspects of immunocompetence (lysis, agglutination, bacterial killing ability and white blood cell counts) differently among species based on how seasonally water limited they are and whether this is constrained by phylogeny. The species represented four familial pairs, with one species of each pair inhabiting environments with frequent access to water and one naturally experiencing extended periods (>30 days) with no access to standing water. The effects of dehydration on CORT and immunity varied among species. Increases in CORT were generally not associated with reduced immunocompetence, indicating CORT and immunity might be decoupled in some species. Interspecies variations in responses to dehydration were more clearly grouped by phylogeny than by habitat type.
Collapse
Affiliation(s)
- Karla T Moeller
- School of Life Sciences , Arizona State University, Tempe, AZ 85281, USA
| | - Jacqueline A Brashears
- Natural Sciences Department, LaGuardia Community College, Long Island City, NY 11101, USA
| | - Scott Davies
- Department of Biological Sciences, Quinnipiac University, Hamden, CT 06518, USA
| | - Guillaume Demare
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Research, Invalidenstraße 43, 10115 Berlin, Germany
| | - Geoffrey D Smith
- Department of Biological Sciences, Utah Tech University, St George, UT 84770, USA
| | - George A Brusch Iv
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA
| | - Richard K Simpson
- Nature Conservancy of Canada, Ontario Region, 245 Eglinton Ave East, Suite 410, Toronto, ON, Canada, M4P 3J1
| | - Dale F DeNardo
- School of Life Sciences , Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
3
|
Past, Present, and Future of Naturally Occurring Antimicrobials Related to Snake Venoms. Animals (Basel) 2023; 13:ani13040744. [PMID: 36830531 PMCID: PMC9952678 DOI: 10.3390/ani13040744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
This review focuses on proteins and peptides with antimicrobial activity because these biopolymers can be useful in the fight against infectious diseases and to overcome the critical problem of microbial resistance to antibiotics. In fact, snakes show the highest diversification among reptiles, surviving in various environments; their innate immunity is similar to mammals and the response of their plasma to bacteria and fungi has been explored mainly in ecological studies. Snake venoms are a rich source of components that have a variety of biological functions. Among them are proteins like lectins, metalloproteinases, serine proteinases, L-amino acid oxidases, phospholipases type A2, cysteine-rich secretory proteins, as well as many oligopeptides, such as waprins, cardiotoxins, cathelicidins, and β-defensins. In vitro, these biomolecules were shown to be active against bacteria, fungi, parasites, and viruses that are pathogenic to humans. Not only cathelicidins, but all other proteins and oligopeptides from snake venom have been proteolyzed to provide short antimicrobial peptides, or for use as templates for developing a variety of short unnatural sequences based on their structures. In addition to organizing and discussing an expressive amount of information, this review also describes new β-defensin sequences of Sistrurus miliarius that can lead to novel peptide-based antimicrobial agents, using a multidisciplinary approach that includes sequence phylogeny.
Collapse
|
4
|
Sandfoss MR, Brischoux F, Lillywhite HB. Intraspecific investigation of dehydration-enhanced innate immune performance and endocrine stress response to sublethal dehydration in a semi-aquatic species of pit viper. J Exp Biol 2022; 225:276533. [PMID: 35946379 DOI: 10.1242/jeb.243894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/03/2022] [Indexed: 11/20/2022]
Abstract
Sublethal dehydration can cause negative physiological effects, but recent studies investigating the sub-lethal effects of dehydration on innate immune performance in reptiles have found a positive correlation between innate immune response and plasma osmolality. To investigate if this is an adaptive trait that evolved in response to dehydration in populations inhabiting water-scarce environments, we sampled free-ranging cottonmouths (n=26 adult cottonmouths) from two populations inhabiting contrasting environments in terms of water availability: Snake Key (n=12), an island with no permanent sources of fresh water and Paynes Prairie (n=14), a flooded freshwater prairie. In addition to field surveys, we manipulated the hydration state of 17 cottonmouths (Paynes Prairie n=9, Snake Key n=8) in a laboratory setting and measured the response of corticosterone and innate immune performance to dehydration with the aim of identifying any correlation or trade-offs between them. We measured corticosterone of cottonmouths at a baseline level and then again following a 60-min stress test when at three hydration states: hydrated, dehydrated, and rehydrated. We found that innate immune performance improved with dehydration and then returned to baseline levels within 48 hours of rehydration, which agrees with previous research in reptiles. Despite the frequent exposure of cottonmouths on Snake Key to dehydrating conditions, we did not find cottonmouths inhabiting the island to show a greater magnitude or more prolonged immune response compared to cottonmouths from Paynes Prairie. We also found a positive association between dehydration and corticosterone values.
Collapse
Affiliation(s)
- Mark R Sandfoss
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS and La Rochelle Université, 79360 Villiers en Bois, France
| | | |
Collapse
|
5
|
Brown GP, Shine R. Do Microbiota in the Soil Affect Embryonic Development and Immunocompetence in Hatchling Reptiles? Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.780456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reptile eggs develop in intimate association with microbiota in the soil, raising the possibility that embryogenesis may be affected by shifts in soil microbiota caused by anthropogenic disturbance, translocation of eggs for conservation purposes, or laboratory incubation in sterile media. To test this idea we incubated eggs of keelback snakes (Tropidonophis mairii, Colubridae) in untreated versus autoclaved soil, and injected lipopolysaccharide (LPS) into the egg to induce an immune response in the embryo. Neither treatment modified hatching success, water uptake, incubation period, or white-blood-cell profiles, but both treatments affected hatchling size. Eggs incubated on autoclaved soil produced smaller hatchlings than did eggs on untreated soil, suggesting that heat and/or pressure treatment decrease the soil’s suitability for incubation. Injection of LPS reduced hatchling size, suggesting that the presence of pathogen cues disrupts embryogenesis, possibly by initiating immune reactions unassociated with white-blood-cell profiles. Smaller neonates had higher ratios of heterophils to leucocytes, consistent with higher stress in smaller snakes, or body-size effects on investment into different types of immune cells. Microbiota in the incubation medium thus can affect viability-relevant phenotypic traits of hatchling reptiles. We need further studies to explore the complex mechanisms and impacts of environmental conditions on reptilian embryogenesis.
Collapse
|
6
|
Hepatozoon cevapii (Apicomplexa: Hepatozoidae) in the Thamnodynastes lanei snake (Colubridae, Tachymenini) from the Eastern Amazon, Brazil. Parasitol Res 2021; 120:2981-2987. [PMID: 34259937 DOI: 10.1007/s00436-021-07218-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/09/2021] [Indexed: 10/20/2022]
Abstract
The aim of the present study was to verify the occurrence of hemogregarines in the colubrid snake Thamnodynastes lanei from the eastern Amazon region of Brazil. Intraerythrocytic gamonts with mean dimensions of 14.8 ± 1.8 × 4.0 ± 0.7 μm and encapsulated gamonts with mean dimensions of 15.3 ± 1.1 × 4.8 ± 0.5 μm were observed. Through morphological and molecular data based on the partial 18S rDNA gene, the parasite was identified as Hepatozoon cevapii, originally described in the viperid snake Crotalus durissus terrificus from the southeast region of Brazil. Thus, the findings of the present study extend the geographic range of H. cevapii and provide novel Hepatozoon-snake associations.
Collapse
|
7
|
Zimmerman LM. The reptilian perspective on vertebrate immunity: 10 years of progress. J Exp Biol 2020; 223:223/21/jeb214171. [DOI: 10.1242/jeb.214171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ABSTRACT
Ten years ago, ‘Understanding the vertebrate immune system: insights from the reptilian perspective’ was published. At the time, our understanding of the reptilian immune system lagged behind that of birds, mammals, fish and amphibians. Since then, great progress has been made in elucidating the mechanisms of reptilian immunity. Here, I review recent discoveries associated with the recognition of pathogens, effector mechanisms and memory responses in reptiles. Moreover, I put forward key questions to drive the next 10 years of research, including how reptiles are able to balance robust innate mechanisms with avoiding self-damage, how B cells and antibodies are used in immune defense and whether innate mechanisms can display the hallmarks of memory. Finally, I briefly discuss the links between our mechanistic understanding of the reptilian immune system and the field of eco-immunology. Overall, the field of reptile immunology is poised to contribute greatly to our understanding of vertebrate immunity in the next 10 years.
Collapse
|