1
|
Dettleff P, Toloza C, Fuentes M, Aedo J, Zuloaga R, Estrada JM, Molina A, Valdés JA. Gills de novo assembly reveals oxidative stress, unfolded protein, and immune response on red cusk-eel (Genypterus chilensis) under thermal stress. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106440. [PMID: 38479297 DOI: 10.1016/j.marenvres.2024.106440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/18/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
The heat waves on the South Pacific coast could lead to thermal stress in native fish. The red cusk-eel (Genypterus chilensis) is relevant for Chilean artisanal fisheries and aquaculture diversification. This study examined the effect of high-temperature stress in the gills of G. chilensis in control (14 °C) and high-temperature stress (19 °C) conditions. High-temperature stress induces a significant increase in gills cortisol levels. Additionally, oxidative damage was observed in gills (protein carbonylation and lipoperoxidation). RNA-seq data was used to build the first transcriptome assembly of gills in this species (23,656 annotated transcripts). A total of 1138 down-regulated and 1531 up-regulated transcripts were observed in response to high-temperature stress in gills. The enrichment analysis showed immune response and replication enriched processes (on down-regulated transcripts), and processes related to the folding of proteins, endoplasmic reticulum, and transporter activity (on up-regulated transcripts). The present study showed how gills could be affected by high-temperature stress.
Collapse
Affiliation(s)
- Phillip Dettleff
- Escuela de Medicina Veterinaria, Facultad de Agronomía y Sistemas Naturales, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile.
| | - Carla Toloza
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile
| | - Marcia Fuentes
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, 4030000, Chile
| | - Jorge Aedo
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, 3466706, Chile
| | - Rodrigo Zuloaga
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, 4030000, Chile
| | - Juan Manuel Estrada
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, 2340000, Chile
| | - Alfredo Molina
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, 4030000, Chile
| | - Juan Antonio Valdés
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, 4030000, Chile.
| |
Collapse
|
2
|
Kraskura K, Hardison EA, Eliason EJ. Body size and temperature affect metabolic and cardiac thermal tolerance in fish. Sci Rep 2023; 13:17900. [PMID: 37857749 PMCID: PMC10587238 DOI: 10.1038/s41598-023-44574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Environmental warming is associated with reductions in ectotherm body sizes, suggesting that larger individuals may be more vulnerable to climate change. The mechanisms driving size-specific vulnerability to temperature are unknown but are required to finetune predictions of fisheries productivity and size-structure community responses to climate change. We explored the potential metabolic and cardiac mechanisms underlying these body size vulnerability trends in a eurythermal fish, barred surfperch. We acutely exposed surfperch across a large size range (5-700 g) to four ecologically relevant temperatures (16 °C, 12 °C, 20 °C, and 22 °C) and subsequently, measured their metabolic capacity (absolute and factorial aerobic scopes, maximum and resting metabolic rates; AAS, FAS, MMR, RMR). Additionally, we estimated the fish's cardiac thermal tolerance by measuring their maximum heart rates (fHmax) across acutely increasing temperatures. Barred surfperch had parallel hypoallometric scaling of MMR and RMR (exponent 0.81) and a weaker hypoallometric scaling of fHmax (exponent - 0.05) across all test temperatures. In contrast to our predictions, the fish's aerobic capacity was maintained across sizes and acute temperatures, and larger fish had greater cardiac thermal tolerance than smaller fish. These results demonstrate that thermal performance may be limited by different physiological constraints depending on the size of the animal and species of interest.
Collapse
Affiliation(s)
- Krista Kraskura
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
| | - Emily A Hardison
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
3
|
M K VS, Joseph S, P S A, Ghermandi A, Kumar A. A coastal Ramsar site on transition to hypoxia and tracking pollution sources: a case study of south-west coast of India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:45. [PMID: 36305948 DOI: 10.1007/s10661-022-10602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Coastal lakes and estuaries are considered economic drivers for coastal communities by delivering invaluable economic and ecosystem services. The coastal ecosystems are facing recurrent hypoxia events (dissolved oxygen; DO < 2.0 mg L-1) and are emerging as a major threat to ecosystem structure and functioning. The Ashtamudi Lake, (area = 56 km2), is one of the Ramsar sites in the State of Kerala and located on the SW coast of India. The waterways are extensively used for backwater tourism and for fishery activities. This paper discusses the spatio-temporal variation of water quality attributes with emphasis on hypoxia during non-monsoon and monsoon seasons. The extent of hypoxia on fishery diversity was discussed. The Southern Zone, adjacent to the urban area, shows the hypoxic condition with higher concentration of BOD, NO3-N, and NH4-N. The hypoxic condition is largely limited to the Southern Zone in both seasons. The occurrence of low DO in the lake is highly related to salinity and organic load in the lake system. The tracking of pollution sources in the lake system was also done through identification of pollution potential zones and found that catchments adjacent to Southern and Western Zones (urban regions) are the major source of pollution. The study suggests that hypoxia is chiefly attributed to anthropogenic interventions in the form of discharge of wastes into the lake causing overloading of nutrients and organic effluents, decrease in the freshwater supply, the absence of proper freshwater mixing or dilution, and effluent discharge from nearby urban centers.
Collapse
Affiliation(s)
- Vishnu Sagar M K
- Department of Environmental Sciences, University of Kerala, Thiruvananthapuram, Kerala, India, 695581
| | - Sabu Joseph
- Department of Environmental Sciences, University of Kerala, Thiruvananthapuram, Kerala, India, 695581.
| | - Arunkumar P S
- Department of Environmental Sciences, University of Kerala, Thiruvananthapuram, Kerala, India, 695581
| | - Andrea Ghermandi
- Department of Natural Resources and Environmental Management, University of Haifa, Haifa, Israel
| | - Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
4
|
Glazier DS. How Metabolic Rate Relates to Cell Size. BIOLOGY 2022; 11:1106. [PMID: 35892962 PMCID: PMC9332559 DOI: 10.3390/biology11081106] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/19/2022]
Abstract
Metabolic rate and its covariation with body mass vary substantially within and among species in little understood ways. Here, I critically review explanations (and supporting data) concerning how cell size and number and their establishment by cell expansion and multiplication may affect metabolic rate and its scaling with body mass. Cell size and growth may affect size-specific metabolic rate, as well as the vertical elevation (metabolic level) and slope (exponent) of metabolic scaling relationships. Mechanistic causes of negative correlations between cell size and metabolic rate may involve reduced resource supply and/or demand in larger cells, related to decreased surface area per volume, larger intracellular resource-transport distances, lower metabolic costs of ionic regulation, slower cell multiplication and somatic growth, and larger intracellular deposits of metabolically inert materials in some tissues. A cell-size perspective helps to explain some (but not all) variation in metabolic rate and its body-mass scaling and thus should be included in any multi-mechanistic theory attempting to explain the full diversity of metabolic scaling. A cell-size approach may also help conceptually integrate studies of the biological regulation of cellular growth and metabolism with those concerning major transitions in ontogenetic development and associated shifts in metabolic scaling.
Collapse
|