1
|
Gardinal MVB, Ruiz TFR, dos Santos DD, Vidal MR, Moron SE, Falleiros Junior LR, Taboga SR, Franceschini Vicentini IB, Vicentini CA. Histochemical characterization and connective fiber distribution of the cardiac outflow tract of pirarucu, Arapaima gigas (Schinz, 1822) (Osteoglossiformes, Arapaimidae). ZOOMORPHOLOGY 2019. [DOI: 10.1007/s00435-019-00459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
2
|
Lorenzale M, López-Unzu MA, Rodríguez C, Fernández B, Durán AC, Sans-Coma V. The anatomical components of the cardiac outflow tract of chondrichthyans and actinopterygians. Biol Rev Camb Philos Soc 2018; 93:1604-1619. [DOI: 10.1111/brv.12411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Miguel Lorenzale
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
| | - Miguel A. López-Unzu
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA); Universidad de Málaga; 29071 Málaga Spain
| | - Cristina Rodríguez
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA); Universidad de Málaga; 29071 Málaga Spain
| | - Borja Fernández
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA); Universidad de Málaga; 29071 Málaga Spain
| | - Ana C. Durán
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA); Universidad de Málaga; 29071 Málaga Spain
| | - Valentín Sans-Coma
- Departamento de Biología Animal, Facultad de Ciencias; Universidad de Málaga, Campus de Teatinos s/n; 29071 Málaga Spain
| |
Collapse
|
3
|
The bulbus arteriosus of the holocephalan heart: gross anatomy, histomorphology, pigmentation, and evolutionary significance. ZOOLOGY 2017; 123:37-45. [PMID: 28760682 DOI: 10.1016/j.zool.2017.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 11/20/2022]
Abstract
This study was designed to determine whether the outflow tract of the holocephalan heart is composed of a myocardial conus arteriosus and a non-myocardial bulbus arteriosus, as is the case in elasmobranchs. This is a key issue to verify the hypothesis that these two anatomical components existed from the onset of the jawed vertebrate radiation. The Holocephali are the sister group of the elasmobranchs, sharing with them a common, still unknown Palaeozoic ancestor. The sample examined herein consisted of hearts from individuals of four species, two of them belonging to the Chimaeridae and the other two to the Rhinochimaeridae. In all specimens, the cardiac outflow tract consisted of a conus arteriosus, with myocardium in its walls and two rows of valves at its luminal side, and an intrapericardial bulbus arteriosus shorter than the conus and devoid of valves. The bulbus, mainly composed of elastin and smooth musculature, was covered by the epicardium and crossed longitudinally by coronary artery trunks. These findings give added support to the viewpoint that the outflow tract of the primitive heart of the gnathostomes was not composed of a single component, but two, the conus and the bulbus. All rabbitfish (Chimaera monstrosa) examined had pigment cells over the surface of the heart. The degree of pigmentation, which varied widely between individuals, was particularly intense in the cardiac outflow tract. Pigment cells also occurred in the bulbus arteriosus of one of the two hearts of the straightnose rabbitfish (Rhinochimaera atlantica) included in the study. The cells containing pigment, presumably derived from the neural crest, were located in the subepicardium.
Collapse
|
4
|
Gaw S, Glover CN. A case of contagious toxicity? Isoprostanes as potential emerging contaminants of concern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 560-561:295-298. [PMID: 27102276 DOI: 10.1016/j.scitotenv.2016.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/27/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
Isoprostanes are useful biomarkers of human and animal health, being representative of oxidative stress processes, and having biological impacts associated with toxicity and disease. Isoprostanes are also chemically stable, a property facilitating population-level health assessments through wastewater sampling. However, as biologically-active entities, the presence of isoprostanes in domestic effluents could have toxic impacts on biota in receiving environments. As such it is proposed that isoprostanes are emerging organic contaminants of particular concern. Fish and aquatic invertebrates may be affected by the presence of isoprostanes in wastewaters through mechanisms such as reproductive impairment, cardiovascular disturbance and/or oxidative stress. This would represent a unique scenario of "contagious" toxicity, whereby human health has a direct toxicological consequence on aquatic animal health.
Collapse
Affiliation(s)
- Sally Gaw
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Chris N Glover
- Faculty of Science and Technology, Athabasca University, Alberta, Canada
| |
Collapse
|
5
|
Rodríguez C, Fernández B, Olivero J, Salmerón F, Torres-Prioris A, Sans-Coma V, Durán AC. The relative length of the cardiac bulbus arteriosus reflects phylogenetic relationships among elasmobranchs. ZOOL ANZ 2016. [DOI: 10.1016/j.jcz.2016.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Moriyama Y, Ito F, Takeda H, Yano T, Okabe M, Kuraku S, Keeley FW, Koshiba-Takeuchi K. Evolution of the fish heart by sub/neofunctionalization of an elastin gene. Nat Commun 2016; 7:10397. [PMID: 26783159 PMCID: PMC4735684 DOI: 10.1038/ncomms10397] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/08/2015] [Indexed: 11/29/2022] Open
Abstract
The evolution of phenotypic traits is a key process in diversification of life. However, the mechanisms underlying the emergence of such evolutionary novelties are largely unknown. Here we address the origin of bulbus arteriosus (BA), an organ of evolutionary novelty seen in the teleost heart outflow tract (OFT), which sophisticates their circulatory system. The BA is a unique organ that is composed of smooth muscle while the OFTs in other vertebrates are composed of cardiac muscle. Here we reveal that the teleost-specific extracellular matrix (ECM) gene, elastin b, was generated by the teleost-specific whole-genome duplication and neofunctionalized to contribute to acquisition of the BA by regulating cell fate determination of cardiac precursor cells into smooth muscle. Furthermore, we show that the mechanotransducer yap is involved in this cell fate determination. Our findings reveal a mechanism of generating evolutionary novelty through alteration of cell fate determination by the ECM. The bulbus arteriosus is an organ unique to the heart of teleosts, composed of specialized smooth muscle. Here, the authors show that the gene elastin b, which regulates cell fate of cardiac precursor cells into smooth muscle, evolved after whole-genome duplication and neofunctionalization in teleosts.
Collapse
Affiliation(s)
- Yuuta Moriyama
- Division of Cardiovascular Regeneration, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan
| | - Fumihiro Ito
- Division of Ecological Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Tohru Yano
- Department of Anatomy, The Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato, Tokyo 105-8461, Japan
| | - Masataka Okabe
- Department of Anatomy, The Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato, Tokyo 105-8461, Japan
| | - Shigehiro Kuraku
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-minamimachi, Chuo, Kobe, Hyogo 650-0047, Japan
| | - Fred W Keeley
- Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Kazuko Koshiba-Takeuchi
- Division of Cardiovascular Regeneration, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan.,Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
7
|
Seth H, Axelsson M, Gräns A. The peptide hormone cholecystokinin modulates the tonus and compliance of the bulbus arteriosus and pre-branchial vessels of the rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol 2014; 178:18-23. [DOI: 10.1016/j.cbpa.2014.07.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 12/15/2022]
|
8
|
The anatomical components of the cardiac outflow tract of the gray bichir, Polypterus senegalus: their evolutionary significance. ZOOLOGY 2014; 117:370-6. [DOI: 10.1016/j.zool.2014.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/07/2014] [Accepted: 05/14/2014] [Indexed: 11/19/2022]
|
9
|
Zaccone D, Grimes AC, Sfacteria A, Jaroszewska M, Caristina G, Manganaro M, Farrell AP, Zaccone G, Dabrowski K, Marino F. Complex innervation patterns of the conus arteriosus in the heart of the longnose gar, Lepisosteus osseus. Acta Histochem 2011; 113:578-84. [PMID: 20656338 DOI: 10.1016/j.acthis.2010.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 06/11/2010] [Accepted: 06/13/2010] [Indexed: 12/25/2022]
Abstract
Anatomical and functional studies of the autonomic innervation in the conus arteriosus of the garfishes are lacking. This study reveals that the conus arteriosus of the longnose gar is primarily myocardial in nature, but additionally, large numbers of smooth muscle cells are present in the subendocardium. A well-developed system of adrenergic, cholinergic, substance P (SP) and neuronal nitric oxide synthase (nNOS) positive nerve terminals are found in the wall of the conus arteriosus. Coronary blood vessels running in the adventitia receive a rich supply of nNOS positive nerve fibers, thus suggesting their importance in the nitrergic control of blood flow in the conus arteriosus. The present data show that the patterns of autonomic innervation of the garfish conus arteriosus are more complex than previously appreciated.
Collapse
Affiliation(s)
- Daniele Zaccone
- Department of Animal Biology and Marine Ecology, Faculty of Science, University of Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Leknes IL. Uptake of Foreign Ferritin in Heart of Firemouth Cichlid (Cichlidae: Teleostei). Anat Rec (Hoboken) 2011; 294:1500-5. [DOI: 10.1002/ar.21440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 11/05/2022]
|
11
|
Leknes IL. Structural and Histochemical Studies on the Teleostean Bulbus Arteriosus. Anat Histol Embryol 2009; 38:424-8. [DOI: 10.1111/j.1439-0264.2009.00963.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Grimes AC, Kirby ML. The outflow tract of the heart in fishes: anatomy, genes and evolution. JOURNAL OF FISH BIOLOGY 2009; 74:983-1036. [PMID: 20735616 DOI: 10.1111/j.1095-8649.2008.02125.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A large number of congenital heart defects associated with mortality in humans are those that affect the cardiac outflow tract, and this provides a strong imperative to understand its development during embryogenesis. While there is wide phylogenetic variation in adult vertebrate heart morphology, recent work has demonstrated evolutionary conservation in the early processes of cardiogenesis, including that of the outflow tract. This, along with the utility and high reproductive potential of fish species such as Danio rerio, Oryzias latipes etc., suggests that fishes may provide ideal comparative biological models to facilitate a better understanding of this poorly understood region of the heart. In this review, the authors present the current understanding of both phylogeny and ontogeny of the cardiac outflow tract in fishes and examine how new molecular studies are informing the phylogenetic relationships and evolutionary trajectories that have been proposed. The authors also attempt to address some of the issues of nomenclature that confuse this area of research.
Collapse
Affiliation(s)
- A C Grimes
- Departamento de Biología del Desarrollo Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3 28029 Madrid, Spain.
| | | |
Collapse
|
13
|
Distribution and neurotransmitter localization in the heart of the ray-finned fish, bichir (Polypterus bichir bichir Geoffroy St. Hilaire, 1802). Acta Histochem 2009; 111:93-103. [PMID: 18805572 DOI: 10.1016/j.acthis.2008.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 04/29/2008] [Accepted: 05/07/2008] [Indexed: 11/20/2022]
Abstract
Anatomical and physiological studies of cardiovascular control are lacking in the ray-finned fish, the bichirs. The present immunohistochemical studies on the bichir (Polypterus bichir bichir) demonstrated the occurrence of intracardiac neurons and nerve fibers in the heart. Immunoreactivity to tyrosine hydroxylase (TH) and acetylcholinesterase (AchE) and various neuropeptides (substance P, galanin, vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP)), including neuronal nitric oxide synthase (nNOS), was found in the nerve cell bodies lying close to the Sinus venosus and the sino-atrial region. The main intracardiac localization of the nervous tissue is a network of nerve fibers, presumably corresponding to the postganglionic outflow giving rise to nerve terminals and the nerve cell bodies. In addition, the heart is innervated by extrinsic monoamine-containing nerve fibers supplying the Conus arteriosus and Sinus venosus, and substance P and galanin immunopositive fibers probably originating from cranial and spinal ganglia. The adrenergic innervation of the heart of the bichir is similar to that of the teleosts, but further studies are required on nervous control of the heart.
Collapse
|
14
|
Durán AC, Fernández B, Grimes AC, Rodríguez C, Arqué JM, Sans-Coma V. Chondrichthyans have a bulbus arteriosus at the arterial pole of the heart: morphological and evolutionary implications. J Anat 2008; 213:597-606. [PMID: 18803558 PMCID: PMC2667554 DOI: 10.1111/j.1469-7580.2008.00973.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2008] [Indexed: 01/29/2023] Open
Abstract
It has been generally assumed that the outflow tract of the chondrichthyan heart consists of the conus arteriosus, characterized by cardiac muscle in its walls. However, classical observations, neglected for many years, indicated that the distal component of the cardiac outflow tract of several elasmobranch species was composed of tissue resembling that of the ventral aorta. The present study was outlined to test the hypothesis that this intrapericardial, non-myocardial component might be homologous to the actinopterygian bulbus arteriosus. The material consisted of Atlantic catshark adults and embryos, which were examined by means of histochemical and immunohistochemical techniques for light and fluorescence microscopy. In this species, the distal component of the outflow tract differs histomorphologically from both the ventral aorta and the conus arteriosus; it is devoid of myocardium, is covered by epicardium and is crossed by the coronary arterial trunks. In the embryonic hearts examined, this distal component showed positive reactivity for 4,5-diaminofluorescein 2-diacetate (DAF-2DA), a fluorescent nitric oxide indicator. These findings, together with other observations in holocephals and several elasmobranch species, confirm that chondrichthyans possess a bulbus arteriosus interposed between the conus arteriosus and the ventral aorta. Therefore, the primitive heart of gnathostomates consists of five intrapericardial components, sinus venosus, atrium, ventricle, conus arteriosus and bulbus arteriosus, indicating that the bulbus arteriosus can no longer be regarded as an actinopterygian apomorphy. The DAF-2DA-positive reactivity of the chondrichthyan embryonic bulbus suggests that this structure is homologous to the base of the great arterial trunks of birds and mammals, which derives from the embryonic secondary heart field.
Collapse
Affiliation(s)
- Ana C Durán
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Stensløkken KO, Sundin L, Nilsson GE. Endothelin receptors in teleost fishes: cardiovascular effects and branchial distribution. Am J Physiol Regul Integr Comp Physiol 2006; 290:R852-60. [PMID: 16223845 DOI: 10.1152/ajpregu.00618.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
By observing gill blood flow using epi-illuminating microscopy, in parallel with cardiovascular recordings and immunohistochemistry, we have tried to identify the receptor mediating endothelin (ET) type 1 (ET1)-induced pillar cell contraction in the lamellae of the Atlantic cod ( Gadus morhua). Intra-arterial injection of the specific ETBreceptor agonist BQ-3020 induced dose-dependent increases in ventral aortic blood pressure, gill vascular resistance, and pillar cell area (indicating contraction). The specific ETAreceptor antagonist BQ-610 did not prevent either pillar cell contraction or increased gill vascular resistance induced by ET-1 injection. The cardiovascular responses were corroborated by the detection of ETBreceptor-like immunoreactivity (IR) associated with pillar cells in the lamellar region and in neuroendocrine cells. ETBreceptor-like IR was also found lining the muscle layer of lamellar arterioles and filament arteries. In contrast, strong ETAreceptor-like IR was found on branchial nerves throughout the filaments. In addition, ET-like IR was concentrated in neuroendocrine cells in the filament and lamellae. We also present data suggesting that ET-mediated pillar cell contraction is widespread among teleost fish, including Atlantic cod, rainbow trout ( Oncorhynchus mykiss), sculpin ( Myoxocephalus scorpius), and mackerel ( Scomber scombrus). Taken together, our results suggest that an ETB-like receptor mediates pillar cell contraction in fishes, whereas ETA-like receptors may serve another function in the gill, inasmuch as ETAreceptor-like IR is found on branchial nerves.
Collapse
Affiliation(s)
- Kåre-Olav Stensløkken
- Physiology Program, Department of Molecular Biosciences, University of Oslo, PO Box 1041, N-0316 Oslo, Norway
| | | | | |
Collapse
|
16
|
Fellner SK, Parker LA. Endothelin B receptor Ca2+ signaling in shark vascular smooth muscle: participation of inositol trisphosphate and ryanodine receptors. ACTA ACUST UNITED AC 2004; 207:3411-7. [PMID: 15326217 DOI: 10.1242/jeb.01134] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mammals, endothelin receptors are sub-classified into ET(A) receptors (ET(A)R), which are purely constrictive in vascular smooth muscle (VSM), and ET(B)R, which may produce constriction in VSM or dilatation by stimulating the production of nitric oxide (NO) from endothelial cells. In contrast, previous studies suggested that shark VSM is stimulated exclusively by ET(B)R. The Ca(2+) signaling pathways utilized by shark VSM in response to stimulation by endothelin-1 (ET-1) have not previously been investigated. We measured cytosolic Ca(2+) concentration ([Ca(2+)](i)) in fura-2-loaded VSM of anterior mesenteric artery of Squalus acanthias and show that the ET(B)R agonists IRL 1620 and sarafotoxin S6c (SRX) increase [Ca(2+)](i) in VSM to the same extent as ET-1 and ET(B)R appears to be the only ETR subtype in sharks. To investigate the participation of the inositol trisphosphate (IP(3)) receptors (IP(3)R), we utilized two inhibitors of the mammalian IP(3)R, TMB-8 and 2-APB. In Ca(2+)-free Ringer, these agents inhibit the response to ET(B)R agonist stimulation by 71%. The ryanodine-sensitive receptor (RyR) may be activated by low concentrations of ryanodine, by abrupt local increases of [Ca(2+)](i), (calcium-induced calcium release) or by cyclic adeninediphosphate ribose (cADPR). We employed three inhibitors of activation of the RyR, Ruthenium Red, 8-Br cADPR and high concentrations of ryanodine; these agents blocked the [Ca(2+)](i) response to ET(B)R agonist stimulation by a mean of 39%. These data show for the first time that in VSM of the shark, ET(B)R activation stimulates both IP(3)R and RyR, and that cADPR is involved in RyR activation.
Collapse
Affiliation(s)
- Susan K Fellner
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|