1
|
Nambara S, Masuda T, Kobayashi Y, Sato K, Tobo T, Koike K, Noda M, Ogawa Y, Kuroda Y, Ito S, Eguchi H, Sugimachi K, Mimori K. GTF2IRD1 on chromosome 7 is a novel oncogene regulating the tumor-suppressor gene TGFβR2 in colorectal cancer. Cancer Sci 2019; 111:343-355. [PMID: 31758608 PMCID: PMC7004548 DOI: 10.1111/cas.14248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 01/02/2023] Open
Abstract
Chromosome 7q (Ch.7q) is clonally amplified in colorectal cancer (CRC). We aimed to identify oncogenes on Ch.7q that are overexpressed through DNA copy number amplification and determine the biological and clinical significance of these oncogenes in CRC. We identified general transcription factor 2I repeat domain‐containing protein 1 (GTF2IRD1) as a potential oncogene using a CRC dataset from The Cancer Genome Atlas with a bioinformatics approach. We measured the expression of GTF2IRD1 in 98 patients with CRC using immunohistochemistry and RT‐quantitative PCR (RT‐qPCR). The biological effects of GTF2IRD1 expression were explored by gene set enrichment analysis (GSEA). Next, we undertook in vitro cell proliferation and cell cycle assays using siGTF2IRD1‐transfected CRC cells. We further investigated the oncogenic mechanisms through which GTF2IRD1 promoted CRC progression. Finally, we assessed the clinical significance of GTF2IRD1 expression by RT‐qPCR. GTF2IRD1 was overexpressed in tumor cells and liver metastatic lesions. The GSEA revealed a positive correlation between GTF2IRD1 expression and cell cycle progression‐related genes. GTF2IRD1 knockdown inhibited cell proliferation and induced cell cycle arrest in Smad4‐mutated CRC. GTF2IRD1 downregulated the expression of the gene encoding transforming growth factor β receptor 2 (TGFβR2), a tumor‐suppressor gene in Smad4‐mutated CRC. On multivariate analysis, high GTF2IRD1 expression was an independent poor prognostic factor. Clinicopathological analysis showed that GTF2IRD1 expression was positively correlated with liver metastasis. In conclusion, GTF2IRD1 promoted CRC progression by downregulating TGFβR2 and could be a prognostic biomarker on Ch.7q in CRC. GTF2IRD1 could also be a novel oncogene in CRC.
Collapse
Affiliation(s)
- Sho Nambara
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yuta Kobayashi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Kuniaki Sato
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Taro Tobo
- Department of Pathology, Kyushu University Beppu Hospital, Beppu, Japan
| | - Kensuke Koike
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Miwa Noda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yushi Ogawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Yousuke Kuroda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Shuhei Ito
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Keishi Sugimachi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan.,Department of Gastroenterological Surgery, National Kyushu Cancer Center, Fukuoka, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| |
Collapse
|
2
|
Kim SJ, Ka S, Ha JW, Kim J, Yoo D, Kim K, Lee HK, Lim D, Cho S, Hanotte O, Mwai OA, Dessie T, Kemp S, Oh SJ, Kim H. Cattle genome-wide analysis reveals genetic signatures in trypanotolerant N'Dama. BMC Genomics 2017; 18:371. [PMID: 28499406 PMCID: PMC5427609 DOI: 10.1186/s12864-017-3742-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/27/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Indigenous cattle in Africa have adapted to various local environments to acquire superior phenotypes that enhance their survival under harsh conditions. While many studies investigated the adaptation of overall African cattle, genetic characteristics of each breed have been poorly studied. RESULTS We performed the comparative genome-wide analysis to assess evidence for subspeciation within species at the genetic level in trypanotolerant N'Dama cattle. We analysed genetic variation patterns in N'Dama from the genomes of 101 cattle breeds including 48 samples of five indigenous African cattle breeds and 53 samples of various commercial breeds. Analysis of SNP variances between cattle breeds using wMI, XP-CLR, and XP-EHH detected genes containing N'Dama-specific genetic variants and their potential associations. Functional annotation analysis revealed that these genes are associated with ossification, neurological and immune system. Particularly, the genes involved in bone formation indicate that local adaptation of N'Dama may engage in skeletal growth as well as immune systems. CONCLUSIONS Our results imply that N'Dama might have acquired distinct genotypes associated with growth and regulation of regional diseases including trypanosomiasis. Moreover, this study offers significant insights into identifying genetic signatures for natural and artificial selection of diverse African cattle breeds.
Collapse
Affiliation(s)
- Soo-Jin Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.,C&K Genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea
| | - Sojeong Ka
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung-Woo Ha
- Clova, NAVER Corp., Seongnam, 13561, Republic of Korea
| | - Jaemin Kim
- C&K Genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea
| | - DongAhn Yoo
- C&K Genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kwondo Kim
- C&K Genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, 66414, Republic of Korea
| | - Dajeong Lim
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, RDA, Jeonju, 55365, Republic of Korea
| | - Seoae Cho
- C&K Genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea
| | - Olivier Hanotte
- University of Nottingham, School of Life Sciences, Nottingham, NG7 2RD, UK.,International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Okeyo Ally Mwai
- International Livestock Research Institute, Box 30709-00100, Nairobi, Kenya
| | - Tadelle Dessie
- International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Stephen Kemp
- International Livestock Research Institute, Box 30709-00100, Nairobi, Kenya.,The Centre for Tropical Livestock Genetics and Health, The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Scotland, UK
| | - Sung Jong Oh
- National Institute of Animal Science, RDA, Wanju, 55365, Republic of Korea.
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea. .,C&K Genomics, Seoul National University Research Park, Seoul, 151-919, Republic of Korea. .,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Corley SM, Canales CP, Carmona-Mora P, Mendoza-Reinosa V, Beverdam A, Hardeman EC, Wilkins MR, Palmer SJ. RNA-Seq analysis of Gtf2ird1 knockout epidermal tissue provides potential insights into molecular mechanisms underpinning Williams-Beuren syndrome. BMC Genomics 2016; 17:450. [PMID: 27295951 PMCID: PMC4907016 DOI: 10.1186/s12864-016-2801-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/26/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Williams-Beuren Syndrome (WBS) is a genetic disorder associated with multisystemic abnormalities, including craniofacial dysmorphology and cognitive defects. It is caused by a hemizygous microdeletion involving up to 28 genes in chromosome 7q11.23. Genotype/phenotype analysis of atypical microdeletions implicates two evolutionary-related transcription factors, GTF2I and GTF2IRD1, as prime candidates for the cause of the facial dysmorphology. RESULTS Using a targeted Gtf2ird1 knockout mouse, we employed massively-parallel sequencing of mRNA (RNA-Seq) to understand changes in the transcriptional landscape associated with inactivation of Gtf2ird1 in lip tissue. We found widespread dysregulation of genes including differential expression of 78 transcription factors or coactivators, several involved in organ development including Hey1, Myf6, Myog, Dlx2, Gli1, Gli2, Lhx2, Pou3f3, Sox2, Foxp3. We also found that the absence of GTF2IRD1 is associated with increased expression of genes involved in cellular proliferation, including growth factors consistent with the observed phenotype of extreme thickening of the epidermis. At the same time, there was a decrease in the expression of genes involved in other signalling mechanisms, including the Wnt pathway, indicating dysregulation in the complex networks necessary for epidermal differentiation and facial skin patterning. Several of the differentially expressed genes have known roles in both tissue development and neurological function, such as the transcription factor Lhx2 which regulates several genes involved in both skin and brain development. CONCLUSIONS Gtf2ird1 inactivation results in widespread gene dysregulation, some of which may be due to the secondary consequences of gene regulatory network disruptions involving several transcription factors and signalling molecules. Genes involved in growth factor signalling and cell cycle progression were identified as particularly important for explaining the skin dysmorphology observed in this mouse model. We have noted that a number of the dysregulated genes have known roles in brain development as well as epidermal differentiation and maintenance. Therefore, this study provides clues as to the underlying mechanisms that may be involved in the broader profile of WBS.
Collapse
Affiliation(s)
- Susan M Corley
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, NSW, Australia.
| | - Cesar P Canales
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Paulina Carmona-Mora
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | | | | | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, NSW, Australia
| | - Stephen J Palmer
- Cellular and Genetic Medicine Unit, School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| |
Collapse
|
4
|
Segura-Puimedon M, Borralleras C, Pérez-Jurado LA, Campuzano V. TFII-I regulates target genes in the PI-3K and TGF-β signaling pathways through a novel DNA binding motif. Gene 2013; 527:529-36. [DOI: 10.1016/j.gene.2013.06.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 06/10/2013] [Accepted: 06/21/2013] [Indexed: 11/17/2022]
|
5
|
Abstract
Three genes GTF2IRD1, GTF2I, and GTF2IRD2, which encode members of the GTF2I (or TFII-I) family of so-called general transcription factors, were discovered and studied during the last two decades. Chromosome location and similarity of exon-intron structures suggest that the family evolved by duplications. The initial duplication of ancestral proto-GTF2IRD1 gene likely occurred in early vertebrates prior to origin of cartilaginous fish and led to formation of GTF2I (>450 MYA), which was later lost in bony fish but successfully evolved in the land vertebrates. The second duplication event, which created GTF2IRD2, occurred prior to major radiation events of eutherian mammalian evolution (>100 MYA). During recent steps of primate evolution there was another duplication which led to formation of GTF2IRD2B (<4 MYA). Two latest duplications were coupled with inversions. Genes belonging to the family have several highly conservative repeats which are implicated in DNA binding. Phylogenetic analysis of the repeats revealed a pattern of intragenic duplications, deletions and substitutions which led to diversification of the genes and proteins. Distribution of statistically rare atypical substitutions (p ≤ 0.01) sheds some light on structural differentiation of repeats and hence evolution of the genes. The atypical substitutions are often located on secondary structures joining α-helices and affect 3D arrangement of the protein globule. Such substitutions are commonly traced at the early stages of evolution in Tetrapoda, Amniota, and Mammalia.
Collapse
|
6
|
O'Leary J, Osborne LR. Global analysis of gene expression in the developing brain of Gtf2ird1 knockout mice. PLoS One 2011; 6:e23868. [PMID: 21909369 PMCID: PMC3166129 DOI: 10.1371/journal.pone.0023868] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/27/2011] [Indexed: 01/24/2023] Open
Abstract
Background Williams-Beuren Syndrome (WBS) is a neurodevelopmental disorder caused by a hemizygous deletion of a 1.5 Mb region on chromosome 7q11.23 encompassing 26 genes. One of these genes, GTF2IRD1, codes for a putative transcription factor that is expressed throughout the brain during development. Genotype-phenotype studies in patients with atypical deletions of 7q11.23 implicate this gene in the neurological features of WBS, and Gtf2ird1 knockout mice show reduced innate fear and increased sociability, consistent with features of WBS. Multiple studies have identified in vitro target genes of GTF2IRD1, but we sought to identify in vivo targets in the mouse brain. Methodology/Principal Findings We performed the first in vivo microarray screen for transcriptional targets of Gtf2ird1 in brain tissue from Gtf2ird1 knockout and wildtype mice at embryonic day 15.5 and at birth. Changes in gene expression in the mutant mice were moderate (0.5 to 2.5 fold) and of candidate genes with altered expression verified using real-time PCR, most were located on chromosome 5, within 10 Mb of Gtf2ird1. siRNA knock-down of Gtf2ird1 in two mouse neuronal cell lines failed to identify changes in expression of any of the genes identified from the microarray and subsequent analysis showed that differences in expression of genes on chromosome 5 were the result of retention of that chromosome region from the targeted embryonic stem cell line, and so were dependent upon strain rather than Gtf2ird1 genotype. In addition, specific analysis of genes previously identified as direct in vitro targets of GTF2IRD1 failed to show altered expression. Conclusions/Significance We have been unable to identify any in vivo neuronal targets of GTF2IRD1 through genome-wide expression analysis, despite widespread and robust expression of this protein in the developing rodent brain.
Collapse
Affiliation(s)
- Jennifer O'Leary
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lucy R. Osborne
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
7
|
Makeyev AV, Bayarsaihan D. Molecular Basis of Williams-Beuren Syndrome: TFII-I Regulated Targets Involved in Craniofacial Development. Cleft Palate Craniofac J 2011; 48:109-16. [DOI: 10.1597/09-093] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective The aim of this study is to identify gene targets of TFII-I transcription factors involved in craniofacial development. Design Recent findings in individuals with Williams-Beuren syndrome who show facial dysmorphism and cognitive defects have pointed to TFII-I genes ( GTF2I and GTF2IRD1) as the prime candidates responsible for these clinical features. However, TFII-I proteins are multifunctional transcriptional factors regulating a number of genes during development, and how their haploinsufficiency leads to the Williams-Beuren syndrome phenotype is currently unknown. Results Here we report the identification of three genes with a well-established relevance to craniofacial development as direct TFII-I targets. These genes, craniofacial development protein 1 ( Cfdp1), Sec23 homolog A ( Sec23a), and nuclear receptor binding SET domain protein 1 ( Nsd1), contain consensus TFII-I binding sites in their proximal promoters; the chromatin immunoprecipitation analysis showed that TFII-I transcription factors are recruited to these sites in vivo. Conclusions The results suggest that transcriptional regulation of these genes by TFII-I proteins could provide a possible genotype-phenotype link in Williams-Beuren syndrome.
Collapse
Affiliation(s)
- Aleksandr V. Makeyev
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut
| | - Dashzeveg Bayarsaihan
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
8
|
Essential functions of the Williams-Beuren syndrome-associated TFII-I genes in embryonic development. Proc Natl Acad Sci U S A 2008; 106:181-6. [PMID: 19109438 DOI: 10.1073/pnas.0811531106] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
GTF2I and GTF2IRD1 encoding the multifunctional transcription factors TFII-I and BEN are clustered at the 7q11.23 region hemizygously deleted in Williams-Beuren syndrome (WBS), a complex multisystemic neurodevelopmental disorder. Although the biochemical properties of TFII-I family transcription factors have been studied in depth, little is known about the specialized contributions of these factors in pathways required for proper embryonic development. Here, we show that homozygous loss of either Gtf2ird1 or Gtf2i function results in multiple phenotypic manifestations, including embryonic lethality; brain hemorrhage; and vasculogenic, craniofacial, and neural tube defects in mice. Further analyses suggest that embryonic lethality may be attributable to defects in yolk sac vasculogenesis and angiogenesis. Microarray data indicate that the Gtf2ird1 homozygous phenotype is mainly caused by an impairment of the genes involved in the TGFbetaRII/Alk1/Smad5 signal transduction pathway. The effect of Gtf2i inactivation on this pathway is less prominent, but downregulation of the endothelial growth factor receptor-2 gene, resulting in the deterioration of vascular signaling, most likely exacerbates the severity of the Gtf2i mutant phenotype. A subset of Gtf2ird1 and Gtf2i heterozygotes displayed microcephaly, retarded growth, and skeletal and craniofacial defects, therefore showing that haploinsufficiency of TFII-I proteins causes various developmental anomalies that are often associated with WBS.
Collapse
|
9
|
Identification of the TFII-I family target genes in the vertebrate genome. Proc Natl Acad Sci U S A 2008; 105:9006-10. [PMID: 18579769 DOI: 10.1073/pnas.0803051105] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
GTF2I and GTF2IRD1 encode members of the TFII-I transcription factor family and are prime candidates in the Williams syndrome, a complex neurodevelopmental disorder. Our previous expression microarray studies implicated TFII-I proteins in the regulation of a number of genes critical in various aspects of cell physiology. Here, we combined bioinformatics and microarray results to identify TFII-I downstream targets in the vertebrate genome. These results were validated by chromatin immunoprecipitation and siRNA analysis. The collected evidence revealed the complexity of TFII-I-mediated processes that involve distinct regulatory networks. Altogether, these results lead to a better understanding of specific molecular events, some of which may be responsible for the Williams syndrome phenotype.
Collapse
|
10
|
Lazebnik MB, Tussie-Luna MI, Roy AL. Determination and functional analysis of the consensus binding site for TFII-I family member BEN, implicated in Williams-Beuren syndrome. J Biol Chem 2008; 283:11078-82. [PMID: 18326499 PMCID: PMC2431064 DOI: 10.1074/jbc.c800049200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 03/06/2008] [Indexed: 12/23/2022] Open
Abstract
The ubiquitously expressed TFII-I family of multifunctional transcription factors is involved in gene regulation as well as signaling. Despite the fact that they share significant sequence homology, these factors exhibit varied and distinct functions. The lack of knowledge about its binding sites and physiological target genes makes it more difficult to assign a definitive function for the TFII-I-related protein, BEN. We set out to determine its optimal binding site with the notion of predicting its physiological target genes. Here we report the identification of an optimal binding sequence for BEN by SELEX (systematic evolution of ligands by exponential enrichment) and confirm the relevance of this sequence by functional assays. We further performed a data base search to assign genes that have this consensus site(s) and validate several candidate genes by quantitative PCR upon stable silencing of BEN and by chromatin immunoprecipitation assay upon stable expression of BEN. Given that haploinsufficiency in BEN is causative to Williams-Beuren syndrome, these results may further lead to the identification of a set of physiologically relevant target genes for BEN and may help identify molecular determinants of Williams-Beuren syndrome.
Collapse
Affiliation(s)
- Maria B Lazebnik
- Programs in Genetics, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|