1
|
Haque T, Akhter F, Alim N, Nabhan A, Kahtani FA, Sambawa AM. Identification and Characterization of Key Genes Associated with Amelogenesis. Eur J Dent 2024. [PMID: 39299262 DOI: 10.1055/s-0044-1787958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
OBJECTIVES The identification of key genes associated with amelogenesis would be helpful in finding solutions to genetic disorders in oral biology. The study aimed to use in silico analysis to identify the key genes involved in tooth development associated with preameloblasts (PABs) and secretory ameloblasts (SABs). MATERIAL AND METHODS The data was subjected to quality analysis and uniform manifold approximation and projection analysis. To examine the distribution of the genes and identify important upregulated loci, a p-value histogram, a quantile plot, a mean difference and mean-variance plot, and a volcano plot were generated. Finally, protein-protein interaction and gene enrichment analyses were performed to determine the ontology, relevant biological processes, and molecular functions of selected genes. RESULTS A total of 157 genes were found to be significant in the PAB versus SAB comparison. HIST1H31 revealed strong interaction with HIST1H2BM, and EXO1, ASPM, SPC25, and TTK showed strong interactions with one other. The STRING database revealed that NCAPG, CENPU, NUSAP1, HIST1H2BM, and HIST1H31 are involved in biological processes. NCAPG, CENPU, SPC25, ETV5, TTK, ETV1, FAM9A, NUSAP1, HIST1H2BM, and HIST1H31 are involved in cellular components. CONCLUSION The TTK, NUSAP1, CENPU, NCAPG, FAM9A, ASPM, SPC25, and HIST1H31 genes demonstrate functions in cell division. These genes might play a role in ameloblast development. These results will be useful in developing new methods to stimulate ameloblast development, which is essential for tooth regeneration and tissue engineering. However, more research is required to validate the functions of these genes and the genes with which they interact. A wide variety of genetic, epigenetic, and exogenous signaling factors regulate these genes and pathways throughout development and differentiation, cell fate, and behavior.
Collapse
Affiliation(s)
- Tahsinul Haque
- Preventive Dental Sciences Department, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia
| | - Fatema Akhter
- Surgical and Diagnostic Sciences Department, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia
| | - Nourelhoda Alim
- Surgical and Diagnostic Sciences Department, College of Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia
| | - Abdullah Nabhan
- Surgical and Diagnostic Sciences Department, Collage of Dentistry, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | | | | |
Collapse
|
2
|
Hermans F, Hasevoets S, Vankelecom H, Bronckaers A, Lambrichts I. From Pluripotent Stem Cells to Organoids and Bioprinting: Recent Advances in Dental Epithelium and Ameloblast Models to Study Tooth Biology and Regeneration. Stem Cell Rev Rep 2024; 20:1184-1199. [PMID: 38498295 PMCID: PMC11222197 DOI: 10.1007/s12015-024-10702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Ameloblasts are the specialized dental epithelial cell type responsible for enamel formation. Following completion of enamel development in humans, ameloblasts are lost and biological repair or regeneration of enamel is not possible. In the past, in vitro models to study dental epithelium and ameloblast biology were limited to freshly isolated primary cells or immortalized cell lines, both with limited translational potential. In recent years, large strides have been made with the development of induced pluripotent stem cell and organoid models of this essential dental lineage - both enabling modeling of human dental epithelium. Upon induction with several different signaling factors (such as transforming growth factor and bone morphogenetic proteins) these models display elevated expression of ameloblast markers and enamel matrix proteins. The advent of 3D bioprinting, and its potential combination with these advanced cellular tools, is poised to revolutionize the field - and its potential for tissue engineering, regenerative and personalized medicine. As the advancements in these technologies are rapidly evolving, we evaluate the current state-of-the-art regarding in vitro cell culture models of dental epithelium and ameloblast lineage with a particular focus toward their applicability for translational tissue engineering and regenerative/personalized medicine.
Collapse
Affiliation(s)
- Florian Hermans
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium.
| | - Steffie Hasevoets
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Leuven, 3000, Belgium
| | - Annelies Bronckaers
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium
| | - Ivo Lambrichts
- Department of Cardiology and Organ Systems (COS), Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, 3590, Belgium.
| |
Collapse
|
3
|
Pei SL, Chen RS, Chen MH. The crucial role of centrioles in tooth growth and development. J Formos Med Assoc 2024:S0929-6646(24)00214-6. [PMID: 38704334 DOI: 10.1016/j.jfma.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/07/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Affiliation(s)
- Shan-Li Pei
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Rung-Shu Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Min-Huey Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
4
|
Quan J, Liu Y, Ji L, Zhao Y, Zheng S. A novel DLX3 mutation causes tricho-dento-osseous syndrome with abnormal enamel structure and formation. Arch Oral Biol 2024; 157:105849. [PMID: 38006713 DOI: 10.1016/j.archoralbio.2023.105849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/27/2023]
Abstract
OBJECTIVE This study aimed to identify a DLX3 gene mutation in a family with atypical clinical manifestations of tricho-dento-osseous syndrome (TDO) and its impact on tooth enamel thickness, microhardness, structure and formation. DESIGN Whole-exome sequencing detected DLX3 mutations in the family. Micro-CT, Vickers hardness tester, energy dispersive spectrometer and scanning electron microscopy were performed on the deciduous teeth of the proband and controls. In vitro experiments preliminarily verified the effect of this mutation on ameloblast differentiation and suggested possible molecular mechanisms. RESULTS We found a new DLX3 frame-shift mutation (NM_005220.3: c.604_605del: p. S202 *) in this family. Compared with control teeth, the mutant enamel showed a significant decrease in thickness, hardness and calcium content and an increase in magnesium content. The enamel structure appeared disordered. In an immortalized ameloblast-lineage cell (ALC) line, this mutation affected ameloblast differentiation and downregulated the expression levels of enamel matrix protein (EMP) genes (Amelx, Tuft1, Klk4, Ambn, Odam). A luciferase reporter assay demonstrated that this mutation significantly reduced the transactivation activity of DLX3 on Amelx/Odam/Klk4. CONCLUSION We found a new DLX3 mutation in a Chinese family with enamel dysplasia and that this mutation may affect ameloblast differentiation by inhibiting the transcriptional activity of Amelx/Odam/Klk4, thereby interfering with enamel formation. Our findings further expand the variation spectrum and enrich the evidence of molecular genetics of DLX3 mutations.
Collapse
Affiliation(s)
- Junkang Quan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Yang Liu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - LingLi Ji
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Yuming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China.
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China.
| |
Collapse
|
5
|
Ruspita I, Das P, Miyoshi K, Noma T, Snead ML, Bei M. Enam expression is regulated by Msx2. Dev Dyn 2023; 252:1292-1302. [PMID: 37191055 PMCID: PMC10592542 DOI: 10.1002/dvdy.598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND The precise formation of mineralized dental tissues such as enamel and/or dentin require tight transcriptional control of the secretion of matrix proteins. Here, we have investigated the transcriptional regulation of the second most prominent enamel matrix protein, enamelin, and its regulation through the major odontogenic transcription factor, MSX2. RESULTS Using in vitro and in vivo approaches, we identified that (a) Enam expression is reduced in the Msx2 mouse mutant pre-secretory and secretory ameloblasts, (b) Enam is an early response gene whose expression is under the control of Msx2, (c) Msx2 binds to Enam promoter in vitro, suggesting that enam is a direct target for Msx2 and that (d) Msx2 alone represses Enam gene expression. CONCLUSIONS Collectively, these results illustrate that Enam gene expression is controlled by Msx2 in a spatio-temporal manner. They also suggest that Msx2 may interact with other transcription factors to control spatial and temporal expression of Enam and hence amelogenesis and enamel biomineralization.
Collapse
Affiliation(s)
- Intan Ruspita
- Center for Regenerative and Developmental Biology, The Forsyth Institute, Cambridge, MA, USA
- Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Pragnya Das
- Center for Regenerative and Developmental Biology, The Forsyth Institute, Cambridge, MA, USA
- Cooper University Hospital, Camden, NJ, USA
| | - Keiko Miyoshi
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takafumi Noma
- Faculty of Human Life Studies, Hiroshima Jogakuin University, Hiroshima, Japan
| | - Malcolm L. Snead
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of USC, University of Southern California, LA, CA
| | - Marianna Bei
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston MA, USA
- Department of Surgery, Harvard Medical School, Boston MA, USA
- Shriners Hospital for Children, Boston, MA
| |
Collapse
|
6
|
Niu H, Bi F, Zhao W, Xu Y, Han Q, Guo W, Chen Y. Smurf1 regulates ameloblast polarization by ubiquitination-mediated degradation of RhoA. Cell Prolif 2022; 56:e13387. [PMID: 36579844 PMCID: PMC10068949 DOI: 10.1111/cpr.13387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022] Open
Abstract
Cell polarity is essential for ameloblast differentiation and enamel formation. Smurf1 can mediate cell polarization through ubiquitination degradation of specific substrates. But it remains unclear whether Smurf1 could regulate ameloblast polarity and the underlying mechanism. Here, immuno-fluorescence staining and RT-qPCR were applied to detect the expression of Smurf1 and F-actin. A mouse lower incisor defect model was constructed. Scanning electron microscope, rat lower incisor culture, western blot, wound healing assay and trans-well migration assay were performed to detect the influence of Smurf1 knockdown on ameloblast. IF double staining, western blot and co-immunoprecipitation were conducted to detect the interaction between Smurf1 and RhoA. The in vivo experiment was also performed. We found that Smurf1 was mainly expressed in the membrane and cell cortex of ameloblast, similar to F-actin. Smurf1 expression increased along ameloblast polarization and differentiation. After knocking down Smurf1, the cytoskeleton and cell morphology changed and the cell polarity was damaged. Smurf1 regulated ameloblast polarity through ubiquitination degradation of activated RhoA in vitro. Local knockdown of Smurf1 in rat lower incisor ameloblast resulted in ameloblast polarity loss, enamel matrix secretion disorder and chalky enamel, but RhoA inhibitor Y-27632 could reverse this effect. Collectively, Smurf1 could regulate the polarization of ameloblast through ubiquitination degradation of activated RhoA, which contributed to the knowledge of tooth development and provided new research ideas for cell polarity.
Collapse
Affiliation(s)
- Haoman Niu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Pathology, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Fei Bi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wenjun Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Pathology, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yuchan Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qi Han
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Pathology, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Pathology, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Zhang H, Chinoy A, Mousavi P, Beeler A, Louie K, Collier C, Mishina Y. Elevated WNT signaling and compromised Hedgehog signaling due to Evc2 loss of function contribute to the abnormal molar patterning. FRONTIERS IN DENTAL MEDICINE 2022; 3:876015. [PMID: 38606060 PMCID: PMC11007741 DOI: 10.3389/fdmed.2022.876015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Ellis-van Creveld (EVC) syndrome is an autosomal recessive chondrodysplasia. The affected individuals bear a series of skeleton defects, congenital heart septum anomalies, midfacial defects, and dental defects. Previous studies using Evc or Evc2 mutant mice have characterized the pathological mechanism leading to various types of congenital defects. Some patients with EVC have supernumerary tooth; however, it is not known yet if there are supernumerary tooth formed in Evc or Evc2 mutant mice, and if yes, what is the pathological mechanism associated. In the present study, we used Evc2 mutant mice and analyze the pattern of molars in Evc2 mutant mice at various stages. Our studies demonstrate that Evc2 loss of function within the dental mesenchymal cells leads to abnormal molar patterning, and that the most anterior molar in the Evc2 mutant mandible represents a supernumerary tooth. Finally, we provide evidence supporting the idea that both compromised Hedgehog signaling and elevated WNT signaling due to Evc2 loss of function contributes to the supernumerary tooth formation.
Collapse
Affiliation(s)
- Honghao Zhang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Afriti Chinoy
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Paymon Mousavi
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Aubrey Beeler
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Ke’ale Louie
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Crystal Collier
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Dalir Abdolahinia E, Ilbeygi Taher S, Abdali Dehdezi P, Ataei A, Azizi M, Afra N, Afshar Fard S, Sharifi S. Strategies and Challenges in the Treatment of Dental Enamel. Cells Tissues Organs 2022; 212:485-498. [PMID: 35780769 DOI: 10.1159/000525790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022] Open
Abstract
Enamel tissue, the hardest body tissue, which covers the outside of the tooth shields the living tissue, but it erodes and disintegrates in the acidic environment of the oral cavity. On the one hand, mature enamel is cell-free and, if damaged, does not regenerate. Tooth sensitivity and decay are caused by enamel loss. On the other hand, the tissue engineering approach is challenging because of the unique structure of tooth enamel. To develop an exemplary method for dental enamel rebuilding, accurate knowledge of the structure of tooth enamel, knowing how it is created and how proteins interact in its structure, is critical. Furthermore, novel techniques in tissue engineering for using stem cells to develop enamel must be established. This article aims to discuss current attempts to regenerate enamel using synthetic materials methods, recent advances in enamel tissue engineering, and the prospects of enamel biomimetics to find unique insights into future possibilities for repairing enamel tissue, perhaps the most fascinating of all tooth tissues.
Collapse
Affiliation(s)
- Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Atefe Ataei
- Department of Periodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Azizi
- Department of Periodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Narges Afra
- Faculty of Dentistry, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Wang Y, Zhao Y, Chen S, Chen X, Zhang Y, Chen H, Liao Y, Zhang J, Wu D, Chu H, Huang H, Wu C, Huang S, Xu H, Jia B, Liu J, Feng B, Li Z, Qin D, Pei D, Cai J. Single cell atlas of developing mouse dental germs reveals populations of CD24 + and Plac8 + odontogenic cells. Sci Bull (Beijing) 2022; 67:1154-1169. [PMID: 36545982 DOI: 10.1016/j.scib.2022.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 01/07/2023]
Abstract
The spatiotemporal relationships in high-resolution during odontogenesis remain poorly understood. We report a cell lineage and atlas of developing mouse teeth. We performed a large-scale (92,688 cells) single cell RNA sequencing, tracing the cell trajectories during odontogenesis from embryonic days 10.5 to 16.5. Combined with an assay for transposase-accessible chromatin with high-throughput sequencing, our results suggest that mesenchymal cells show the specific transcriptome profiles to distinguish the tooth types. Subsequently, we identified key gene regulatory networks in teeth and bone formation and uncovered spatiotemporal patterns of odontogenic mesenchymal cells. CD24+ and Plac8+ cells from the mesenchyme at the bell stage were distributed in the upper half and preodontoblast layer of the dental papilla, respectively, which could individually induce nonodontogenic epithelia to form tooth-like structures. Specifically, the Plac8+ tissue we discovered is the smallest piece with the most homogenous cells that could induce tooth regeneration to date. Our work reveals previously unknown heterogeneity and spatiotemporal patterns of tooth germs that may lead to tooth regeneration for regenerative dentistry.
Collapse
Affiliation(s)
- Yaofeng Wang
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China
| | - Yifan Zhao
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Shubin Chen
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Xiaoming Chen
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial People's Hospital Ganzhou Hospital, Ganzhou Municipal Hospital, Ganzhou 341099, China
| | - Yanmei Zhang
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Hong Chen
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Yuansong Liao
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Jiashu Zhang
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun 130012, China
| | - Di Wu
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; Department of Regeneration Medicine, School of Pharmaceutical Science, Jilin University, Changchun 130012, China
| | - Hongxing Chu
- Department of Periodontics and Implantology, Stomatological Hospital, Southern Medical University (Guangdong Provincial Stomatological Hospital), Guangzhou 510515, China
| | - Hongying Huang
- Animal Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Caixia Wu
- Animal Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Shijuan Huang
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Huichao Xu
- Animal Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Bei Jia
- The Center for Prenatal and Hereditary Disease Diagnosis, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jie Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bo Feng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhonghan Li
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610041, China
| | - Dajiang Qin
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou 310024, China.
| | - Jinglei Cai
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China; CAS Key Laboratory of Regenerative Biology, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China.
| |
Collapse
|
10
|
Kudo T, Kawasaki M, Kawasaki K, Meguro F, Nihara J, Honda I, Kitamura M, Fujita A, Osawa K, Ichikawa K, Nagai T, Ishida Y, Sharpe PT, Maeda T, Saito I, Ohazama A. Ift88 regulates enamel formation via involving Shh signaling. Oral Dis 2022; 29:1622-1631. [PMID: 35189017 DOI: 10.1111/odi.14162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/04/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The ciliopathies are a wide spectrum of human diseases, which are caused by perturbations in the function of primary cilia. Tooth enamel anomalies are often seen in ciliopathy patients; however, the role of primary cilia in enamel formation remains unclear. MATERIALS AND METHODS We examined mice with epithelial conditional deletion of the ciliary protein, Ift88, (Ift88fl/fl ;K14Cre). RESULTS Ift88fl/fl ;K14Cre mice showed premature abrasion in molars. A pattern of enamel rods which is determined at secretory stage, was disorganized in Ift88 mutant molars. Many amelogenesis-related molecules expressing at the secretory stage, including amelogenin and ameloblastin, enamelin, showed significant downregulation in Ift88 mutant molar tooth germs. Shh signaling is essential for amelogenesis, which was found to be downregulated in Ift88 mutant molar at the secretory stage. Application of Shh signaling agonist at the secretory stage partially rescued enamel anomalies in Ift88 mutant mice. CONCLUSION Findings in the present study indicate that the function of the primary cilia via Ift88 is critical for the secretory stage of amelogenesis through involving Shh signaling.
Collapse
Affiliation(s)
- Takehisa Kudo
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Maiko Kawasaki
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kataushige Kawasaki
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Research Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Fumiya Meguro
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Jun Nihara
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Izumi Honda
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Madoka Kitamura
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Akira Fujita
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kazuaki Osawa
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kaya Ichikawa
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takahiro Nagai
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yoko Ishida
- Research Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Paul T Sharpe
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Takeyasu Maeda
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Faculty of Dental Medicine, University of Airlangga, Surabaya, Indonesia
| | - Isao Saito
- Division of Orthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
11
|
Khan SA, Khan S, Muhammad N, Rehman ZU, Khan MA, Nasir A, Kalsoom UE, Khan AK, Khan H, Wasif N. The First Report of a Missense Variant in RFX2 Causing Non-Syndromic Tooth Agenesis in a Consanguineous Pakistani Family. Front Genet 2022; 12:782653. [PMID: 35145545 PMCID: PMC8822170 DOI: 10.3389/fgene.2021.782653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The syndromic and non-syndromic congenital missing teeth phenotype is termed tooth agenesis. Since tooth agenesis is a heterogeneous disorder hence, the patients show diverse absent teeth phenotypes. Thus identifying novel genes involved in the morphogenesis of ectodermal appendages, including teeth, paves the way for establishing signaling pathways.Methods and Results: We have recruited an autosomal recessive non-syndromic tooth agenesis family with two affected members. The exome sequencing technology identified a novel missense sequence variant c.1421T > C; p.(Ile474Thr) in a regulatory factor X (RFX) family member (RFX2, OMIM: 142,765). During the data analysis eight rare variants on various chromosomal locations were identified, but the co-segregation analysis using Sanger sequencing confirmed the segregation of only two variants RFX2: c.1421T > C; p.(Ile474Thr), DOHH: c.109C > G; p.(Pro37Ala) lying in a common 7.1 MB region of homozygosity on chromosome 19p13.3. Furthermore, the online protein prediction algorithms and protein modeling analysis verified the RFX2 variant as a damaging genetic alteration and ACMG pathogenicity criteria classified it as likely pathogenic. On the other hand, the DOHH variant showed benign outcomes.Conclusion:RFX2 regulates the Hedgehog and fibroblast growth factor signaling pathways, which are involved in the epithelial and mesenchymal interactions during tooth development. Prior animal model studies have confirmed the expression of rfx2 at a developmental stage governing mouth formation. Moreover, its regulatory role and close association with ciliary and non-ciliary genes causing various dental malformations makes it a potential candidate gene for tooth agenesis phenotype. Further studies will contribute to exploring the direct role of RFX2 in human tooth development.
Collapse
Affiliation(s)
- Sher Alam Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
- *Correspondence: Saadullah Khan, ; Naveed Wasif,
| | - Noor Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Zia Ur Rehman
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Muhammad Adnan Khan
- Dental Material, Institute of Basic Medical Sciences, Khyber Medical University Peshawar, Peshawar, Pakistan
| | - Abdul Nasir
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Umm-e- Kalsoom
- Department of Biochemistry, Hazara University, Mansehra, Pakistan
| | - Anwar Kamal Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Hassan Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Naveed Wasif
- Institute of Human Genetics, University of Ulm, Ulm, Germany
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- *Correspondence: Saadullah Khan, ; Naveed Wasif,
| |
Collapse
|
12
|
Inoue A, Kiyoshima T, Yoshizaki K, Nakatomi C, Nakatomi M, Ohshima H, Shin M, Gao J, Tsuru K, Okabe K, Nakamura I, Honda H, Matsuda M, Takahashi I, Jimi E. Deletion of epithelial cell-specific p130Cas impairs the maturation stage of amelogenesis. Bone 2022; 154:116210. [PMID: 34592494 DOI: 10.1016/j.bone.2021.116210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/02/2022]
Abstract
Amelogenesis consists of secretory, transition, maturation, and post-maturation stages, and the morphological changes of ameloblasts at each stage are closely related to their function. p130 Crk-associated substrate (Cas) is a scaffold protein that modulates essential cellular processes, including cell adhesion, cytoskeletal changes, and polarization. The expression of p130Cas was observed from the secretory stage to the maturation stage in ameloblasts. Epithelial cell-specific p130Cas-deficient (p130CasΔepi-) mice exhibited enamel hypomineralization with chalk-like white mandibular incisors in young mice and attrition in aged mouse molars. A micro-computed tomography analysis and Vickers micro-hardness testing showed thinner enamel, lower enamel mineral density and hardness in p130CasΔepi- mice in comparison to p130Casflox/flox mice. Scanning electron microscopy, and an energy dispersive X-ray spectroscopy analysis indicated the disturbance of the enamel rod structure and lower Ca and P contents in p130CasΔepi- mice, respectively. The disorganized arrangement of ameloblasts, especially in the maturation stage, was observed in p130CasΔepi- mice. Furthermore, expression levels of enamel matrix proteins, such as amelogenin and ameloblastin in the secretory stage, and functional markers, such as alkaline phosphatase and iron accumulation, and Na+/Ca2++K+-exchanger in the maturation stage were reduced in p130CasΔepi- mice. These findings suggest that p130Cas plays important roles in amelogenesis (197 words).
Collapse
Affiliation(s)
- Akane Inoue
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Chihiro Nakatomi
- Division of Physiology, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | - Mitsushiro Nakatomi
- Department of Human, Information and Life Sciences, School of Health Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Masashi Shin
- Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan; Oral Medicine Center, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan
| | - Jing Gao
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kanji Tsuru
- Section of Bioengineering, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan
| | - Koji Okabe
- Department of Physiological Sciences and Molecular Biology, Fukuoka Dental College, 2-5-1 Tamura, Sawara-ku, Fukuoka 814-0175, Japan
| | - Ichiro Nakamura
- Department of Rehabilitation, Yugawara Hospital, Japan Community Health Care Organization, 2-21-6 Chuo, Yugawara, Ashigara-shimo, Kanagawa 259-0396, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Miho Matsuda
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ichiro Takahashi
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eijiro Jimi
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
13
|
Hermans F, Hemeryck L, Lambrichts I, Bronckaers A, Vankelecom H. Intertwined Signaling Pathways Governing Tooth Development: A Give-and-Take Between Canonical Wnt and Shh. Front Cell Dev Biol 2021; 9:758203. [PMID: 34778267 PMCID: PMC8586510 DOI: 10.3389/fcell.2021.758203] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Teeth play essential roles in life. Their development relies on reciprocal interactions between the ectoderm-derived dental epithelium and the underlying neural crest-originated mesenchyme. This odontogenic process serves as a prototype model for the development of ectodermal appendages. In the mouse, developing teeth go through distinct morphological phases that are tightly controlled by epithelial signaling centers. Crucial molecular regulators of odontogenesis include the evolutionarily conserved Wnt, BMP, FGF and sonic hedgehog (Shh) pathways. These signaling modules do not act on their own, but are closely intertwined during tooth development, thereby outlining the path to be taken by specific cell populations including the resident dental stem cells. Recently, pivotal Wnt-Shh interaction and feedback loops have been uncovered during odontogenesis, showing conservation in other developing ectodermal appendages. This review provides an integrated overview of the interplay between canonical Wnt and Shh throughout mouse tooth formation stages, extending from the initiation of dental placode to the fully formed adult tooth.
Collapse
Affiliation(s)
- Florian Hermans
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium.,Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Lara Hemeryck
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
14
|
Abramyan J, Geetha-Loganathan P, Šulcová M, Buchtová M. Role of Cell Death in Cellular Processes During Odontogenesis. Front Cell Dev Biol 2021; 9:671475. [PMID: 34222243 PMCID: PMC8250436 DOI: 10.3389/fcell.2021.671475] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/24/2021] [Indexed: 01/20/2023] Open
Abstract
The development of a tooth germ in a precise size, shape, and position in the jaw, involves meticulous regulation of cell proliferation and cell death. Apoptosis, as the most common type of programmed cell death during embryonic development, plays a number of key roles during odontogenesis, ranging from the budding of the oral epithelium during tooth initiation, to later tooth germ morphogenesis and removal of enamel knot signaling center. Here, we summarize recent knowledge about the distribution and function of apoptotic cells during odontogenesis in several vertebrate lineages, with a special focus on amniotes (mammals and reptiles). We discuss the regulatory roles that apoptosis plays on various cellular processes during odontogenesis. We also review apoptosis-associated molecular signaling during tooth development, including its relationship with the autophagic pathway. Lastly, we cover apoptotic pathway disruption, and alterations in apoptotic cell distribution in transgenic mouse models. These studies foster a deeper understanding how apoptotic cells affect cellular processes during normal odontogenesis, and how they contribute to dental disorders, which could lead to new avenues of treatment in the future.
Collapse
Affiliation(s)
- John Abramyan
- Department of Natural Sciences, University of Michigan–Dearborn, Dearborn, MI, United States
| | | | - Marie Šulcová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Marcela Buchtová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| |
Collapse
|
15
|
Küchler EC, de Lara RM, Omori MA, Schröder A, Teodoro VB, Baratto-Filho F, Léon JE, Proff P, Madalena IR, Kirschneck C. Estrogen deficiency affects tooth formation and gene expression in the odontogenic region of female rats. Ann Anat 2021; 236:151702. [PMID: 33607226 DOI: 10.1016/j.aanat.2021.151702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND There is some evidence that estrogen regulates the expression of several genes in different cells, including dental cells. Therefore, the aim of this study was to investigate the role of estrogen deficiency during tooth development regarding tooth structure morphology and its impact on the expression of odontogenesis-related genes. METHODS A total of 40 female Wistar rats was divided into OVX (estrogen deficiency) and Sham (control) groups. Bilateral ovariectomy was performed in the OVX group, while Sham surgery was performed in the control group at the age of 21 days. At an age of 56 days, 16 rats were euthanized for gene expression analyses of Bmp4, Smad6, Tgfb1 and Runx2. At the age of 63 days, the remaining rats were euthanized for histological and morphometric analyses of teeth. The mandibles of the rats were submitted to μCT analysis. Tooth structures (enamel, dentin and dental pulp) were analyzed. T test was used to compare the mean differences between groups (p<0.05). RESULTS In the μCT analysis, enamel and dentin thickness were significantly increased in the control group (p<0.0001). Pulp dimensions were significantly larger in the OVX group (p<0.0001). A reduction of tooth structures in the OVX group was confirmed in HE staining. Smad6 was differentially expressed in the OVX group (p=0.04). CONCLUSION Estrogen deficiency affects gene expression in the odontogenic region and tooth structure morphology.
Collapse
Affiliation(s)
- Erika Calvano Küchler
- Department of Orthodontics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café, Ribeirão Preto, SP 14040-904, Brazil
| | | | - Marjorie Ayumi Omori
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café, Ribeirão Preto, SP 14040-904, Brazil
| | - Agnes Schröder
- Department of Orthodontics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | | - Flares Baratto-Filho
- School of Dentistry, Univille University, R. Paulo Malschitzki, Joinville, SC 89219-710, Brazil
| | - Jorge Esquiche Léon
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Peter Proff
- Department of Orthodontics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Isabela Ribeiro Madalena
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café, Ribeirão Preto, SP 14040-904, Brazil
| | - Christian Kirschneck
- Department of Orthodontics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
16
|
Ruspita I, Das P, Xia Y, Kelangi S, Miyoshi K, Noma T, Snead ML, D'Souza RN, Bei M. An Msx2- Sp6-Follistatin Pathway Operates During Late Stages of Tooth Development to Control Amelogenesis. Front Physiol 2020; 11:582610. [PMID: 33192593 PMCID: PMC7649293 DOI: 10.3389/fphys.2020.582610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Background Ameloblasts are epithelially derived cells responsible for enamel formation through a process known as amelogenesis. Amongst the several transcription factors that are expressed during amelogenesis, both Msx2 and Sp6 transcription factors play important role. Msx2 and Sp6 mouse mutants, exhibit similar amelogenesis defects, namely enamel hypoplasia, while humans with amelogenesis imperfecta (AI) carry mutations in the human homologues of MSX2 or SP6 genes. These across species similarities in function indicate that these two transcription factors may reside in the same developmental pathway. In this paper, we test whether they work in a coordinated manner to exert their effect during amelogenesis. Methods Two different dental epithelial cell lines, the mouse LS8 and the rat G5 were used for either overexpression or silencing of Msx2 or Sp6 or both. Msx2 mutant mouse embryos or pups were used for in vivo studies. In situ hybridization, semi-quantitative and quantitative real time PCR were employed to study gene expression pattern. MatInspector was used to identify several potential putative Msx2 binding sites upstream of the murine Sp6 promoter region. Chromatin Immunoprecipitation (chIP) was used to confirm the binding of Msx2 to Sp6 promoter at the putative sites. Results Using the above methods we identified that (i) Msx2 and Sp6 exhibit overlapping expression in secretory ameloblasts, (ii) Sp6 expression is reduced in the Msx2 mouse mutant secretoty ameloblasts, and (iii) that Msx2, like Sp6 inhibits follistatin expression. Specifically, our loss-of function studies by silencing Msx2 and/or Sp6 in mouse dental epithelial (LS8) cells showed significant downregulation of Sp6 but upregulation of Fst expression. Transient transfection of Msx2 overexpression plasmid, up-regulated Sp6 and downregulated Fst expression. Additionally, using MatInspector, we identified several potential putative Msx2 binding sites, 3.5 kb upstream of the murine Sp6 promoter region. By chIP, we confirmed the binding of Msx2 to Sp6 promoter at these sites, thus suggesting that Sp6 is a direct target of Msx2. Conclusion Collectively, these results show that Sp6 and Msx2 work in a concerted manner to form part of a network of transcription factors that operate during later stages of tooth development controlling ameloblast life cycle and amelogenesis.
Collapse
Affiliation(s)
- Intan Ruspita
- Center for Regenerative and Developmental Biology, The Forsyth Institute, Cambridge, MA, United States.,Department of Prosthodontics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Pragnya Das
- Center for Regenerative and Developmental Biology, The Forsyth Institute, Cambridge, MA, United States.,Division of Neonatology, Cooper University Hospital, Camden, NJ, United States
| | - Yan Xia
- Center for Regenerative and Developmental Biology, The Forsyth Institute, Cambridge, MA, United States
| | - Sarah Kelangi
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.,Shriners Hospital for Children, Boston, MA, United States
| | - Keiko Miyoshi
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takafumi Noma
- Faculty of Human Life Studies, Hiroshima Jogakuin University, Hiroshima, Japan
| | - Malcolm L Snead
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA, United States
| | | | - Marianna Bei
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.,Shriners Hospital for Children, Boston, MA, United States
| |
Collapse
|
17
|
Yamada A, Kawasaki M, Miake Y, Yamada Y, Blackburn J, Kawasaki K, Trakanant S, Nagai T, Nihara J, Kudo T, Meguro F, Schmidt-Ullrich R, Liu B, Hu Y, Page A, Ramírez Á, Sharpe PT, Maeda T, Takagi R, Ohazama A. Overactivation of the NF-κB pathway impairs molar enamel formation. Oral Dis 2020; 26:1513-1522. [PMID: 32369672 DOI: 10.1111/odi.13384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Hypohidrotic ectodermal dysplasia (HED) is a hereditary disorder characterized by abnormal structures and functions of the ectoderm-derived organs, including teeth. HED patients exhibit a variety of dental symptoms, such as hypodontia. Although disruption of the EDA/EDAR/EDARADD/NF-κB pathway is known to be responsible for HED, it remains unclear whether this pathway is involved in the process of enamel formation. EXPERIMENTAL SUBJECTS AND METHODS To address this question, we examined the mice overexpressing Ikkβ (an essential component required for the activation of NF-κB pathway) under the keratin 5 promoter (K5-Ikkβ). RESULTS Upregulation of the NF-κB pathway was confirmed in the ameloblasts of K5-Ikkβ mice. Premature abrasion was observed in the molars of K5-Ikkβ mice, which was accompanied by less mineralized enamel. However, no significant changes were observed in the enamel thickness and the pattern of enamel rods in K5-Ikkβ mice. Klk4 expression was significantly upregulated in the ameloblasts of K5-Ikkβ mice at the maturation stage, and the expression of its substrate, amelogenin, was remarkably reduced. This suggests that abnormal enamel observed in K5-Ikkβ mice was likely due to the compromised degradation of enamel protein at the maturation stage. CONCLUSION Therefore, we could conclude that the overactivation of the NF-κB pathway impairs the process of amelogenesis.
Collapse
Affiliation(s)
- Akane Yamada
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Maiko Kawasaki
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Yasuo Miake
- Department of Oral Anatomy, School of Dental Medicine, Tsurumi University, Tsurumi, Japan
| | - Yurie Yamada
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Research Center for Advanced Oral Science, Niigata University, Niigata, Japan
| | - James Blackburn
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Research Center for Advanced Oral Science, Niigata University, Niigata, Japan
| | - Supaluk Trakanant
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takahiro Nagai
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Jun Nihara
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takehisa Kudo
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Fumiya Meguro
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Ruth Schmidt-Ullrich
- Department of Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Bigang Liu
- University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Yinling Hu
- Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Angustias Page
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Instituto de Investigación Sanitaria Hospital12 de Octubre (imas12), CIBERONC, Madrid, Spain
| | - Ángel Ramírez
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Instituto de Investigación Sanitaria Hospital12 de Octubre (imas12), CIBERONC, Madrid, Spain
| | - Paul T Sharpe
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Takeyasu Maeda
- Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Research Center for Advanced Oral Science, Niigata University, Niigata, Japan
| | - Ritsuo Takagi
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
18
|
Farooq I, Bugshan A. The role of salivary contents and modern technologies in the remineralization of dental enamel: a narrative review. F1000Res 2020; 9:171. [PMID: 32201577 PMCID: PMC7076334 DOI: 10.12688/f1000research.22499.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 08/21/2024] Open
Abstract
Human enamel once formed cannot be biologically repaired or replaced. Saliva has a significant role in remineralization of dental enamel. It not only has a buffering capacity to neutralize the oral cavity's low pH generated after acidic encounters, but also acts as a carrier of essential ions, such as fluoride, calcium and phosphate, which have a positive role in enamel's remineralization. This review discusses how salivary contents, like proteins and enzymes, have a natural role in enamel's mineralization. In addition, the presence of ions, such as fluoride, calcium and phosphate, in saliva further enhances its capability to remineralize the demineralized enamel surface. The review further examines modern innovative technologies, based on biomimetic regeneration systems, including dentin phosphoproteins, aspartate-serine-serine, recombinant porcine amelogenin, leucine-rich amelogenin peptide and nano-hydroxyapatite, that promote enamel remineralization. Fluoride boosters like calcium phosphates, polyphosphates, and certain natural products can also play an important role in enamel remineralization.
Collapse
Affiliation(s)
- Imran Farooq
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Amr Bugshan
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| |
Collapse
|
19
|
Farooq I, Bugshan A. The role of salivary contents and modern technologies in the remineralization of dental enamel: a narrative review. F1000Res 2020; 9:171. [PMID: 32201577 PMCID: PMC7076334 DOI: 10.12688/f1000research.22499.3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
Human enamel once formed cannot be biologically repaired or replaced. Saliva has a significant role in remineralization of dental enamel. It not only has a buffering capacity to neutralize the oral cavity’s low pH generated after acidic encounters, but also acts as a carrier of essential ions, such as fluoride, calcium and phosphate, which have a positive role in enamel’s remineralization. This review discusses how salivary contents, like proteins and enzymes, have a natural role in enamel’s mineralization. In addition, the presence of ions, such as fluoride, calcium and phosphate, in saliva further enhances its capability to remineralize the demineralized enamel surface. The review further examines modern innovative technologies, based on biomimetic regeneration systems, including dentin phosphoproteins, aspartate-serine-serine, recombinant porcine amelogenin, leucine-rich amelogenin peptide and nano-hydroxyapatite, that promote enamel remineralization. Fluoride boosters like calcium phosphates, polyphosphates, and certain natural products can also play an important role in enamel remineralization.
Collapse
Affiliation(s)
- Imran Farooq
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Amr Bugshan
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| |
Collapse
|
20
|
Farooq I, Bugshan A. The role of salivary contents and modern technologies in the remineralization of dental enamel: a narrative review. F1000Res 2020; 9:171. [PMID: 32201577 PMCID: PMC7076334 DOI: 10.12688/f1000research.22499.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 01/19/2024] Open
Abstract
Human enamel once formed cannot be biologically repaired or replaced. Saliva has a significant role in remineralization of dental enamel. It not only has a buffering capacity to neutralize the oral cavity's low pH generated after acidic encounters, but also acts as a carrier of essential ions, such as fluoride, calcium and phosphate, which have a positive role in enamel's remineralization. This review discusses how salivary contents, like proteins and enzymes, have a natural role in enamel's mineralization. In addition, the presence of ions, such as fluoride, calcium and phosphate, in saliva further enhances its capability to remineralize the demineralized enamel surface. The review further examines modern innovative technologies, based on biomimetic regeneration systems, including dentin phosphoproteins, aspartate-serine-serine, recombinant porcine amelogenin, leucine-rich amelogenin peptide and nano-hydroxyapatite, that promote enamel remineralization. Fluoride boosters like calcium phosphates, polyphosphates, and certain natural products can also play an important role in enamel remineralization.
Collapse
Affiliation(s)
- Imran Farooq
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Amr Bugshan
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| |
Collapse
|
21
|
Tissue Engineering Approaches for Enamel, Dentin, and Pulp Regeneration: An Update. Stem Cells Int 2020; 2020:5734539. [PMID: 32184832 PMCID: PMC7060883 DOI: 10.1155/2020/5734539] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Stem/progenitor cells are undifferentiated cells characterized by their exclusive ability for self-renewal and multilineage differentiation potential. In recent years, researchers and investigations explored the prospect of employing stem/progenitor cell therapy in regenerative medicine, especially stem/progenitor cells originating from the oral tissues. In this context, the regeneration of the lost dental tissues including enamel, dentin, and the dental pulp are pivotal targets for stem/progenitor cell therapy. The present review elaborates on the different sources of stem/progenitor cells and their potential clinical applications to regenerate enamel, dentin, and the dental pulpal tissues.
Collapse
|
22
|
Kondo S, Ota A, Ono T, Karnan S, Wahiduzzaman M, Hyodo T, Lutfur Rahman M, Ito K, Furuhashi A, Hayashi T, Konishi H, Tsuzuki S, Hosokawa Y, Kazaoka Y. Discovery of novel molecular characteristics and cellular biological properties in ameloblastoma. Cancer Med 2020; 9:2904-2917. [PMID: 32096304 PMCID: PMC7163100 DOI: 10.1002/cam4.2931] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
Ameloblastoma is a rare odontogenic benign tumor accounting for less than 1% of head and neck tumors. Advanced next generation sequencing (NGS) analyses identified high frequency of BRAF V600E and SMO L412F mutations in ameloblastoma. Despite the existence of whole genomic sequence information from patients with ameloblastoma, entire molecular signature of and the characteristics of ameloblastoma cells are still obscure. In this study, we sought to uncover the molecular basis of ameloblastoma and to determine the cellular phenotype of ameloblastoma cells with BRAF mutations. Our comparative cDNA microarray analysis and gene set enrichment analysis (GSEA) showed that ameloblastoma exhibited a distinct gene expression pattern from the normal tissues: KRAS-responsive gene set is significantly activated in ameloblastoma. Importantly, insulin like growth factor 2 (IGF2), a member of KRAS-responsive genes, enhances the proliferation of an ameloblastoma cell line AMU-AM1 with BRAF mutation. In addition, Toll-like receptor 2 (TLR2) knockdown readily inactivated KRAS-responsive gene sets as well as increases caspase activities, suggesting that TLR2 signaling may mediate cell survival signaling in ameloblastoma cells. Collectively, the findings may help to further clarify the pathophysiology of ameloblastoma and lead to the development of precision medicine for patients with ameloblastoma.
Collapse
Affiliation(s)
- Sayuri Kondo
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Takayuki Ono
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Md Wahiduzzaman
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Md Lutfur Rahman
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kunihiro Ito
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Akifumi Furuhashi
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Tomio Hayashi
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yoshiaki Kazaoka
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| |
Collapse
|
23
|
Fujihara H, Nozaki T, Tsutsumi M, Isumi M, Shimoda S, Hamada Y, Masutani M. Spontaneous Development of Dental Dysplasia in Aged Parp-1 Knockout Mice. Cells 2019; 8:cells8101157. [PMID: 31569682 PMCID: PMC6829344 DOI: 10.3390/cells8101157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/14/2023] Open
Abstract
Poly(ADP-ribose) polymerase (Parp)-1 catalyzes polyADP-ribosylation using NAD+ and is involved in the DNA damage response, genome stability, and transcription. In this study, we demonstrated that aged Parp-1-/- mouse incisors showed more frequent dental dysplasia in both ICR/129Sv mixed background and C57BL/6 strain compared to aged Parp-1+/+ incisors, suggesting that Parp-1 deficiency could be involved in development of dental dysplasia at an advanced age. Computed tomography images confirmed that dental dysplasia was observed at significantly higher incidences in Parp-1-/- mice. The relative calcification levels of Parp-1-/- incisors were higher in both enamel and dentin (p < 0.05). Immunohistochemical analysis revealed (1) Parp-1 positivity in ameloblasts and odontoblasts in Parp-1+/+ incisor, (2) weaker dentin sialoprotein positivity in dentin of Parp-1-/- incisor, and (3) bone sialoprotein positivity in dentin of Parp-1-/- incisor, suggesting ectopic osteogenic formation in dentin of Parp-1-/- incisor. These results indicate that Parp-1 deficiency promotes odontogenic failure in incisors at an advanced age. Parp-1 deficiency did not affect dentinogenesis during the development of mice, suggesting that Parp-1 is not essential in dentinogenesis during development but is possibly involved in the regulation of continuous dentinogenesis in the incisors at an advanced age.
Collapse
Affiliation(s)
- Hisako Fujihara
- Biochemistry Division, National Cancer Center Research Institute 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan.
| | - Tadashige Nozaki
- Biochemistry Division, National Cancer Center Research Institute 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Pharmacology, Faculty of Dentistry, Osaka Dental University 8-1, Kuzuhahanazono-cho, Hirakata, Osaka 573-1121, Japan.
| | - Masahiro Tsutsumi
- Department of Pathology, Saiseikai Chuwa Hospital 323 Oaza Abe, Sakurai City, Nara 633-0054, Japan.
| | - Mayu Isumi
- Department of Frontier Life Sciences, Graduate School of Biochemical Science, Nagasaki University 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.
| | - Shinji Shimoda
- Department of Oral Anatomy-1, School of Dental Medicine, Tsurumi University 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan.
| | - Yoshiki Hamada
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan.
| | - Mitsuko Masutani
- Biochemistry Division, National Cancer Center Research Institute 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Frontier Life Sciences, Graduate School of Biochemical Science, Nagasaki University 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.
- Division of Cellular Signaling, National Cancer Center Research Institute 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
24
|
He B, Chiba Y, Li H, de Vega S, Tanaka K, Yoshizaki K, Ishijima M, Yuasa K, Ishikawa M, Rhodes C, Sakai K, Zhang P, Fukumoto S, Zhou X, Yamada Y. Identification of the Novel Tooth-Specific Transcription Factor AmeloD. J Dent Res 2018; 98:234-241. [PMID: 30426815 DOI: 10.1177/0022034518808254] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Basic-helix-loop-helix (bHLH) transcription factors play an important role in various organs' development; however, a tooth-specific bHLH factor has not been reported. In this study, we identified a novel tooth-specific bHLH transcription factor, which we named AmeloD, by screening a tooth germ complementary DNA (cDNA) library using a yeast 2-hybrid system. AmeloD was mapped onto the mouse chromosome 1q32. Phylogenetic analysis showed that AmeloD belongs to the achaete-scute complex-like ( ASCL) gene family and is a homologue of ASCL5. AmeloD was uniquely expressed in the inner enamel epithelium (IEE), but its expression was suppressed after IEE cell differentiation into ameloblasts. Furthermore, AmeloD expression showed an inverse expression pattern with the epithelial cell-specific cell-cell adhesion molecule E-cadherin in the dental epithelium. Overexpression of AmeloD in dental epithelial cell line CLDE cells resulted in E-cadherin suppression. We found that AmeloD bound to E-box cis-regulatory elements in the proximal promoter region of the E-cadherin gene. These results reveal that AmeloD functions as a suppressor of E-cadherin transcription in IEE cells. Our study demonstrated that AmeloD is a novel tooth-specific bHLH transcription factor that may regulate tooth development through the suppression of E-cadherin in IEE cells.
Collapse
Affiliation(s)
- B He
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,2 State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,3 Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Y Chiba
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,4 Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - H Li
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,5 Lifecare Acupuncture and Alternative Medicine Center, Colleyville, TX, USA
| | - S de Vega
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,6 Department of Pathophysiology for Locomotive and Neoplastic Diseases, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - K Tanaka
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,7 Department of Orthopedic Surgery, Oita University, Oita, Japan
| | - K Yoshizaki
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,8 Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - M Ishijima
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,9 Department of Medicine for Orthopedics and Motor Organ, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - K Yuasa
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,10 Pediatric Dentistry, St. Mary's Hospital, Kurume, Japan
| | - M Ishikawa
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,11 Division of Operative Dentistry, Laboratory of Cell and Department of Restorative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - C Rhodes
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - K Sakai
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,12 Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - P Zhang
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - S Fukumoto
- 4 Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - X Zhou
- 2 State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Yamada
- 1 Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Arinawati DY, Miyoshi K, Tanimura A, Horiguchi T, Hagita H, Noma T. Deciphering defective amelogenesis using in vitro culture systems. J Biosci Bioeng 2018; 125:479-489. [PMID: 29397320 DOI: 10.1016/j.jbiosc.2017.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 11/16/2022]
Abstract
The conventional two-dimensional (2D) in vitro culture system is frequently used to analyze the gene expression with or without extracellular signals. However, the cells derived from primary culture and cell lines frequently deviate the gene expression profile compared to the corresponding in vivo samples, which sometimes misleads the actual gene regulation in vivo. To overcome this gap, we developed the comparative 2D and 3D in vitro culture systems and applied them to the genetic study of amelogenesis imperfecta (AI) as a model. Recently, we found specificity protein 6 (Sp6) mutation in an autosomal-recessive AI rat that was previously named AMI. We constructed 3D structure of ARE-B30 cells (AMI-derived rat dental epithelial cells) or G5 (control wild type cells) combined with RPC-C2A cells (rat pulp cell line) separated by the collagen membrane, while in 2D structure, ARE-B30 or G5 was cultured with or without the collagen membrane. Comparative analysis of amelogenesis-related gene expression in ARE-B30 and G5 using our 2D and 3D in vitro systems revealed distinct expression profiles, showing the causative outcomes. Bone morphogenetic protein 2 and follistatin were reciprocally expressed in G5, but not in ARE-B30 cells. All-or-none expression of amelotin, kallikrein-related peptidase 4, and nerve growth factor receptor was observed in both cell types. In conclusion, our in vitro culture systems detected the phenotypical differences in the expression of the stage-specific amelogenesis-related genes. Parallel analysis with 2D and 3D culture systems may provide a platform to understand the molecular basis for defective amelogenesis caused by Sp6 mutation.
Collapse
Affiliation(s)
- Dian Yosi Arinawati
- Graduate School of Oral Sciences, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Keiko Miyoshi
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Ayako Tanimura
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Taigo Horiguchi
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Hiroko Hagita
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Takafumi Noma
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan.
| |
Collapse
|
26
|
Ota MS, Kondo K, Li Y, Iseki S, Yamashita A, Gibson CW, Kondo T. Amelogenin X impacts age-dependent increase of frequency and number in labial incisor grooves in C57BL/6. Biochem Biophys Res Commun 2018; 496:324-327. [PMID: 29337060 DOI: 10.1016/j.bbrc.2018.01.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/25/2022]
Abstract
Labial grooves in maxillary incisors have been reported in several wild-type rodent species. Previous studies have reported age-dependent labial grooves occur in moderate prevalence in C57BL/6 mice; however, very little is known about the occurrence of such grooves. In the present study, we observed age-dependent groove formation in C57BL/6 mice up to 26 months after birth and found that not only the frequency of the appearance of incisor grooves but also the number of grooves increased in an age-dependent manner. We examined the molecular mechanisms of age-dependent groove formation by performing DNA microarray analysis of the incisors of 12-month-old (12M) and 24-month-old (24M) mice. Amelx, encoding the major enamel matrix protein AMELOGENIN, was identified as a 12M-specific gene. Comparing with wild-type mice, the maxillary incisors of Amelx-/- mutants indicated the increase of the frequency and number of labial grooves. These findings suggested that the Amelx gene impacts the age-dependent appearance of the labial incisor groove in C57BL/6 mice.
Collapse
Affiliation(s)
- Masato S Ota
- Laboratory of Anatomy, Physiology and Food Biological Science, Department of Food and Nutrition, Japan Women's University, Bunkyo-ku, Tokyo, Japan; Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Kaori Kondo
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Laboratory for Developmental Genetics, RIKEN-IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yong Li
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, PA, United States
| | - Sachiko Iseki
- Section of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsuko Yamashita
- Laboratory of Anatomy, Physiology and Food Biological Science, Department of Food and Nutrition, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Carolyn W Gibson
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, PA, United States
| | - Takashi Kondo
- Laboratory for Developmental Genetics, RIKEN-IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
27
|
Hey1 and Hey2 are differently expressed during mouse tooth development. Gene Expr Patterns 2018; 27:99-105. [DOI: 10.1016/j.gep.2017.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 11/20/2022]
|
28
|
Zhang H, Takeda H, Tsuji T, Kamiya N, Kunieda T, Mochida Y, Mishina Y. Loss of Function of Evc2 in Dental Mesenchyme Leads to Hypomorphic Enamel. J Dent Res 2017; 96:421-429. [PMID: 28081373 DOI: 10.1177/0022034516683674] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ellis-van Creveld (EvC) syndrome is an autosomal-recessive skeletal dysplasia, characterized by short stature and postaxial polydactyly. A series of dental abnormalities, including hypomorphic enamel formation, has been reported in patients with EvC. Despite previous studies that attempted to uncover the mechanism leading to abnormal tooth development, little is known regarding how hypomorphic enamel is formed in patients with EvC. In the current study, using Evc2/ Limbin mutant mice we recently generated, we analyzed enamel formation in the mouse incisor. Consistent with symptoms in human patients, we observed that Evc2 mutant mice had smaller incisors with enamel hypoplasia. Histologic observations coupled with ameloblast marker analyses suggested that Evc2 mutant preameloblasts were capable of differentiating to secretory ameloblasts; this process, however, was apparently delayed, due to delayed odontoblast differentiation, mediated by a limited number of dental mesenchymal stem cells in Evc2 mutant mice. This concept was further supported by the observation that dental mesenchymal-specific deletion of Evc2 phenocopied the tooth abnormalities in Evc2 mutants. Overall, our findings suggest that mutations in Evc2 affect dental mesenchymal stem cell homeostasis, which further leads to hypomorphic enamel formation.
Collapse
Affiliation(s)
- H Zhang
- 1 Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - H Takeda
- 2 Unit of Animal Genomics, GIGA Research Center and Faculty of Veterinary Medicine, University of Liège, 1 Avenue de l'Hôpital, Liège, Belgium
| | - T Tsuji
- 3 Graduate School of Environmental and Life Science, Okayama University, Okayama City, Japan
| | - N Kamiya
- 1 Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Faculty of Budo and Sport Studies, Tenri University, Nara, Japan
| | - T Kunieda
- 3 Graduate School of Environmental and Life Science, Okayama University, Okayama City, Japan
| | - Y Mochida
- 4 Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Y Mishina
- 1 Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
29
|
Morkmued S, Laugel-Haushalter V, Mathieu E, Schuhbaur B, Hemmerlé J, Dollé P, Bloch-Zupan A, Niederreither K. Retinoic Acid Excess Impairs Amelogenesis Inducing Enamel Defects. Front Physiol 2017; 7:673. [PMID: 28111553 PMCID: PMC5217128 DOI: 10.3389/fphys.2016.00673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/20/2016] [Indexed: 01/08/2023] Open
Abstract
Abnormalities of enamel matrix proteins deposition, mineralization, or degradation during tooth development are responsible for a spectrum of either genetic diseases termed Amelogenesis imperfecta or acquired enamel defects. To assess if environmental/nutritional factors can exacerbate enamel defects, we investigated the role of the active form of vitamin A, retinoic acid (RA). Robust expression of RA-degrading enzymes Cyp26b1 and Cyp26c1 in developing murine teeth suggested RA excess would reduce tooth hard tissue mineralization, adversely affecting enamel. We employed a protocol where RA was supplied to pregnant mice as a food supplement, at a concentration estimated to result in moderate elevations in serum RA levels. This supplementation led to severe enamel defects in adult mice born from pregnant dams, with most severe alterations observed for treatments from embryonic day (E)12.5 to E16.5. We identified the enamel matrix proteins enamelin (Enam), ameloblastin (Ambn), and odontogenic ameloblast-associated protein (Odam) as target genes affected by excess RA, exhibiting mRNA reductions of over 20-fold in lower incisors at E16.5. RA treatments also affected bone formation, reducing mineralization. Accordingly, craniofacial ossification was drastically reduced after 2 days of treatment (E14.5). Massive RNA-sequencing (RNA-seq) was performed on E14.5 and E16.5 lower incisors. Reductions in Runx2 (a key transcriptional regulator of bone and enamel differentiation) and its targets were observed at E14.5 in RA-exposed embryos. RNA-seq analysis further indicated that bone growth factors, extracellular matrix, and calcium homeostasis were perturbed. Genes mutated in human AI (ENAM, AMBN, AMELX, AMTN, KLK4) were reduced in expression at E16.5. Our observations support a model in which elevated RA signaling at fetal stages affects dental cell lineages. Thereafter enamel protein production is impaired, leading to permanent enamel alterations.
Collapse
Affiliation(s)
- Supawich Morkmued
- Developmental Biology and Stem Cells Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC)Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 964Illkirch, France; Université de StrasbourgIllkirch, France; Pediatrics Department, Faculty of Dentistry, Khon Kaen UniversityKhon Kaen, Thailand
| | - Virginie Laugel-Haushalter
- Developmental Biology and Stem Cells Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC)Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 964Illkirch, France; Université de StrasbourgIllkirch, France
| | - Eric Mathieu
- Université de Strasbourg, INSERM UMR_1121, Biomaterials and Bioengineering Strasbourg, France
| | - Brigitte Schuhbaur
- Developmental Biology and Stem Cells Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC)Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 964Illkirch, France; Université de StrasbourgIllkirch, France
| | - Joseph Hemmerlé
- Université de Strasbourg, INSERM UMR_1121, Biomaterials and Bioengineering Strasbourg, France
| | - Pascal Dollé
- Developmental Biology and Stem Cells Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC)Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 964Illkirch, France; Université de StrasbourgIllkirch, France
| | - Agnès Bloch-Zupan
- Developmental Biology and Stem Cells Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC)Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 964Illkirch, France; Université de StrasbourgIllkirch, France; Faculté de Chirurgie Dentaire, Université de StrasbourgStrasbourg, France; Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg, Université de StrasbourgStrasbourg, France; Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-Dentaires, Centre de Référence des Manifestations Odontologiques des Maladies Rares, CRMRStrasbourg, France; Eastman Dental Institute, University College LondonLondon, UK
| | - Karen Niederreither
- Developmental Biology and Stem Cells Department, Institute of Genetics and Molecular and Cellular Biology (IGBMC)Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 964Illkirch, France; Université de StrasbourgIllkirch, France; Faculté de Chirurgie Dentaire, Université de StrasbourgStrasbourg, France
| |
Collapse
|
30
|
Duan P, Bonewald LF. The role of the wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth. Int J Biochem Cell Biol 2016; 77:23-29. [PMID: 27210503 DOI: 10.1016/j.biocel.2016.05.015] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 02/05/2023]
Abstract
The Wnt signaling pathway is known as one of the important molecular cascades that regulate cell fate throughout lifespan. The Wnt signaling pathway is further separated into the canonical signaling pathway that depends on the function of β-catenin (Wnt/β-catenin pathway) and the noncanonical pathways that operate independently of β-catenin (planar cell polarity pathway and Wnt/Ca(2+) pathway). The Wnt/β-catenin signaling pathway is complex and consists of numerous receptors, inhibitors, activators, modulators, phosphatases, kinases and other components. However, there is one central, critical molecule to this pathway, β-catenin. While there are at least 3 receptors, LRP 4, 5 and 6, and over twenty activators known as the wnts, and several inhibitors such as sclerostin, dickkopf and secreted frizzled-related protein, these all target β-catenin. These regulators/modulators function to target β-catenin either to the proteasome for degradation or to the nucleus to regulate gene expression. Therefore, the interaction of β-catenin with different factors and Wnt/β-catenin signaling pathway will be the subject of this review with a focus on how this pathway relates to and functions in the formation and maintenance of bone and teeth based on mainly basic and pre-clinical research. Also in this review, the role of this pathway in osteocytes, bone cells embedded in the mineralized matrix, is covered in depth. This pathway is not only important in mineralized tissue growth and development, but for modulation of the skeleton in response to loading and unloading and the viability and health of the adult and aging skeleton.
Collapse
Affiliation(s)
- Peipei Duan
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - L F Bonewald
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
31
|
Otsu K, Harada H. Rho GTPases in ameloblast differentiation. JAPANESE DENTAL SCIENCE REVIEW 2015; 52:32-40. [PMID: 28408954 PMCID: PMC5382790 DOI: 10.1016/j.jdsr.2015.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/04/2015] [Accepted: 09/22/2015] [Indexed: 01/12/2023] Open
Abstract
During tooth development, ameloblasts differentiate from inner enamel epithelial cells to enamel-forming cells by modulating the signal pathways mediating epithelial–mesenchymal interaction and a cell-autonomous gene network. The differentiation process of epithelial cells is characterized by marked changes in their morphology and polarity, accompanied by dynamic cytoskeletal reorganization and changes in cell–cell and cell–matrix adhesion over time. Functional ameloblasts are tall, columnar, polarized cells that synthesize and secrete enamel-specific proteins. After deposition of the full thickness of enamel matrix, ameloblasts become smaller and regulate enamel maturation. Recent significant advances in the fields of molecular biology and genetics have improved our understanding of the regulatory mechanism of the ameloblast cell life cycle, mediated by the Rho family of small GTPases. They act as intracellular molecular switch that transduce signals from extracellular stimuli to the actin cytoskeleton and the nucleus. In our review, we summarize studies that provide current evidence for Rho GTPases and their involvement in ameloblast differentiation. In addition to the Rho GTPases themselves, their downstream effectors and upstream regulators have also been implicated in ameloblast differentiation.
Collapse
Affiliation(s)
- Keishi Otsu
- Corresponding author. Tel.: +81 19 651 5111x5881; fax: +81 19 908 8017.
| | | |
Collapse
|
32
|
Liu C, Niu Y, Zhou X, Xu X, Yang Y, Zhang Y, Zheng L. Cell cycle control, DNA damage repair, and apoptosis-related pathways control pre-ameloblasts differentiation during tooth development. BMC Genomics 2015; 16:592. [PMID: 26265206 PMCID: PMC4534026 DOI: 10.1186/s12864-015-1783-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 07/16/2015] [Indexed: 02/05/2023] Open
Abstract
Background Ameloblast differentiation is the most critical stepwise process in amelogenesis, and it is controlled by precise molecular events. To better understand the mechanism controlling pre-ameloblasts (PABs) differentiation into secretory ameloblasts (SABs), a more precise identification of molecules and signaling networks will elucidate the mechanisms governing enamel formation and lay a foundation for enamel regeneration. Results We analyzed transcriptional profiles of human PABs and SABs. From a total of 28,869 analyzed transcripts, we identified 923 differentially expressed genes (DEGs) with p < 0.05 and Fold-change > 2. Among the DEGs, 647 genes showed elevated expression in PABs compared to SABs. Notably, 38 DEGs displayed greater than eight-fold changes. Comparative analysis revealed that highly expressed genes in PABs were involved in cell cycle control, DNA damage repair and apoptosis, while highly expressed genes in SABs were related to cell adhesion and extracellular matrix. Moreover, coexpression network analysis uncovered two highly conserved sub-networks contributing to differentiation, containing transcription regulators (RUNX2, ETV1 and ETV5), solute carrier family members (SLC15A1 and SLC7A11), enamel matrix protein (MMP20), and a polymodal excitatory ion channel (TRPA1). Conclusions By combining comparative analysis and coexpression networks, this study provides novel biomarkers and research targets for ameloblast differentiation and the potential for their application in enamel regeneration. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1783-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chengcheng Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.
| | - Yulong Niu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.
| | - Xin Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.
| | - Yan Zhang
- Department of Orofacial Sciences, University of California, San Francisco, CA, 94143, USA.
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.
| |
Collapse
|
33
|
Zhang Z, Tian H, Lv P, Wang W, Jia Z, Wang S, Zhou C, Gao X. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis. PLoS One 2015; 10:e0121288. [PMID: 25815730 PMCID: PMC4376716 DOI: 10.1371/journal.pone.0121288] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/29/2015] [Indexed: 11/25/2022] Open
Abstract
Mutation of distal-less homeobox 3 (DLX3) is responsible for human tricho-dento-osseous syndrome (TDO) with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP) genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO) inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.
Collapse
Affiliation(s)
- Zhichun Zhang
- Department of Cariology and Endodontology, School and Hospital of Stomatology, Peking University, Beijing, PR China
| | - Hua Tian
- Department of Cariology and Endodontology, School and Hospital of Stomatology, Peking University, Beijing, PR China
- * E-mail: (HT); (CZ)
| | - Ping Lv
- Department of Cariology and Endodontology, School and Hospital of Stomatology, Peking University, Beijing, PR China
| | - Weiping Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, PR China
| | - Zhuqing Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, PR China
| | - Sainan Wang
- Department of Cariology and Endodontology, School and Hospital of Stomatology, Peking University, Beijing, PR China
| | - Chunyan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, PR China
- * E-mail: (HT); (CZ)
| | - Xuejun Gao
- Department of Cariology and Endodontology, School and Hospital of Stomatology, Peking University, Beijing, PR China
| |
Collapse
|
34
|
Babajko S, de La Dure-Molla M, Jedeon K, Berdal A. MSX2 in ameloblast cell fate and activity. Front Physiol 2015; 5:510. [PMID: 25601840 PMCID: PMC4283505 DOI: 10.3389/fphys.2014.00510] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 12/08/2014] [Indexed: 11/29/2022] Open
Abstract
While many effectors have been identified in enamel matrix and cells via genetic studies, physiological networks underlying their expression levels and thus the natural spectrum of enamel thickness and degree of mineralization are now just emerging. Several transcription factors are candidates for enamel gene expression regulation and thus the control of enamel quality. Some of these factors, such as MSX2, are mainly confined to the dental epithelium. MSX2 homeoprotein controls several stages of the ameloblast life cycle. This chapter introduces MSX2 and its target genes in the ameloblast and provides an overview of knowledge regarding its effects in vivo in transgenic mouse models. Currently available in vitro data on the role of MSX2 as a transcription factor and its links to other players in ameloblast gene regulation are considered. MSX2 modulations are relevant to the interplay between developmental, hormonal and environmental pathways and in vivo investigations, notably in the rodent incisor, have provided insight into dental physiology. Indeed, in vivo models are particularly promising for investigating enamel formation and MSX2 function in ameloblast cell fate. MSX2 may be central to the temporal-spatial restriction of enamel protein production by the dental epithelium and thus regulation of enamel quality (thickness and mineralization level) under physiological and pathological conditions. Studies on MSX2 show that amelogenesis is not an isolated process but is part of the more general physiology of coordinated dental-bone complex growth.
Collapse
Affiliation(s)
- Sylvie Babajko
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, UMRS 1138 Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Descartes Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Diderot Paris, France
| | - Muriel de La Dure-Molla
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, UMRS 1138 Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Descartes Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Diderot Paris, France ; Centre de Référence des Maladies Rares de la Face et de la Cavité Buccale MAFACE, Hôpital Rothschild Paris, France
| | - Katia Jedeon
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, UMRS 1138 Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Descartes Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Diderot Paris, France
| | - Ariane Berdal
- Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, UMRS 1138 Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Descartes Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris Paris, France ; Laboratory of Molecular Oral Pathophysiology, Centre de Recherche des Cordeliers, Université Paris-Diderot Paris, France ; Centre de Référence des Maladies Rares de la Face et de la Cavité Buccale MAFACE, Hôpital Rothschild Paris, France
| |
Collapse
|
35
|
Gao S, Moreno M, Eliason S, Cao H, Li X, Yu W, Bidlack FB, Margolis HC, Baldini A, Amendt BA. TBX1 protein interactions and microRNA-96-5p regulation controls cell proliferation during craniofacial and dental development: implications for 22q11.2 deletion syndrome. Hum Mol Genet 2015; 24:2330-48. [PMID: 25556186 DOI: 10.1093/hmg/ddu750] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
T-box transcription factor TBX1 is the major candidate gene for 22q11.2 deletion syndrome (22q11.2DS, DiGeorge syndrome/Velo-cardio-facial syndrome), whose phenotypes include craniofacial malformations such as dental defects and cleft palate. In this study, Tbx1 was conditionally deleted or over-expressed in the oral and dental epithelium to establish its role in odontogenesis and craniofacial developmental. Tbx1 lineage tracing experiments demonstrated a specific region of Tbx1-positive cells in the labial cervical loop (LaCL, stem cell niche). We found that Tbx1 conditional knockout (Tbx1(cKO)) mice featured microdontia, which coincides with decreased stem cell proliferation in the LaCL of Tbx1(cKO) mice. In contrast, Tbx1 over-expression increased dental epithelial progenitor cells in the LaCL. Furthermore, microRNA-96 (miR-96) repressed Tbx1 expression and Tbx1 repressed miR-96 expression, suggesting that miR-96 and Tbx1 work in a regulatory loop to maintain the correct levels of Tbx1. Cleft palate was observed in both conditional knockout and over-expression mice, consistent with the craniofacial/tooth defects associated with TBX1 deletion and the gene duplication that leads to 22q11.2DS. The biochemical analyses of TBX1 human mutations demonstrate functional differences in their transcriptional regulation of miR-96 and co-regulation of PITX2 activity. TBX1 interacts with PITX2 to negatively regulate PITX2 transcriptional activity and the TBX1 N-terminus is required for its repressive activity. Overall, our results indicate that Tbx1 regulates the proliferation of dental progenitor cells and craniofacial development through miR-96-5p and PITX2. Together, these data suggest a new molecular mechanism controlling pathogenesis of dental anomalies in human 22q11.2DS.
Collapse
Affiliation(s)
- Shan Gao
- Texas A&M University Health Science Center, Houston, TX, USA
| | - Myriam Moreno
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA
| | - Steven Eliason
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA
| | - Huojun Cao
- Texas A&M University Health Science Center, Houston, TX, USA
| | - Xiao Li
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA
| | - Wenjie Yu
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA
| | | | - Henry C Margolis
- Center for Biomineralization, Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA and
| | - Antonio Baldini
- Department of Molecular Medicine and Medical Biotechnology, University Federico II and the Institute of Genetics and Biophysics CNR, Naples, Italy
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA, USA,
| |
Collapse
|
36
|
Mitsiadis TA, Filatova A, Papaccio G, Goldberg M, About I, Papagerakis P. Distribution of the amelogenin protein in developing, injured and carious human teeth. Front Physiol 2014; 5:477. [PMID: 25540624 PMCID: PMC4261713 DOI: 10.3389/fphys.2014.00477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/22/2014] [Indexed: 12/02/2022] Open
Abstract
Amelogenin is the major enamel matrix protein with key roles in amelogenesis. Although for many decades amelogenin was considered to be exclusively expressed by ameloblasts, more recent studies have shown that amelogenin is also expressed in other dental and no-dental cells. However, amelogenin expression in human tissues remains unclear. Here, we show that amelogenin protein is not only expressed during human embryonic development but also in pathological conditions such as carious lesions and injuries after dental cavity preparation. In developing embryonic teeth, amelogenin stage-specific expression is found in all dental epithelia cell populations but with different intensities. In the different layers of enamel matrix, waves of positive vs. negative immunostaining for amelogenin are detected suggesting that the secretion of amelogenin protein is orchestrated by a biological clock. Amelogenin is also expressed transiently in differentiating odontoblasts during predentin formation, but was absent in mature functional odontoblasts. In intact adult teeth, amelogenin was not present in dental pulp, odontoblasts, and dentin. However, in injured and carious adult human teeth amelogenin is strongly re-expressed in newly differentiated odontoblasts and is distributed in the dentinal tubuli under the lesion site. In an in vitro culture system, amelogenin is expressed preferentially in human dental pulp cells that start differentiating into odontoblast-like cells and form mineralization nodules. These data suggest that amelogenin plays important roles not only during cytodifferentiation, but also during tooth repair processes in humans.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Orofacial Development and Regeneration Unit, Faculty of Medicine, Institute of Oral Biology, ZZM, University of Zurich Zurich, Switzerland
| | - Anna Filatova
- Orofacial Development and Regeneration Unit, Faculty of Medicine, Institute of Oral Biology, ZZM, University of Zurich Zurich, Switzerland
| | - Gianpaolo Papaccio
- Dipartimento di Medicina Sperimentale, Sezione di Biotecnologie, Istologia Medica e Biologia Molecolare, Seconda Università Degli Studi di Napoli Napoli, Italy
| | - Michel Goldberg
- INSERM UMR-S 1124, Biomédicale des Saints Pères, University Paris Descartes Paris, France
| | - Imad About
- CNRS, Institut des Sciences du Mouvement UMR 7287, Aix-Marseille Université Marseille, France
| | - Petros Papagerakis
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan Ann Arbor, USA ; Center for Organogenesis, School of Medicine, University of Michigan Ann Arbor, USA ; Center for Computational Medicine and Bioinformatics, School of Medicine, University of Michigan Ann Arbor, USA
| |
Collapse
|
37
|
Li Y, Konicki WS, Wright JT, Suggs C, Xue H, Kuehl MA, Kulkarni AB, Gibson CW. Mouse genetic background influences the dental phenotype. Cells Tissues Organs 2014; 198:448-56. [PMID: 24732779 DOI: 10.1159/000360157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2014] [Indexed: 11/19/2022] Open
Abstract
Dental enamel covers the crown of the vertebrate tooth and is considered to be the hardest tissue in the body. Enamel develops during secretion of an extracellular matrix by ameloblast cells in the tooth germ, prior to eruption of the tooth into the oral cavity. Secreted enamel proteins direct mineralization patterns during the maturation stage of amelogenesis as the tooth prepares to erupt. The amelogenins are the most abundant enamel proteins and are required for normal enamel development. Phenotypic differences were observed between incisors from individual Amelx (amelogenin) null mice that had a mixed 129xC57BL/6J genetic background and between inbred wild-type (WT) mice with different genetic backgrounds (C57BL/6J, C3H/HeJ, FVB/NJ). We hypothesized that this could be due to modifier genes, as human patients with a mutation in an enamel protein gene causing the enamel defect amelogenesis imperfecta (AI) can also have varied appearance of dentitions within a kindred. Enamel density measurements varied for all WT inbred strains midway during incisor development. Enamel thickness varied between some WT strains, and, unexpectedly, dentin density varied extensively between incisors and molars of all WT and Amelx null strains studied. WTFVB/NJ incisors were more similar to those of Amelx null mice than to those of the other WT strains in terms of incisor height/width ratio and pattern of enamel mineralization. Strain-specific differences led to the conclusion that modifier genes may be implicated in determining both normal development and severity of enamel appearance in AI mouse models and may in future studies be related to phenotypic heterogeneity within human AI kindreds reported in the literature.
Collapse
Affiliation(s)
- Yong Li
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pa., USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Rezende TMB, Lima SMF, Petriz BA, Silva ON, Freire MS, Franco OL. Dentistry proteomics: From laboratory development to clinical practice. J Cell Physiol 2013; 228:2271-84. [DOI: 10.1002/jcp.24410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 05/21/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Taia M. B. Rezende
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
- Curso de Odontologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Stella M. F. Lima
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
- Curso de Odontologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Bernardo A. Petriz
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Osmar N. Silva
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Mirna S. Freire
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| | - Octávio L. Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia; Universidade Católica de Brasília; Brasília Distrito Federal Brazil
| |
Collapse
|
39
|
Li L, Wang Y, Lin M, Yuan G, Yang G, Zheng Y, Chen Y. Augmented BMPRIA-mediated BMP signaling in cranial neural crest lineage leads to cleft palate formation and delayed tooth differentiation. PLoS One 2013; 8:e66107. [PMID: 23776616 PMCID: PMC3680418 DOI: 10.1371/journal.pone.0066107] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/01/2013] [Indexed: 01/11/2023] Open
Abstract
The importance of BMP receptor Ia (BMPRIa) mediated signaling in the development of craniofacial organs, including the tooth and palate, has been well illuminated in several mouse models of loss of function, and by its mutations associated with juvenile polyposis syndrome and facial defects in humans. In this study, we took a gain-of-function approach to further address the role of BMPR-IA-mediated signaling in the mesenchymal compartment during tooth and palate development. We generated transgenic mice expressing a constitutively active form of BmprIa (caBmprIa) in cranial neural crest (CNC) cells that contributes to the dental and palatal mesenchyme. Mice bearing enhanced BMPRIa-mediated signaling in CNC cells exhibit complete cleft palate and delayed odontogenic differentiation. We showed that the cleft palate defect in the transgenic animals is attributed to an altered cell proliferation rate in the anterior palatal mesenchyme and to the delayed palatal elevation in the posterior portion associated with ectopic cartilage formation. Despite enhanced activity of BMP signaling in the dental mesenchyme, tooth development and patterning in transgenic mice appeared normal except delayed odontogenic differentiation. These data support the hypothesis that a finely tuned level of BMPRIa-mediated signaling is essential for normal palate and tooth development.
Collapse
Affiliation(s)
- Lu Li
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
| | - Ying Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- Department of Operative Dentistry and Endodontics, College of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi Province, P.R. China
| | - Minkui Lin
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- Department of Periodontology, College of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| | - Guohua Yuan
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- Department of Pediatric Dentistry, College of Stomatology, Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Guobin Yang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- Department of Pediatric Dentistry, College of Stomatology, Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Yuqian Zheng
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- Department of Periodontology, College of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, P.R. China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
40
|
A network of transcription factors operates during early tooth morphogenesis. Mol Cell Biol 2013; 33:3099-112. [PMID: 23754753 DOI: 10.1128/mcb.00524-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Improving the knowledge of disease-causing genes is a unique challenge in human health. Although it is known that genes causing similar diseases tend to lie close to one another in a network of protein-protein or functional interactions, the identification of these protein-protein networks is difficult to unravel. Here, we show that Msx1, Snail, Lhx6, Lhx8, Sp3, and Lef1 interact in vitro and in vivo, revealing the existence of a novel context-specific protein network. These proteins are all expressed in the neural crest-derived dental mesenchyme and cause tooth agenesis disorder when mutated in mouse and/or human. We also identified an in vivo direct target for Msx1 function, the cyclin D-dependent kinase (CDK) inhibitor p19(ink4d), whose transcription is differentially modulated by the protein network. Considering the important role of p19(ink4d) as a cell cycle regulator, these results provide evidence for the first time of the unique plasticity of the Msx1-dependent network of proteins in conferring differential transcriptional output and in controlling the cell cycle through the regulation of a cyclin D-dependent kinase inhibitor. Collectively, these data reveal a novel protein network operating in the neural crest-derived dental mesenchyme that is relevant for many other areas of developmental and evolutionary biology.
Collapse
|
41
|
Yasukawa M, Ishida K, Yuge Y, Hanaoka M, Minami Y, Ogawa M, Sasaki T, Saito M, Tsuji T. Dpysl4 is involved in tooth germ morphogenesis through growth regulation, polarization and differentiation of dental epithelial cells. Int J Biol Sci 2013; 9:382-90. [PMID: 23630450 PMCID: PMC3638293 DOI: 10.7150/ijbs.5510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/09/2013] [Indexed: 11/05/2022] Open
Abstract
Dihydropyrimidinase-related protein 4 (Dpysl4) is a known regulator of hippocampal neuron development. Here, we report that Dpysl4 is involved in growth regulation, polarization and differentiation of dental epithelial cells during tooth germ morphogenesis. A reduction in Dpysl4 gene expression in the tooth germ produced a loss of ameloblasts, resulting in the decrease of synthesis and secretion of enamel. The inhibition of Dpysl4 gene expression led to promotion of cell proliferation of inner enamel epithelial cells and inhibition of the differentiation of these cells into pre-ameloblasts, which was confirmed by analyzing cell polarization, columnar cell structure formation and the expression of ameloblast marker genes. By contrast, overexpression of Dpysl4 in dental epithelial cells induces inhibition of growth and increases the expression of the inner enamel epithelial cell marker gene, Msx2. These findings suggest that Dpysl4 plays essential roles in tooth germ morphogenesis through the regulation of dental epithelial cell proliferation, cell polarization and differentiation.
Collapse
Affiliation(s)
- Masato Yasukawa
- Department of Biological Science and Technology, Graduate school of Industrial Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Jheon AH, Seidel K, Biehs B, Klein OD. From molecules to mastication: the development and evolution of teeth. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:165-82. [PMID: 24009032 DOI: 10.1002/wdev.63] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Teeth are unique to vertebrates and have played a central role in their evolution. The molecular pathways and morphogenetic processes involved in tooth development have been the focus of intense investigation over the past few decades, and the tooth is an important model system for many areas of research. Developmental biologists have exploited the clear distinction between the epithelium and the underlying mesenchyme during tooth development to elucidate reciprocal epithelial/mesenchymal interactions during organogenesis. The preservation of teeth in the fossil record makes these organs invaluable for the work of paleontologists, anthropologists, and evolutionary biologists. In addition, with the recent identification and characterization of dental stem cells, teeth have become of interest to the field of regenerative medicine. Here, we review the major research areas and studies in the development and evolution of teeth, including morphogenesis, genetics and signaling, evolution of tooth development, and dental stem cells.
Collapse
Affiliation(s)
- Andrew H Jheon
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, University of California San Francisco, San Francisco, CA, USA
| | | | | | | |
Collapse
|
43
|
Jussila M, Thesleff I. Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harb Perspect Biol 2012; 4:a008425. [PMID: 22415375 DOI: 10.1101/cshperspect.a008425] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Teeth develop as ectodermal appendages from epithelial and mesenchymal tissues. Tooth organogenesis is regulated by an intricate network of cell-cell signaling during all steps of development. The dental hard tissues, dentin, enamel, and cementum, are formed by unique cell types whose differentiation is intimately linked with morphogenesis. During evolution the capacity for tooth replacement has been reduced in mammals, whereas teeth have acquired more complex shapes. Mammalian teeth contain stem cells but they may not provide a source for bioengineering of human teeth. Therefore it is likely that nondental cells will have to be reprogrammed for the purpose of clinical tooth regeneration. Obviously this will require understanding of the mechanisms of normal development. The signaling networks mediating the epithelial-mesenchymal interactions during morphogenesis are well characterized but the molecular signatures of the odontogenic tissues remain to be uncovered.
Collapse
Affiliation(s)
- Maria Jussila
- Developmental Biology Program Institute of Biotechnology, Biokeskus 1, P.O. Box 56, University of Helsinki, Helsinki FIN-00014, Finland.
| | | |
Collapse
|
44
|
Handrigan GR, Richman JM. Unicuspid and bicuspid tooth crown formation in squamates. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:598-608. [DOI: 10.1002/jez.b.21438] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/15/2011] [Accepted: 07/20/2011] [Indexed: 11/08/2022]
|
45
|
Zheng L, Papagerakis S, Schnell SD, Hoogerwerf WA, Papagerakis P. Expression of clock proteins in developing tooth. Gene Expr Patterns 2011; 11:202-6. [PMID: 21156215 PMCID: PMC3073654 DOI: 10.1016/j.gep.2010.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 11/29/2010] [Accepted: 12/07/2010] [Indexed: 11/16/2022]
Abstract
Morphological and functional changes during ameloblast and odontoblast differentiation suggest that enamel and dentin formation is under circadian control. Circadian rhythms are endogenous self-sustained oscillations with periods of 24h that control diverse physiological and metabolic processes. Mammalian clock genes play a key role in synchronizing circadian functions in many organs. However, close to nothing is known on clock genes expression during tooth development. In this work, we investigated the expression of four clock genes during tooth development. Our results showed that circadian clock genes Bmal1, clock, per1, and per2 mRNAs were detected in teeth by RT-PCR. Immunohistochemistry showed that clock protein expression was first detected in teeth at the bell stage (E17), being expressed in EOE and dental papilla cells. At post-natal day four (PN4), all four clock proteins continued to be expressed in teeth but with different intensities, being strongly expressed within the nucleus of ameloblasts and odontoblasts and down-regulated in dental pulp cells. Interestingly, at PN21 incisor, expression of clock proteins was down-regulated in odontoblasts of the crown-analogue side but expression was persisting in root-analogue side odontoblasts. In contrast, both crown and root odontoblasts were strongly stained for all four clock proteins in first molars at PN21. Within the periodontal ligament (PDL) space, epithelial rests of Malassez (ERM) showed the strongest expression among other PDL cells. Our data suggests that clock genes might be involved in the regulation of ameloblast and odontoblast functions, such as enamel and dentin protein secretion and matrix mineralization.
Collapse
Affiliation(s)
- Li Zheng
- Department of Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Silvana Papagerakis
- Department of Otorhinolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Santiago D. Schnell
- Brehm Center for Type 1 Diabetes & Analysis, University of Michigan, Ann Arbor, MI, USA
| | | | - Petros Papagerakis
- Department of Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
46
|
Chun SY, Lee HJ, Choi YA, Kim KM, Baek SH, Park HS, Kim JY, Ahn JM, Cho JY, Cho DW, Shin HI, Park EK. Analysis of the Soluble Human Tooth Proteome and Its Ability to Induce Dentin/Tooth Regeneration. Tissue Eng Part A 2011; 17:181-91. [DOI: 10.1089/ten.tea.2010.0121] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- So Young Chun
- Department of Pathology and Regenerative Medicine, IHBR, JIRM, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Hyo Jung Lee
- Department of Pathology and Regenerative Medicine, IHBR, JIRM, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Young Ae Choi
- Department of Pathology and Regenerative Medicine, IHBR, JIRM, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung Min Kim
- Department of Pathology and Regenerative Medicine, IHBR, JIRM, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Sang Heum Baek
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Hyo Sang Park
- Department of Orthodontics, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Young Kim
- Department of Oral Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jung-Mo Ahn
- Department of Oral Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Je-Yeol Cho
- Department of Oral Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, POSTECH, Pohang, Republic of Korea
| | - Hong-In Shin
- Department of Pathology and Regenerative Medicine, IHBR, JIRM, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Eui Kyun Park
- Department of Pathology and Regenerative Medicine, IHBR, JIRM, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
47
|
Biomineralization and matrix vesicles in biology and pathology. Semin Immunopathol 2010; 33:409-17. [PMID: 21140263 DOI: 10.1007/s00281-010-0230-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 11/18/2010] [Indexed: 01/31/2023]
Abstract
In normal healthy individuals, mineral formation is restricted to specialized tissues which form the skeleton and the dentition. Within these tissues, mineral formation is tightly controlled both in growth and development and in normal adult life. The mechanism of calcification in skeletal and dental tissues has been under investigation for a considerable period. One feature common to almost all of these normal mineralization mechanisms is the elaboration of matrix vesicles, small (20-200 nm) membrane particles, which bud off from the plasma membrane of mineralizing cells and are released into the pre-mineralized organic matrix. The first crystals which form on this organic matrix are seen in and around matrix vesicles. Pathologic ectopic mineralization is seen in a number of human genetic and acquired diseases, including calcification of joint cartilage resulting in osteoarthritis and mineralization of the cardiovasculature resulting in exacerbation of atherosclerosis and blockage of blood vessels. Surprisingly, increasing evidence supports the contention that the mechanisms of soft tissue calcification are similar to those seen in normal skeletal development. In particular, matrix vesicle-like membranes are observed in a number of ectopic calcifications. The purpose of this review is to describe how matrix vesicles function in normal mineral formation and review the evidence for their participation in pathologic calcification.
Collapse
|
48
|
Jackman WR, Yoo JJ, Stock DW. Hedgehog signaling is required at multiple stages of zebrafish tooth development. BMC DEVELOPMENTAL BIOLOGY 2010; 10:119. [PMID: 21118524 PMCID: PMC3001715 DOI: 10.1186/1471-213x-10-119] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/30/2010] [Indexed: 12/21/2022]
Abstract
Background The accessibility of the developing zebrafish pharyngeal dentition makes it an advantageous system in which to study many aspects of tooth development from early initiation to late morphogenesis. In mammals, hedgehog signaling is known to be essential for multiple stages of odontogenesis; however, potential roles for the pathway during initiation of tooth development or in later morphogenesis are incompletely understood. Results We have identified mRNA expression of the hedgehog ligands shha and the receptors ptc1 and ptc2 during zebrafish pharyngeal tooth development. We looked for, but did not detect, tooth germ expression of the other known zebrafish hedgehog ligands shhb, dhh, ihha, or ihhb, suggesting that as in mammals, only Shh participates in zebrafish tooth development. Supporting this idea, we found that morphological and gene expression evidence of tooth initiation is eliminated in shha mutant embryos, and that morpholino antisense oligonucleotide knockdown of shha, but not shhb, function prevents mature tooth formation. Hedgehog pathway inhibition with the antagonist compound cyclopamine affected tooth formation at each stage in which we applied it: arresting development at early stages and disrupting mature tooth morphology when applied later. These results suggest that hedgehog signaling is required continuously during odontogenesis. In contrast, over-expression of shha had no effect on the developing dentition, possibly because shha is normally extensively expressed in the zebrafish pharyngeal region. Conclusion We have identified previously unknown requirements for hedgehog signaling for early tooth initiation and later morphogenesis. The similarity of our results with data from mouse and other vertebrates suggests that despite gene duplication and changes in the location of where teeth form, the roles of hedgehog signaling in tooth development have been largely conserved during evolution.
Collapse
|
49
|
Simmer JP, Papagerakis P, Smith CE, Fisher DC, Rountrey AN, Zheng L, Hu JCC. Regulation of dental enamel shape and hardness. J Dent Res 2010; 89:1024-38. [PMID: 20675598 DOI: 10.1177/0022034510375829] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal interactions guide tooth development through its early stages and establish the morphology of the dentin surface upon which enamel will be deposited. Starting with the onset of amelogenesis beneath the future cusp tips, the shape of the enamel layer covering the crown is determined by five growth parameters: the (1) appositional growth rate, (2) duration of appositional growth (at the cusp tip), (3) ameloblast extension rate, (4) duration of ameloblast extension, and (5) spreading rate of appositional termination. Appositional growth occurs at a mineralization front along the ameloblast distal membrane in which amorphous calcium phosphate (ACP) ribbons form and lengthen. The ACP ribbons convert into hydroxyapatite crystallites as the ribbons elongate. Appositional growth involves a secretory cycle that is reflected in a series of incremental lines. A potentially important function of enamel proteins is to ensure alignment of successive mineral increments on the tips of enamel ribbons deposited in the previous cycle, causing the crystallites to lengthen with each cycle. Enamel hardens in a maturation process that involves mineral deposition onto the sides of existing crystallites until they interlock with adjacent crystallites. Neutralization of acidity generated by hydroxyapatite formation is a key part of the mechanism. Here we review the growth parameters that determine the shape of the enamel crown as well as the mechanisms of enamel appositional growth and maturation.
Collapse
Affiliation(s)
- J P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 N. University, Ann Arbor, MI 48109-1078, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Toth K, Shao Q, Lorentz R, Laird DW. Decreased levels of Cx43 gap junctions result in ameloblast dysregulation and enamel hypoplasia in Gja1Jrt/+ mice. J Cell Physiol 2010; 223:601-9. [PMID: 20127707 DOI: 10.1002/jcp.22046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Coordinated differentiation of the ameloblast cell layer is essential to enamel matrix protein deposition and subsequent mineralization. It has been hypothesized that this process is governed by Cx43-based gap junctional intercellular communication as oculodentodigital dysplasia (ODDD) patients harboring autosomal-dominant mutations in Cx43 exhibit enamel defects typically resulting in early adulthood tooth loss. To assess the role of Cx43 in tooth development we employ a mouse model of ODDD that harbors a G60S Cx43 mutant, Gja1(Jrt)/+, and appears to exhibit tooth abnormalities that mimic the human disease. We found that total Cx43 plaques at all stages of ameloblast differentiation, as well as within the supporting cell layers, were greatly reduced in Gja1(Jrt)/+ incisors compared to wild-type littermate controls. To characterize the Gja1(Jrt)/+ mouse tooth phenotype, mice were sacrificed prior to tooth eruption (postnatal day 7), weaning (postnatal day 21), and adulthood (2 months postnatal). A severely disorganized Gja1(Jrt)/+ mouse ameloblast layer and abnormal accumulation of amelogenin were observed at stages when the cells were active in secretion and mineralization. Differences in enamel thickness became more apparent after tooth eruption and incisor exposure to the oral cavity suggesting that enamel integrity is compromised, leading to rapid erosion. Additional analysis of incisors from mutant mice revealed that they were longer with a thicker dentin layer than their wild-type littermates, which may reflect a mechanical stress response to the depleted enamel layer. Together, these data show that reduced levels of Cx43 gap junctions result in ameloblast dysregulation, enamel hypoplasia, and secondary tissue responses.
Collapse
Affiliation(s)
- K Toth
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|