1
|
White HE, Tucker AS, Fernandez V, Portela Miguez R, Hautier L, Herrel A, Urban DJ, Sears KE, Goswami A. Pedomorphosis in the ancestry of marsupial mammals. Curr Biol 2023:S0960-9822(23)00457-8. [PMID: 37119816 DOI: 10.1016/j.cub.2023.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 02/27/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
Within mammals, different reproductive strategies (e.g., egg laying, live birth of extremely underdeveloped young, and live birth of well-developed young) have been linked to divergent evolutionary histories. How and when developmental variation across mammals arose is unclear. While egg laying is unquestionably considered the ancestral state for all mammals, many long-standing biases treat the extreme underdeveloped state of marsupial young as the ancestral state for therian mammals (clade including both marsupials and placentals), with the well-developed young of placentals often considered the derived mode of development. Here, we quantify mammalian cranial morphological development and estimate ancestral patterns of cranial shape development using geometric morphometric analysis of the largest comparative ontogenetic dataset of mammals to date (165 specimens, 22 species). We identify a conserved region of cranial morphospace for fetal specimens, after which cranial morphology diversified through ontogeny in a cone-shaped pattern. This cone-shaped pattern of development distinctively reflected the upper half of the developmental hourglass model. Moreover, cranial morphological variation was found to be significantly associated with the level of development (position on the altricial-precocial spectrum) exhibited at birth. Estimation of ancestral state allometry (size-related shape change) reconstructs marsupials as pedomorphic relative to the ancestral therian mammal. In contrast, the estimated allometries for the ancestral placental and ancestral therian were indistinguishable. Thus, from our results, we hypothesize that placental mammal cranial development most closely reflects that of the ancestral therian mammal, while marsupial cranial development represents a more derived mode of mammalian development, in stark contrast to many interpretations of mammalian evolution.
Collapse
Affiliation(s)
- Heather E White
- Science Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK; Centre for Craniofacial and Regenerative Biology, King's College London, Great Maze Pond, London SE1 9RT, UK; Division of Biosciences, University College London, Gower Street, London WC1E 6DE, UK.
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Vincent Fernandez
- European Synchrotron Radiation Facility, 71 rue des Martyrs, 38000 Grenoble, France
| | | | - Lionel Hautier
- Science Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK; Institut des Sciences de l'Evolution, Université de Montpellier, CNRS, IRD, EPHE, Montpellier 34095, France
| | - Anthony Herrel
- UMR 7179, Centre National de la Recherche Scientifique/Muséum National d'Histoire Naturelle, Département Adaptations du Vivant, 55 rue Buffon, 75005 Paris, France
| | - Daniel J Urban
- Institute of Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Anjali Goswami
- Science Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK; Division of Biosciences, University College London, Gower Street, London WC1E 6DE, UK
| |
Collapse
|
2
|
Sumiyama K, Tanave A. The regulatory landscape of the
Dlx
gene system in branchial arches: Shared characteristics among
Dlx
bigene clusters and evolution. Dev Growth Differ 2020; 62:355-362. [DOI: 10.1111/dgd.12671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Kenta Sumiyama
- Laboratory for Mouse Genetic EngineeringRIKEN Center for Biosystems Dynamics Research Suita Osaka Japan
| | - Akira Tanave
- Laboratory for Mouse Genetic EngineeringRIKEN Center for Biosystems Dynamics Research Suita Osaka Japan
| |
Collapse
|
3
|
Davies KTJ, Tsagkogeorga G, Rossiter SJ. Divergent evolutionary rates in vertebrate and mammalian specific conserved non-coding elements (CNEs) in echolocating mammals. BMC Evol Biol 2014; 14:261. [PMID: 25523630 PMCID: PMC4302572 DOI: 10.1186/s12862-014-0261-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/08/2014] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The majority of DNA contained within vertebrate genomes is non-coding, with a certain proportion of this thought to play regulatory roles during development. Conserved Non-coding Elements (CNEs) are an abundant group of putative regulatory sequences that are highly conserved across divergent groups and thus assumed to be under strong selective constraint. Many CNEs may contain regulatory factor binding sites, and their frequent spatial association with key developmental genes - such as those regulating sensory system development - suggests crucial roles in regulating gene expression and cellular patterning. Yet surprisingly little is known about the molecular evolution of CNEs across diverse mammalian taxa or their role in specific phenotypic adaptations. We examined 3,110 vertebrate-specific and ~82,000 mammalian-specific CNEs across 19 and 9 mammalian orders respectively, and tested for changes in the rate of evolution of CNEs located in the proximity of genes underlying the development or functioning of auditory systems. As we focused on CNEs putatively associated with genes underlying the development/functioning of auditory systems, we incorporated echolocating taxa in our dataset because of their highly specialised and derived auditory systems. RESULTS Phylogenetic reconstructions of concatenated CNEs broadly recovered accepted mammal relationships despite high levels of sequence conservation. We found that CNE substitution rates were highest in rodents and lowest in primates, consistent with previous findings. Comparisons of CNE substitution rates from several genomic regions containing genes linked to auditory system development and hearing revealed differences between echolocating and non-echolocating taxa. Wider taxonomic sampling of four CNEs associated with the homeobox genes Hmx2 and Hmx3 - which are required for inner ear development - revealed family-wise variation across diverse bat species. Specifically within one family of echolocating bats that utilise frequency-modulated echolocation calls varying widely in frequency and intensity high levels of sequence divergence were found. CONCLUSIONS Levels of selective constraint acting on CNEs differed both across genomic locations and taxa, with observed variation in substitution rates of CNEs among bat species. More work is needed to determine whether this variation can be linked to echolocation, and wider taxonomic sampling is necessary to fully document levels of conservation in CNEs across diverse taxa.
Collapse
Affiliation(s)
- Kalina T J Davies
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Georgia Tsagkogeorga
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Stephen J Rossiter
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
4
|
Amemiya CT, Wagner GP. Francis (Frank) Hugh Ruddle (1929-2013). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:273-5. [PMID: 23650107 DOI: 10.1002/jez.b.22509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 04/07/2013] [Accepted: 04/09/2013] [Indexed: 11/06/2022]
|