1
|
Flajnik MF. The Janus (dual) model of immunoglobulin isotype evolution: Conservation and plasticity are the defining paradigms. Immunol Rev 2024; 328:49-64. [PMID: 39223989 DOI: 10.1111/imr.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The study of antibodies in jawed vertebrates (gnathostomes) provides every immunologist with a bird's eye view of how human immunoglobulins (Igs) came into existence and subsequently evolved into their present forms. It is a fascinating Darwinian history of conservation on the one hand and flexibility on the other, exemplified by the Ig heavy chain (H) isotypes IgM and IgD/W, respectively. The cartilaginous fish (e.g., sharks) Igs provide a glimpse of "how everything got off the ground," while the amphibians (e.g., the model Xenopus) reveal how the adaptive immune system made an about face with the emergence of Ig isotype switching and IgG-like structure/function. The evolution of mucosal Igs is a captivating account of malleability, convergence, and conservation, and a call to arms for future study! In between there are spellbinding chronicles of antibody evolution in each class of vertebrates and rather incredible stories of how antibodies can adapt to occupy niches, for example, single-domain variable regions, cold-adapted Igs, convergent mechanisms to dampen antibody function, provision of mucosal defense, and many more. The purpose here is not to provide an encyclopedic examination of antibody evolution, but rather to hit the high points and entice readers to appreciate how things "came to be."
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Abstract
The adaptive immune system arose 500 million years ago in ectothermic (cold-blooded) vertebrates. Classically, the adaptive immune system has been defined by the presence of lymphocytes expressing recombination-activating gene (RAG)-dependent antigen receptors and the MHC. These features are found in all jawed vertebrates, including cartilaginous and bony fish, amphibians and reptiles and are most likely also found in the oldest class of jawed vertebrates, the extinct placoderms. However, with the discovery of an adaptive immune system in jawless fish based on an entirely different set of antigen receptors - the variable lymphocyte receptors - the divergence of T and B cells, and perhaps innate-like lymphocytes, goes back to the origin of all vertebrates. This Review explores how recent developments in comparative immunology have furthered our understanding of the origins and function of the adaptive immune system.
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, USA.
| |
Collapse
|
3
|
Coscia MR, Varriale S, Giacomelli S, Oreste U. Antarctic teleost immunoglobulins: more extreme, more interesting. FISH & SHELLFISH IMMUNOLOGY 2011; 31:688-696. [PMID: 21044686 DOI: 10.1016/j.fsi.2010.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/12/2010] [Accepted: 10/22/2010] [Indexed: 05/30/2023]
Abstract
We have investigated the immunoglobulin molecule and the genes encoding it in teleosts living in the Antarctic seas at the constant temperature of -1.86 °C. The majority of Antarctic teleosts belong to the suborder Notothenioidei (Perciformes), which includes only a few non-Antarctic species. Twenty-one Antarctic and two non-Antarctic Notothenioid species were included in our studies. We sequenced immunoglobulin light chains in two species and μ heavy chains, partially or totally, in twenty species. In the case of heavy chain, genomic DNA and the cDNA encoding the secreted and the membrane form were analyzed. From one species, Trematomus bernacchii, a spleen cDNA library was constructed to evaluate the diversity of VH gene segments. T. bernacchii IgM, purified from the serum and bile, was characterized. Homology Modelling and Molecular Dynamics were used to determine the molecular structure of T. bernacchii and Chionodraco hamatus immunoglobulin domains. This paper sums up the previous results and broadens them with the addition of unpublished data.
Collapse
Affiliation(s)
- Maria Rosaria Coscia
- Institute of Protein Biochemistry, CNR, Via P. Castellino 111, 80131 Naples, Italy.
| | | | | | | |
Collapse
|
4
|
Quiniou SMA, Wilson M, Boudinot P. Processing of fish Ig heavy chain transcripts: diverse splicing patterns and unusual nonsense mediated decay. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:949-58. [PMID: 21168434 DOI: 10.1016/j.dci.2010.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/10/2010] [Indexed: 05/13/2023]
Abstract
While the diversification of the antigen-binding sites is realized by genomic VDJ rearrangements during B cell differentiation, different forms of immunoglobulin (Ig) heavy (H) chains can be produced through multiple splicing pathways. In most vertebrates, the secreted (S) and membrane (Mb) forms of IgM chain are created by alternative splicing through usage of a cryptic splice site in Cμ4 allowing the junction to the TM exon. The processing pattern for Igμ is different in teleosts, which generally use the Cμ3 donor site instead. In ancient fish lineages, multiple unusual splicing patterns were found for Ig H chain, involving donor sites that do not always follow the classical consensus. The production of IgD versus IgM H chains seems to be generally realized by alternative splicing in all vertebrates, but typical teleost IgD H chains are chimeric and contains a Cμ1 domain. Together, these observations raise questions on how different fish regulate RNA splicing and if their splicing machinery is especially complex. A preliminary scan of the zebrafish and stickleback genomes provides evidence that gene orthologs to the mammalian main splice factors are highly conserved as single copy genes, while the snRNPs U repertoire may be different and may explain other particular features of RNA processing in fish.
Collapse
|
5
|
Coscia MR, Varriale S, De Santi C, Giacomelli S, Oreste U. Evolution of the Antarctic teleost immunoglobulin heavy chain gene. Mol Phylogenet Evol 2009; 55:226-233. [PMID: 19800977 DOI: 10.1016/j.ympev.2009.09.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/28/2009] [Accepted: 09/29/2009] [Indexed: 11/19/2022]
Abstract
Notothenioid teleosts underwent major modifications of their genome to adapt to the cooling of the Antarctic environment. In order to identify specific features of the Antarctic teleost immunoglobulin, transcripts encoding the constant region of the IgM heavy chain from 13 Antarctic and non-Antarctic notothenioid species were sequenced. The primary mRNA splicing for the membrane form was found to be atypical in the majority of Antarctic species, because it led to exclusion of two entire constant exons, and to inclusion of 39-nucleotide exons encoding an unusually long Extracellular Membrane-Proximal Domain (EMPD). Genomic DNA analysis revealed that each 39-nucleotide exon fell within a long sequence that was the reverse complement of an upstream region. Deduced amino acid sequence analysis lead to the identification of cysteine encoding codons in the 39-nucleotide exons, but not in the respective sequence counterpart, suggesting that these residues might play an important role in the folding of the EMPD.
Collapse
Affiliation(s)
- Maria Rosaria Coscia
- Institute of Protein Biochemistry, CNR, Via P. Castellino 111, 80131 Naples, Italy.
| | - Sonia Varriale
- Institute of Protein Biochemistry, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Concetta De Santi
- Institute of Protein Biochemistry, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Stefano Giacomelli
- Institute of Protein Biochemistry, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Umberto Oreste
- Institute of Protein Biochemistry, CNR, Via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
6
|
Abstract
Because of their extreme importance to human health, we probably know more about the structure and function of antibodies than practically any other molecule. Despite all the knowledge that has been accrued in the understanding of antibodies, modern approaches, especially comparative genomics, continue to yield novel findings regarding their underlying biology and evolution. In this review, we describe recent research that led to these revelations, and discuss the broad evolutionary implications of these findings. We have restricted our discussion to three vignettes. Considerable attention has been paid to the recent discovery that the teleost IgH locus is highly similar in organization to the Tcra-Tcrd locus, implicating an evolutionary common ancestor and parallels between the functions of B and T cells during development. Second, we discuss how a new type of antibody, recently discovered in jawless vertebrates, composed not of immunoglobulins but leucine-rich repeats, sheds new light on the overall forces driving evolution of all adaptive antigen receptors. Lastly, we discuss how accumulation of genomic sequences of various human subpopulations leads to better understanding of the directionality of antibody evolution. There is always more to learn from the unfolding saga of antibodies.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, California 90095, USA.
| | | |
Collapse
|
7
|
Iron metabolism genes in Antarctic notothenioids: A review. Mar Genomics 2008; 1:79-85. [DOI: 10.1016/j.margen.2008.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 12/15/2008] [Accepted: 12/29/2008] [Indexed: 12/23/2022]
|
8
|
Evolutionary analysis of the transferrin gene in Antarctic Notothenioidei: A history of adaptive evolution and functional divergence. Mar Genomics 2008; 1:95-101. [DOI: 10.1016/j.margen.2008.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Accepted: 10/23/2008] [Indexed: 01/09/2023]
|
9
|
Buonocore F, Randelli E, Paderi F, Bird S, Secombes CJ, Mazzini M, Scapigliati G. The cytokine IL-1β from the crocodile icefish Chionodraco hamatus (Perciformes: Channichthyidae). Polar Biol 2006. [DOI: 10.1007/s00300-006-0145-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Abstract
This review discusses evolution of the process of Ig heavy chain class switching, relating it to the first appearance of somatic hypermutation (SHM) of variable region genes. First, we discuss recent findings on the mechanism of class switch recombination (CSR) in mice and humans, and then review the mechanisms of expression of Ig heavy chain isotypes from fishes to mammals. Importantly, activation-induced cytidine deaminase (AID), which is essential for CSR and somatic hypermutation, is found in fishes. Although at least some fishes are likely to undergo SHM, CSR is highly unlikely to occur in this group. We discuss the first appearance of CSR in amphibians and how it differs in birds and mammals.
Collapse
Affiliation(s)
- Janet Stavnezer
- Department of Molecular Genetics and Microbiology, Program in Immunology and Virology, University of Massachusetts Medical School, 55 Lake Ave N, Worcester, MA 01655-0122, USA.
| | | |
Collapse
|
11
|
Ota T, Rast JP, Litman GW, Amemiya CT. Lineage-restricted retention of a primitive immunoglobulin heavy chain isotype within the Dipnoi reveals an evolutionary paradox. Proc Natl Acad Sci U S A 2003; 100:2501-6. [PMID: 12606718 PMCID: PMC151370 DOI: 10.1073/pnas.0538029100] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The lineage leading to lungfishes is one of the few major jawed vertebrate groups in which Ig heavy chain isotype structure has not been investigated at the genetic level. In this study, we have characterized three different Ig heavy chain isotypes of the African lungfish, Protopterus aethiopicus, including an IgM-type heavy chain and short and long forms of non-IgM heavy chains. Northern blot analysis as well as patterns of V(H) utilization suggest that the IgM and non-IgM isotypes are likely encoded in separate loci. The two non-IgM isotypes identified in Protopterus share structural features with the short and long forms of IgX/W/NARC (referred to hereafter as IgW), which were previously considered to be restricted to the cartilaginous fish. It seems that the IgW isotype has a far broader phylogenetic distribution than considered originally and raises questions with regard to the origin and evolutionary divergence of IgM and IgW. Moreover, its absence in other gnathostome lineages implies paradoxically that the IgW-type genes were lost from teleost and tetrapod lineages.
Collapse
Affiliation(s)
- Tatsuya Ota
- Department of Biosystems Science, The Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa 240-0193, Japan
| | | | | | | |
Collapse
|