1
|
Cioffi CL, Raja A, Muthuraman P, Jayaraman A, Jayakumar S, Varadi A, Racz B, Petrukhin K. Identification of Transthyretin Tetramer Kinetic Stabilizers That Are Capable of Inhibiting the Retinol-Dependent Retinol Binding Protein 4-Transthyretin Interaction: Potential Novel Therapeutics for Macular Degeneration, Transthyretin Amyloidosis, and Their Common Age-Related Comorbidities. J Med Chem 2021; 64:9010-9041. [PMID: 34138572 DOI: 10.1021/acs.jmedchem.1c00099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dissociation of transthyretin (TTR) tetramers may lead to misfolding and aggregation of proamyloidogenic monomers, which underlies TTR amyloidosis (ATTR) pathophysiology. ATTR is a progressive disease resulting from the deposition of toxic fibrils in tissues that predominantly presents clinically as amyloid cardiomyopathy and peripheral polyneuropathy. Ligands that bind to and kinetically stabilize TTR tetramers prohibit their dissociation and may prevent ATTR onset. Drawing from clinically investigated AG10, we designed a constrained congener (14) that exhibits excellent TTR tetramer binding potency, prevents TTR aggregation in a gel-based assay, and possesses desirable pharmacokinetics in mice. Additionally, 14 significantly lowers murine serum retinol binding protein 4 (RBP4) levels despite a lack of binding at that protein's all-trans-retinol site. We hypothesize that kinetic stabilization of TTR tetramers via 14 is allosterically hindering all-trans-retinol-dependent RBP4-TTR tertiary complex formation and that the compound could present ancillary therapeutic utility for indications treated with RBP4 antagonists, such as macular degeneration.
Collapse
Affiliation(s)
- Christopher L Cioffi
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Arun Raja
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Parthasarathy Muthuraman
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Aravindan Jayaraman
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Srinivasan Jayakumar
- Departments of Basic and Clinical Sciences and Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Avenue, Albany, New York 12208, United States
| | - Andras Varadi
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| | - Boglarka Racz
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| | - Konstantin Petrukhin
- Department of Ophthalmology, Columbia University Medical Center, New York, New York 10032, United States
| |
Collapse
|
2
|
Ibrahim RB, Yeh SY, Lin KP, Ricardo F, Yu TY, Chan CC, Tsai JW, Liu YT. Cellular secretion and cytotoxicity of transthyretin mutant proteins underlie late-onset amyloidosis and neurodegeneration. Cell Mol Life Sci 2020; 77:1421-1434. [PMID: 31728576 PMCID: PMC11105042 DOI: 10.1007/s00018-019-03357-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Abstract
Transthyretin amyloidosis (ATTR) is a progressive life-threatening disease characterized by the deposition of transthyretin (TTR) amyloid fibrils. Several pathogenic variants have been shown to destabilize TTR tetramers, leading to aggregation of misfolded TTR fibrils. However, factors that underlie the differential age of disease onset amongst amyloidogenic TTR variants remain elusive. Here, we examined the biological properties of various TTR mutations and found that the cellular secretory pattern of the wild-type (WT) TTR was similar to those of the late-onset mutant (Ala97Ser, p. Ala117Ser), stable mutant (Thr119Met, p. Thr139Met), early-onset mutant (Val30Met, p. Val50Met), but not in the unstable mutant (Asp18Gly, p. Asp38Gly). Cytotoxicity assays revealed their toxicities in the order of Val30Met > Ala97Ser > WT > Thr119Met in neuroblastoma cells. Surprisingly, while early-onset amyloidogenic TTR monomers (M-TTRs) are retained by the endoplasmic reticulum quality control (ERQC), late-onset amyloidogenic M-TTRs can be secreted extracellularly. Treatment of thapsigargin (Tg) to activate the unfolded protein response (UPR) alleviates Ala97Ser M-TTR secretion. Interestingly, Ala97Ser TTR overexpression in Drosophila causes late-onset fast neurodegeneration and a relatively short lifespan, recapitulating human disease progression. Our study demonstrates that the escape of TTR monomers from the ERQC may underlie late-onset amyloidogenesis in patients and suggests that targeting ERQC could mitigate late-onset ATTR.
Collapse
Affiliation(s)
- Ridwan Babatunde Ibrahim
- Taiwan International Graduate Program (TIGP) in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ssu-Yu Yeh
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kon-Ping Lin
- Division of Peripheral Neuropathy, Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Frans Ricardo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Jin-Wu Tsai
- Taiwan International Graduate Program (TIGP) in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan.
| | - Yo-Tsen Liu
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.
- Division of Epilepsy, Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Batista AR, Gianni D, Ventosa M, Coelho AV, Almeida MR, Sena-Esteves M, Saraiva MJ. Gene therapy approach to FAP: in vivo influence of T119M in TTR deposition in a transgenic V30M mouse model. Gene Ther 2014; 21:1041-50. [DOI: 10.1038/gt.2014.86] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/16/2014] [Accepted: 08/06/2014] [Indexed: 11/09/2022]
|