1
|
Sabatel C, Bureau F. The innate immune brakes of the lung. Front Immunol 2023; 14:1111298. [PMID: 36776895 PMCID: PMC9915150 DOI: 10.3389/fimmu.2023.1111298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/02/2023] [Indexed: 01/29/2023] Open
Abstract
Respiratory mucosal surfaces are continuously exposed to not only innocuous non-self antigens but also pathogen-associated molecular patterns (PAMPs) originating from environmental or symbiotic microbes. According to either "self/non-self" or "danger" models, this should systematically result in homeostasis breakdown and the development of immune responses directed to inhaled harmless antigens, such as T helper type (Th)2-mediated asthmatic reactions, which is fortunately not the case in most people. This discrepancy implies the existence, in the lung, of regulatory mechanisms that tightly control immune homeostasis. Although such mechanisms have been poorly investigated in comparison to the ones that trigger immune responses, a better understanding of them could be useful in the development of new therapeutic strategies against lung diseases (e.g., asthma). Here, we review current knowledge on innate immune cells that prevent the development of aberrant immune responses in the lung, thereby contributing to mucosal homeostasis.
Collapse
Affiliation(s)
- Catherine Sabatel
- Laboratory of Cellular and Molecular Immunology, GIGA-Research, University of Liège, Liège, Belgium,Faculty of Veterinary Medicine, University of Liège, Liège, Belgium,*Correspondence: Catherine Sabatel,
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, GIGA-Research, University of Liège, Liège, Belgium,Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Gudi RR, Perez N, Karumuthil-Melethil S, Li G, Vasu C. Activation of T cell checkpoint pathways during β-cell antigen presentation by engineered dendritic cells promotes protection from type 1 diabetes. Immunology 2022; 166:341-356. [PMID: 35404483 DOI: 10.1111/imm.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/27/2021] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Defective immune regulation has been recognized in type 1 diabetes (T1D). Immune regulatory T cell check-point receptors, which are generally upregulated on activated T cells, have been the molecules of attention as therapeutic targets for enhancing immune response in tumor therapy. Here, we show that pancreatic β-cell antigen (BcAg) presentation by engineered tolerogenic dendritic cells (tDCs) that express CTLA4 selective ligand (B7.1wa) or a combination of CTLA4, PD1 and BTLA selective ligands (B7.1wa, PD-L1, and HVEM-CRD1 respectively; multiligand-DCs) causes an increase in regulatory cytokine and T cell (Treg) responses and suppression of the effector T cell function as compared to engineered control-DCs. Non-obese diabetic (NOD) mice treated with BcAg-pulsed CTLA4-ligand-DCs and multiligand-DCs at pre-diabetic and early-hyperglycemic stages showed significantly lower degree of insulitis, higher frequencies of insulin-positive islets, profound delay in, and reversal of, hyperglycemia for a significant duration. Immune cells from the tDC treated mice not only produced lower amounts of IFNγ and higher amounts of IL10 and TGFβ1 upon BcAg challenge, but also failed to induce hyperglycemia upon adoptive transfer. While both CTLA4-ligand-DCs and multiligand-DCs were effective in inducing tolerance, multiligand-DC treatment produced an overall higher suppressive effect on effector T cell function and disease outcome. These studies show that enhanced engagement of T cell checkpoint receptors during BcAg presentation can modulate T cell function and suppress autoimmunity and progression of the disease in T1D.
Collapse
Affiliation(s)
- Radhika R Gudi
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston
| | - Nicolas Perez
- Department of Surgery, College of Medicine, University of Illinois, Chicago, IL
| | | | - Gongbo Li
- Department of Surgery, College of Medicine, University of Illinois, Chicago, IL
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston.,Department of Surgery, College of Medicine, University of Illinois, Chicago, IL
| |
Collapse
|
3
|
Passeri L, Marta F, Bassi V, Gregori S. Tolerogenic Dendritic Cell-Based Approaches in Autoimmunity. Int J Mol Sci 2021; 22:8415. [PMID: 34445143 PMCID: PMC8395087 DOI: 10.3390/ijms22168415] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) dictate the outcomes of tissue-specific immune responses. In the context of autoimmune diseases, DCs instruct T cells to respond to antigens (Ags), including self-Ags, leading to organ damage, or to becoming regulatory T cells (Tregs) promoting and perpetuating immune tolerance. DCs can acquire tolerogenic properties in vitro and in vivo in response to several stimuli, a feature that opens the possibility to generate or to target DCs to restore tolerance in autoimmune settings. We present an overview of the different subsets of human DCs and of the regulatory mechanisms associated with tolerogenic (tol)DC functions. We review the role of DCs in the induction of tissue-specific autoimmunity and the current approaches exploiting tolDC-based therapies or targeting DCs in vivo for the treatment of autoimmune diseases. Finally, we discuss limitations and propose future investigations for improving the knowledge on tolDCs for future clinical assessment to revert and prevent autoimmunity. The continuous expansion of tolDC research areas will lead to improving the understanding of the role that DCs play in the development and treatment of autoimmunity.
Collapse
Affiliation(s)
- Laura Passeri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
- San Raffaele Scientific Institute IRCCS, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Fortunato Marta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
| | - Virginia Bassi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
- San Raffaele Scientific Institute IRCCS, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
| |
Collapse
|
4
|
Comi M, Amodio G, Passeri L, Fortunato M, Santoni de Sio FR, Andolfi G, Kajaste-Rudnitski A, Russo F, Cesana L, Gregori S. Generation of Powerful Human Tolerogenic Dendritic Cells by Lentiviral-Mediated IL-10 Gene Transfer. Front Immunol 2020; 11:1260. [PMID: 32695103 PMCID: PMC7338371 DOI: 10.3389/fimmu.2020.01260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
The prominent role of dendritic cells (DC) in promoting tolerance and the development of methods to generate clinical grade products allowed the clinical application of tolerogenic DC (tolDC)-based therapies for controlling unwanted immune responses. We established an efficient method to generate tolerogenic human DC, producing supra-physiological levels of IL-10, by genetically engineering monocyte-derived DC with a bidirectional Lentiviral Vector (bdLV) encoding for IL-10 and a marker gene. DCIL−10 are mature DC, modulate T cell responses, promote T regulatory cells, and are phenotypically and functionally stable upon stimulation. Adoptive transfer of human DCIL−10 in a humanized mouse model dampens allogeneic T cell recall responses, while murine DCIL−10 delays acute graft-vs.-host disease in mice. Our report outlines an efficient method to transduce human myeloid cells with large-size LV and shows that stable over-expression of IL-10 generates an effective cell product for future clinical applications in the contest of allogeneic transplantation.
Collapse
Affiliation(s)
- Michela Comi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Giada Amodio
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Laura Passeri
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Marta Fortunato
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | | | - Grazia Andolfi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Fabio Russo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Luca Cesana
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| |
Collapse
|
5
|
Gaffal E, Kemter AM, Scheu S, Leite Dantas R, Vogt J, Baune B, Tüting T, Zimmer A, Alferink J. Cannabinoid Receptor 2 Modulates Maturation of Dendritic Cells and Their Capacity to Induce Hapten-Induced Contact Hypersensitivity. Int J Mol Sci 2020; 21:ijms21020475. [PMID: 31940843 PMCID: PMC7013892 DOI: 10.3390/ijms21020475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/26/2022] Open
Abstract
Contact hypersensitivity (CHS) is an established animal model for allergic contact dermatitis. Dendritic cells (DCs) play an important role in the sensitization phase of CHS by initiating T cell responses to topically applied haptens. The cannabinoid receptors 1 (CB1) and 2 (CB2) modulate DC functions and inflammatory skin responses, but their influence on the capacity of haptenized DCs to induce CHS is still unknown. We found lower CHS responses to 2,4-dinitro-1-fluorobenzene (DNFB) in wild type (WT) mice after adoptive transfer of haptenized Cnr2-/- and Cnr1-/-/Cnr2-/- bone marrow (BM) DCs as compared to transfer of WT DCs. In contrast, induction of CHS was not affected in WT recipients after transfer of Cnr1-/- DCs. In vitro stimulated Cnr2-/- DCs showed lower CCR7 and CXCR4 expression when compared to WT cells, while in vitro migration towards the chemokine ligands was not affected by CB2. Upregulation of MHC class II and co-stimulatory molecules was also reduced in Cnr2-/- DCs. This study demonstrates that CB2 modulates the maturation phenotype of DCs but not their chemotactic capacities in vitro. These findings and the fact that CHS responses mediated by Cnr2-/- DCs are reduced suggest that CB2 is a promising target for the treatment of inflammatory skin conditions.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cells, Cultured
- Chemotaxis
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Dermatitis, Allergic Contact/genetics
- Dermatitis, Allergic Contact/immunology
- Dinitrofluorobenzene/toxicity
- Histocompatibility Antigens/genetics
- Histocompatibility Antigens/metabolism
- Mice
- Mice, Inbred C57BL
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, CCR4/genetics
- Receptors, CCR4/metabolism
- Receptors, CCR7/genetics
- Receptors, CCR7/metabolism
Collapse
Affiliation(s)
- Evelyn Gaffal
- Department of Dermatology, University Hospital Magdeburg, 39104 Magdeburg, Germany; (E.G.); (T.T.)
| | - Andrea M. Kemter
- Institute of Molecular Psychiatry, University of Bonn, 53127 Bonn, Germany; (A.M.K.); (A.Z.)
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany;
| | - Rafael Leite Dantas
- Department of Psychiatry, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.V.); (B.B.)
| | - Jens Vogt
- Department of Psychiatry, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.V.); (B.B.)
| | - Bernhard Baune
- Department of Psychiatry, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.V.); (B.B.)
- Department of Psychiatry, The University of Melbourne, Melbourne 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne 3010, Australia
| | - Thomas Tüting
- Department of Dermatology, University Hospital Magdeburg, 39104 Magdeburg, Germany; (E.G.); (T.T.)
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, 53127 Bonn, Germany; (A.M.K.); (A.Z.)
| | - Judith Alferink
- Department of Psychiatry, University of Münster, 48149 Münster, Germany; (R.L.D.); (J.V.); (B.B.)
- Cells in Motion Interfaculty Centre, 48149 Muenster, Germany
- Correspondence:
| |
Collapse
|
6
|
Werner A, Pieh D, Echchannaoui H, Rupp J, Rajalingam K, Theobald M, Closs EI, Munder M. Cationic Amino Acid Transporter-1-Mediated Arginine Uptake Is Essential for Chronic Lymphocytic Leukemia Cell Proliferation and Viability. Front Oncol 2019; 9:1268. [PMID: 31824848 PMCID: PMC6879669 DOI: 10.3389/fonc.2019.01268] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022] Open
Abstract
Interfering with tumor metabolism by specifically restricting the availability of extracellular nutrients is a rapidly emerging field of cancer research. A variety of tumor entities depend on the uptake of the amino acid arginine since they have lost the ability to synthesize it endogenously, that is they do not express the rate limiting enzyme for arginine synthesis, argininosuccinate synthase (ASS). Arginine transport through the plasma membrane of mammalian cells is mediated by eight different transporters that belong to two solute carrier (SLC) families. In the present study we found that the proliferation of primary as well as immortalized chronic lymphocytic leukemia (CLL) cells depends on the availability of extracellular arginine and that primary CLL cells do not express ASS and are therefore arginine-auxotrophic. The cationic amino acid transporter-1 (CAT-1) was the only arginine importer expressed in CLL cells. Lentiviral-mediated downregulation of the CAT-1 transporter in HG3 CLL cells significantly reduced arginine uptake, abolished cell proliferation and impaired cell viability. In a murine CLL xenograft model, tumor growth was significantly suppressed upon induced downregulation of CAT-1 in the CLL cells. Our results suggest that inhibition of CAT-1 is a promising new therapeutic approach for CLL.
Collapse
Affiliation(s)
- Anke Werner
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Daniel Pieh
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hakim Echchannaoui
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johanna Rupp
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Theobald
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,German Cancer Consortium (DKTK), Mainz, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ellen I Closs
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus Munder
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
7
|
Gudi RR, Karumuthil-Melethil S, Perez N, Li G, Vasu C. Engineered Dendritic Cell-Directed Concurrent Activation of Multiple T cell Inhibitory Pathways Induces Robust Immune Tolerance. Sci Rep 2019; 9:12065. [PMID: 31427630 PMCID: PMC6700167 DOI: 10.1038/s41598-019-48464-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/06/2019] [Indexed: 01/07/2023] Open
Abstract
Inhibitory/repressor-receptors are upregulated significantly on activated T cells, and have been the molecules of attention as targets for inducing immune tolerance. Induction of effective antigen specific tolerance depends on concurrent engagement of the TCR and one or more of these inhibitory receptors. Here, we show, for the first time that dendritic cells (DCs) can be efficiently engineered to express multiple T cell inhibitory ligands, and enhanced engagement of T cell inhibitory receptors, upon antigen presentation, by these DCs can induce effective CD4+ T cell tolerance and suppress autoimmunity. Compared to control DCs, antigen presentation by DCs that ectopically express CTLA4, PD1 and BTLA selective ligands (B7.1wa, PD-L1, and HVEM-CRD1 respectively) individually (mono-ligand DCs) or in combination (multi-ligand DCs) causes an inhibition of CD4+ T cell proliferation and pro-inflammatory cytokine response, as well as increase in Foxp3+ Treg frequency and immune regulatory cytokine production. Administration of self-antigen (mouse thyroglobulin; mTg) loaded multi-ligand DCs caused hyporesponsiveness to mTg challenge, suppression of autoantibody production, and amelioration of experimental autoimmune thyroiditis. Overall, this study shows that engineered DC-directed enhanced concurrent activation of multiple T cell coinhibitory pathways is an effective way to induce self-antigen specific T cell tolerance to suppress ongoing autoimmunity.
Collapse
Affiliation(s)
- Radhika R Gudi
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | | - Nicolas Perez
- Department of Surgery, College of Medicine, University of Illinois, Chicago, IL, 60612, USA
| | - Gongbo Li
- Department of Surgery, College of Medicine, University of Illinois, Chicago, IL, 60612, USA
| | - Chenthamarakshan Vasu
- Department of Microbiology and Immunology, College of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Department of Surgery, College of Medicine, University of Illinois, Chicago, IL, 60612, USA.
| |
Collapse
|
8
|
Schülke S. Induction of Interleukin-10 Producing Dendritic Cells As a Tool to Suppress Allergen-Specific T Helper 2 Responses. Front Immunol 2018; 9:455. [PMID: 29616018 PMCID: PMC5867300 DOI: 10.3389/fimmu.2018.00455] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/20/2018] [Indexed: 12/30/2022] Open
Abstract
Dendritic cells (DCs) are gatekeepers of the immune system that control induction and polarization of primary, antigen-specific immune responses. Depending on their maturation/activation status, the molecules expressed on their surface, and the cytokines produced DCs have been shown to either elicit immune responses through activation of effector T cells or induce tolerance through induction of either T cell anergy, regulatory T cells, or production of regulatory cytokines. Among the cytokines produced by tolerogenic DCs, interleukin 10 (IL-10) is a key regulatory cytokine limiting und ultimately terminating excessive T-cell responses to microbial pathogens to prevent chronic inflammation and tissue damage. Because of their important role in preventing autoimmune diseases, transplant rejection, allergic reactions, or in controlling chronic inflammation DCs have become an interesting tool to modulate antigen-specific immune responses. For the treatment of allergic inflammation, the aim is to downregulate allergen-specific T helper 2 (Th2) responses and the associated clinical symptoms [allergen-driven Th2 activation, Th2-driven immunoglobulin E (IgE) production, IgE-mediated mast cell and basophil activation, allergic inflammation]. Here, combining the presentation of allergens by DCs with a pro-tolerogenic, IL-10-producing phenotype is of special interest to modulate allergen-specific immune responses in the treatment of allergic diseases. This review discusses the reported strategies to induce DC-derived IL-10 secretion for the suppression of allergen-specific Th2-responses with a focus on IL-10 treatment, IL-10 transduction, and the usage of both whole bacteria and bacteria-derived components. Interestingly, while IL-10-producing DCs induced either by IL-10 treatment or IL-10 transduction are arrested in an immature/semi-mature state, treatment of DCs with live or killed bacteria as well as isolated bacterial components results in the induction of both anti-inflammatory IL-10 and pro-inflammatory, Th1-promoting IL-12 secretion often paralleled by an enhanced expression of co-stimulatory molecules on the stimulated DCs. By the secretion of DC-derived exosomes or CC-chemokine ligand 18, as well as the expression of inhibitory molecules like cytotoxic T lymphocyte-associated antigen 4, TNF receptor superfamily member 4, Ig-like transcript-22/cluster of differentiation 85, or programmed death-1, IL-10-producing DCs have been repeatedly shown to suppress antigen-specific Th2-responses. Therefore, DC-based vaccination approaches hold great potential to improve the treatment of allergic diseases.
Collapse
Affiliation(s)
- Stefan Schülke
- Vice President's Research Group 1, Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
9
|
Yamamoto Y, Otani S, Hirai H, Nagata K, Aritake K, Urade Y, Narumiya S, Yokozeki H, Nakamura M, Satoh T. Dual functions of prostaglandin D2 in murine contact hypersensitivity via DP and CRTH2. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:302-14. [PMID: 21703412 DOI: 10.1016/j.ajpath.2011.03.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 02/26/2011] [Accepted: 03/31/2011] [Indexed: 11/17/2022]
Abstract
Prostaglandin D2 (PGD2) exerts its effects through two distinct receptors: the chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) and the D prostanoid (DP) receptor. Our previous study demonstrated that CRTH2 mediates contact hypersensitivity (CHS) in mice. However, the function of DP receptor remains to be fully established. In this study, we examine the pathophysiological roles of PGD2 using DP-deficient (DP(-/-)) and CRTH2/DP-deficient (CRTH2(-/-)/DP(-/-)) mice to elucidate receptor-mediated PGD2 action in CHS. We observed profound exacerbation of CHS in DP(-/-) mice. CRTH2(-/-)/DP(-/-) mice showed similar exacerbation, but to a lesser extent. These symptoms were accompanied by increased production of interferon-γ and IL-17. The increase in IL-17 producing γδ T cells was marked and presumably contributed to the enhanced CHS. DP deficiency promoted the in vivo migration of dendritic cells to regional lymph nodes. A DP agonist added to DCs in vitro was able to inhibit production of IL-12 and IL-1β. Interestingly, production of IL-10 in dendritic cells was elevated via the DP pathway, but it was lowered by the CRTH2 pathway. Collectively, PGD2 signals through CRTH2 to mediate CHS inflammation, and conversely, DP signals to exert inhibitory effects on CHS. Thus, we report opposing functions for PGD2 that depend on receptor usage in allergic reactions.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Movement
- Chemokines
- Cytokines
- Dermatitis, Contact/drug therapy
- Dermatitis, Contact/metabolism
- Dermatitis, Contact/pathology
- Female
- Flow Cytometry
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor/genetics
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor/genetics
- Inflammation/drug therapy
- Inflammation/metabolism
- Inflammation/pathology
- Interleukin-10/genetics
- Interleukin-10/metabolism
- Interleukin-12/genetics
- Interleukin-12/metabolism
- Interleukin-17/metabolism
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Prostaglandin D2/therapeutic use
- RNA, Messenger/genetics
- Receptors, Immunologic/physiology
- Receptors, Prostaglandin/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes, Regulatory
Collapse
Affiliation(s)
- Yoshihiro Yamamoto
- Department of Dermatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|