1
|
Singh S, Joshi V, Upadhyay A. Amyloids and brain cancer: molecular linkages and crossovers. Biosci Rep 2023; 43:BSR20230489. [PMID: 37335084 PMCID: PMC10548166 DOI: 10.1042/bsr20230489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023] Open
Abstract
Amyloids are high-order proteinaceous formations deposited in both intra- and extracellular spaces. These aggregates have tendencies to deregulate cellular physiology in multiple ways; for example, altered metabolism, mitochondrial dysfunctions, immune modulation, etc. When amyloids are formed in brain tissues, the endpoint often is death of neurons. However, interesting but least understood is a close connection of amyloids with another set of conditions in which brain cells proliferate at an extraordinary rate and form tumor inside brain. Glioblastoma is one such condition. Increasing number of evidence indicate a possible link between amyloid formation and depositions in brain tumors. Several proteins associated with cell cycle regulation and apoptotic pathways themselves have shown to possess high tendencies to form amyloids. Tumor suppressor protein p53 is one prominent example that mutate, oligomerize and form amyloids leading to loss- or gain-of-functions and cause increased cell proliferation and malignancies. In this review article, we present available examples, genetic links and common pathways that indicate that possibly the two distantly placed pathways: amyloid formation and developing cancers in the brain have similarities and are mechanistically intertwined together.
Collapse
Affiliation(s)
- Shalini Singh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jheepasani, Jodhpur, Rajasthan 342001, India
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, U.S.A
| | - Vibhuti Joshi
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jheepasani, Jodhpur, Rajasthan 342001, India
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh 201310, India
| | - Arun Upadhyay
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jheepasani, Jodhpur, Rajasthan 342001, India
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, U.S.A
| |
Collapse
|
2
|
Banerjee K, Núñez FJ, Haase S, McClellan BL, Faisal SM, Carney SV, Yu J, Alghamri MS, Asad AS, Candia AJN, Varela ML, Candolfi M, Lowenstein PR, Castro MG. Current Approaches for Glioma Gene Therapy and Virotherapy. Front Mol Neurosci 2021; 14:621831. [PMID: 33790740 PMCID: PMC8006286 DOI: 10.3389/fnmol.2021.621831] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in the adult population and it carries a dismal prognosis. Inefficient drug delivery across the blood brain barrier (BBB), an immunosuppressive tumor microenvironment (TME) and development of drug resistance are key barriers to successful glioma treatment. Since gliomas occur through sequential acquisition of genetic alterations, gene therapy, which enables to modification of the genetic make-up of target cells, appears to be a promising approach to overcome the obstacles encountered by current therapeutic strategies. Gene therapy is a rapidly evolving field with the ultimate goal of achieving specific delivery of therapeutic molecules using either viral or non-viral delivery vehicles. Gene therapy can also be used to enhance immune responses to tumor antigens, reprogram the TME aiming at blocking glioma-mediated immunosuppression and normalize angiogenesis. Nano-particles-mediated gene therapy is currently being developed to overcome the BBB for glioma treatment. Another approach to enhance the anti-glioma efficacy is the implementation of viro-immunotherapy using oncolytic viruses, which are immunogenic. Oncolytic viruses kill tumor cells due to cancer cell-specific viral replication, and can also initiate an anti-tumor immunity. However, concerns still remain related to off target effects, and therapeutic and transduction efficiency. In this review, we describe the rationale and strategies as well as advantages and disadvantages of current gene therapy approaches against gliomas in clinical and preclinical studies. This includes different delivery systems comprising of viral, and non-viral delivery platforms along with suicide/prodrug, oncolytic, cytokine, and tumor suppressor-mediated gene therapy approaches. In addition, advances in glioma treatment through BBB-disruptive gene therapy and anti-EGFRvIII/VEGFR gene therapy are also discussed. Finally, we discuss the results of gene therapy-mediated human clinical trials for gliomas. In summary, we highlight the progress, prospects and remaining challenges of gene therapies aiming at broadening our understanding and highlighting the therapeutic arsenal for GBM.
Collapse
Affiliation(s)
- Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Felipe J. Núñez
- Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brandon L. McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Immunology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed M. Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen V. Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Cancer Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jin Yu
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mahmoud S. Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Antonela S. Asad
- Departamento de Biología e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro J. Nicola Candia
- Departamento de Biología e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Marianela Candolfi
- Departamento de Biología e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Manikandan C, Kaushik A, Sen D. Viral vector: potential therapeutic for glioblastoma multiforme. Cancer Gene Ther 2019; 27:270-279. [PMID: 31316136 DOI: 10.1038/s41417-019-0124-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/29/2019] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme is a highly malignant primary brain tumour found in adults and is highlighted as the most devastating among all the other grades of glioma. Well-established standard treatment methods, such as chemotherapy, radiation and surgery, have resulted in modest improvement in the survival of patients. Hence, the arduous search for novel treatments backed by advancements in molecular biology still persists. Glioblastoma has many distinctive characteristics, which makes it a potential candidate for gene therapy. Gene therapy involves the delivery of genetic material of therapeutic use into tumour cells, which produces a specific antitumour response. Moreover, viruses stimulate a vigorous cytotoxic effect, they are easily modifiable and the inherent property of horizontal transfer of genetic material makes them valuable tools for genetic engineering. In this review, we have enlisted the various viral vectors employed in gene therapy for glioblastoma.
Collapse
Affiliation(s)
- Ceera Manikandan
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT) University, Vellore, Tamil Nadu, 632014, India
| | - Akshita Kaushik
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT) University, Vellore, Tamil Nadu, 632014, India
| | - Dwaipayan Sen
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT) University, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
4
|
Meysami P, Rezaei F, Marashi SM, Amiri MM, Bakker E, Mokhtari-Azad T. Antitumor effects of a recombinant baculovirus displaying anti-HER2 scFv expressing Apoptin in HER2 positive SK-BR-3 breast cancer cells. Future Virol 2019. [DOI: 10.2217/fvl-2018-0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aim: Since HER2 targeted therapies have shown clinical benefit in breast cancer, in the present study recombinant baculovirus (BV) displaying anti-HER2 single-chain variable domain fragment (scFv) expressing Apoptin was generated. Methods: The binding specificity and surface display of anti-HER2 scFv were evaluated using enzyme-linked immunosorbent assay (ELISA) and electron microscopy, respectively. The targeting properties and cytotoxic effect on breast cancer cells determined by fluorescence microscopy and MTT assays. Results: The results demonstrated that recombinant BV could specifically bind to HER2-overexpressing SK-BR-3 cells but not to the HER2 negative MCF-7 cells and reduced the viability of SK-BR-3 cells by expressing Apoptin. Conclusion: These results suggest that the antitumor effect of Apoptin in combination with HER2 targeting of this recombinant BV makes it a promising vector in targeted cancer therapy.
Collapse
Affiliation(s)
- Parisa Meysami
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 1471613151, Iran
| | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 1471613151, Iran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 1471613151, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran 1471613151, Iran
| | - Emyr Bakker
- School of Medicine, University of Central Lancashire, Preston, UK
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 1471613151, Iran
| |
Collapse
|
5
|
Topoisomerase II Inhibitors Can Enhance Baculovirus-Mediated Gene Expression in Mammalian Cells through the DNA Damage Response. Int J Mol Sci 2016; 17:ijms17060931. [PMID: 27314325 PMCID: PMC4926464 DOI: 10.3390/ijms17060931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/21/2016] [Accepted: 06/07/2016] [Indexed: 12/26/2022] Open
Abstract
BacMam is an insect-derived recombinant baculovirus that can deliver genes into mammalian cells. BacMam vectors carrying target genes are able to enter a variety of cell lines by endocytosis, but the level of expression of the transgene depends on the cell line and the state of the transduced cells. In this study, we demonstrated that the DNA damage response (DDR) could act as an alternative pathway to boost the transgene(s) expression by BacMam and be comparable to the inhibitors of histone deacetylase. Topoisomerase II (Top II) inhibitor-induced DDR can enhance the CMV-IE/enhancer mediated gene expression up to 12-fold in BacMam-transduced U-2OS cells. The combination of a Top II inhibitor, VM-26, can also augment the killing efficiency of a p53-expressing BacMam vector in U-2OS osteosarcoma cells. These results open a new avenue to facilitate the application of BacMam for gene delivery and therapy.
Collapse
|
6
|
Makkonen KE, Airenne K, Ylä-Herttulala S. Baculovirus-mediated gene delivery and RNAi applications. Viruses 2015; 7:2099-125. [PMID: 25912715 PMCID: PMC4411692 DOI: 10.3390/v7042099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/02/2015] [Accepted: 04/16/2015] [Indexed: 12/11/2022] Open
Abstract
Baculoviruses are widely encountered in nature and a great deal of data is available about their safety and biology. Recently, these versatile, insect-specific viruses have demonstrated their usefulness in various biotechnological applications including protein production and gene transfer. Multiple in vitro and in vivo studies exist and support their use as gene delivery vehicles in vertebrate cells. Recently, baculoviruses have also demonstrated high potential in RNAi applications in which several advantages of the virus make it a promising tool for RNA gene transfer with high safety and wide tropism.
Collapse
Affiliation(s)
- Kaisa-Emilia Makkonen
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
| | - Kari Airenne
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
| | - Seppo Ylä-Herttulala
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
- Gene Therapy Unit, Kuopio University Hospital, Kuopio 70211, Finland.
- Science Service Center, Kuopio University Hospital, Kuopio 70211, Finland.
| |
Collapse
|
7
|
Airenne KJ, Hu YC, Kost TA, Smith RH, Kotin RM, Ono C, Matsuura Y, Wang S, Ylä-Herttuala S. Baculovirus: an insect-derived vector for diverse gene transfer applications. Mol Ther 2013; 21:739-49. [PMID: 23439502 PMCID: PMC3616530 DOI: 10.1038/mt.2012.286] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 12/11/2012] [Indexed: 01/23/2023] Open
Abstract
Insect-derived baculoviruses have emerged as versatile and safe workhorses of biotechnology. Baculovirus expression vectors (BEVs) have been applied widely for crop and forest protection, as well as safe tools for recombinant protein production in insect cells. However, BEVs ability to efficiently transduce noninsect cells is still relatively poorly recognized despite the fact that efficient baculovirus-mediated in vitro and ex vivo gene delivery into dormant and dividing vertebrate cells of diverse origin has been described convincingly by many authors. Preliminary proof of therapeutic potential has also been established in preclinical studies. This review summarizes the advantages and current status of baculovirus-mediated gene delivery. Stem cell transduction, preclinical animal studies, tissue engineering, vaccination, cancer gene therapy, viral vector production, and drug discovery are covered.
Collapse
Affiliation(s)
- Kari J Airenne
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Thomas A Kost
- Biological Reagents and Assay Development, GlaxoSmithKline R&D, Research Triangle Park, North Carolina, USA
| | - Richard H Smith
- Molecular Virology and Gene Therapy Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert M Kotin
- Molecular Virology and Gene Therapy Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chikako Ono
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Shu Wang
- Institute of Bioengineering and Nanotechnology, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Research Unit, Kuopio University Hospital, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
8
|
Fedrigo CA, Grivicich I, Schunemann DP, Chemale IM, Santos DD, Jacovas T, Boschetti PS, Jotz GP, Filho AB, da Rocha AB. Radioresistance of human glioma spheroids and expression of HSP70, p53 and EGFr. Radiat Oncol 2011; 6:156. [PMID: 22077956 PMCID: PMC3223500 DOI: 10.1186/1748-717x-6-156] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Radiation therapy is routinely prescribed for high-grade malignant gliomas. However, the efficacy of this therapeutic modality is often limited by the occurrence of radioresistance, reflected as a diminished susceptibility of the irradiated cells to undergo cell death. Thus, cells have evolved an elegant system in response to ionizing radiation induced DNA damage, where p53, Hsp70 and/or EGFr may play an important role in the process. In the present study, we investigated whether the content of p53, Hsp70 and EGFr are associated to glioblastoma (GBM) cell radioresistance. METHODS Spheroids from U-87MG and MO59J cell lines as well as spheroids derived from primary culture of tumor tissue of one GBM patient (UGBM1) were irradiated (5, 10 and 20 Gy), their relative radioresistance were established and the p53, Hsp70 and EGFr contents were immunohistochemically determined. Moreover, we investigated whether EGFr-phospho-Akt and EGFr-MEK-ERK pathways can induce GBM radioresistance using inhibitors of activation of ERK (PD098059) and Akt (wortmannin). RESULTS At 5 Gy irradiation UGBM1 and U-87MG spheroids showed growth inhibition whereas the MO59J spheroid was relatively radioresistant. Overall, no significant changes in p53 and Hsp70 expression were found following 5 Gy irradiation treatment in all spheroids studied. The only difference observed in Hsp70 content was the periphery distribution in MO59J spheroids. However, 5 Gy treatment induced a significant increase on the EGFr levels in MO59J spheroids. Furthermore, treatment with inhibitors of activation of ERK (PD098059) and Akt (wortmannin) leads to radiosensitization of MO59J spheroids. CONCLUSIONS These results indicate that the PI3K-Akt and MEK-ERK pathways triggered by EGFr confer GBM radioresistance.
Collapse
Affiliation(s)
- Carlos A Fedrigo
- Laboratório de Marcadores de Estresse Celular, Universidade Luterana do Brasil, Canoas, RS, Brasil
- Programa de Pós Graduação em Genética e Toxicologia Aplicada, Universidade Luterana do Brasil, Canoas, RS, Brasil
| | - Ivana Grivicich
- Laboratório de Marcadores de Estresse Celular, Universidade Luterana do Brasil, Canoas, RS, Brasil
- Programa de Pós Graduação em Diagnóstico Genético e Molecular, Universidade Luterana do Brasil, Canoas, RS, Brasil
- Programa de Pós Graduação em Genética e Toxicologia Aplicada, Universidade Luterana do Brasil, Canoas, RS, Brasil
| | - Daniel P Schunemann
- Laboratório de Marcadores de Estresse Celular, Universidade Luterana do Brasil, Canoas, RS, Brasil
- Programa de Pós Graduação em Diagnóstico Genético e Molecular, Universidade Luterana do Brasil, Canoas, RS, Brasil
| | - Ivan M Chemale
- Serviço de Neurocirurgia do Hospital Beneficência de Porto Alegre, RS, Brasil
| | - Daiane dos Santos
- Laboratório de Marcadores de Estresse Celular, Universidade Luterana do Brasil, Canoas, RS, Brasil
| | - Thais Jacovas
- Laboratório de Marcadores de Estresse Celular, Universidade Luterana do Brasil, Canoas, RS, Brasil
| | - Patryck S Boschetti
- Laboratório de Marcadores de Estresse Celular, Universidade Luterana do Brasil, Canoas, RS, Brasil
| | - Geraldo P Jotz
- Departamento de Ciências Morfológicas da Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Aroldo Braga Filho
- Serviço de Radioterapia do Hospital São Lucas da Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Adriana B da Rocha
- Laboratório de Marcadores de Estresse Celular, Universidade Luterana do Brasil, Canoas, RS, Brasil
- Programa de Pós Graduação em Diagnóstico Genético e Molecular, Universidade Luterana do Brasil, Canoas, RS, Brasil
- Programa de Pós Graduação em Genética e Toxicologia Aplicada, Universidade Luterana do Brasil, Canoas, RS, Brasil
| |
Collapse
|
9
|
Chen CY, Lin CY, Chen GY, Hu YC. Baculovirus as a gene delivery vector: recent understandings of molecular alterations in transduced cells and latest applications. Biotechnol Adv 2011; 29:618-31. [PMID: 21550393 PMCID: PMC7126054 DOI: 10.1016/j.biotechadv.2011.04.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 12/13/2022]
Abstract
Baculovirus infects insects in nature and is non-pathogenic to humans, but can transduce a broad range of mammalian and avian cells. Thanks to the biosafety, large cloning capacity, low cytotoxicity and non-replication nature in the transduced cells as well as the ease of manipulation and production, baculovirus has gained explosive popularity as a gene delivery vector for a wide variety of applications. This article extensively reviews the recent understandings of the molecular mechanisms pertinent to baculovirus entry and cellular responses, and covers the latest advances in the vector improvements and applications, with special emphasis on antiviral therapy, cancer therapy, regenerative medicine and vaccine.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | |
Collapse
|