1
|
Hu Z, Shi Z, Guo X, Jiang B, Wang G, Luo D, Chen Y, Zhu YS. Ligase IV inhibitor SCR7 enhances gene editing directed by CRISPR-Cas9 and ssODN in human cancer cells. Cell Biosci 2018; 8:12. [PMID: 29468011 PMCID: PMC5819182 DOI: 10.1186/s13578-018-0200-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
Background Precise genome editing is essential for both basic and translational research. The recently developed CRISPR/Cas9 system can specifically cleave a designated site of target gene to create a DNA double-strand break, which triggers cellular DNA repair mechanism of either inaccurate non-homologous end joining, or site-specific homologous recombination. Unfortunately, homology-directed repair (HDR) is challenging due to its very low efficiency. Herein, we focused on improving the efficiency of HDR using a combination of CRISPR/Cas9, eGFP, DNA ligase IV inhibitor SCR7, and single-stranded oligodeoxynucleotides (ssODN) in human cancer cells. Results When Cas9, gRNA and eGFP were assembled into a co-expression vector, the disruption rate more than doubled following GFP-positive cell sorting in transfected cells compared to those unsorted cells. Using ssODNs as templates, SCR7 treatment increased targeted insertion efficiency threefold in transfected cells compared to those without SCR7 treatment. Moreover, this combinatorial approach greatly improved the efficiency of HDR and targeted gene mutation correction at both the GFP-silent mutation and the β-catenin Ser45 deletion mutation cells. Conclusion The data of this study suggests that a combination of co-expression vector, ssODN, and ligase IV inhibitor can markedly improve the CRISPR/Cas9-directed gene editing, which should have significant application in targeted gene editing and genetic disease therapy.
Collapse
Affiliation(s)
- Zheng Hu
- 1Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078 Hunan China.,2Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, Chenzhou, 432000 Hunan China
| | - Zhaoying Shi
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Xiaogang Guo
- 4Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 Guangdong China
| | - Baishan Jiang
- 5Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 Guangdong China
| | - Guo Wang
- 1Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078 Hunan China
| | - Dixian Luo
- 2Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, The First People's Hospital of Chenzhou, Chenzhou, 432000 Hunan China
| | - Yonglong Chen
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Yuan-Shan Zhu
- 1Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078 Hunan China.,6Department of Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| |
Collapse
|
2
|
Papaioannou I, Simons JP, Owen JS. Oligonucleotide-directed gene-editing technology: mechanisms and future prospects. Expert Opin Biol Ther 2012; 12:329-42. [PMID: 22321001 DOI: 10.1517/14712598.2012.660522] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Gene editing, as defined here, uses short synthetic oligonucleotides to introduce small, site-specific changes into mammalian genomes, including repair of genetic point mutations. Early RNA-DNA oligonucleotides (chimeraplasts) were problematic, but application of single-stranded all-DNA molecules (ssODNs) has matured the technology into a reproducible tool with therapeutic potential. AREAS COVERED The review illustrates how gene-editing mechanisms are linked to DNA repair systems and DNA replication, and explains that while homologous recombination (HR) and nucleotide excision repair (NER) are implicated, the mismatch repair (MMR) system is inhibitory. Although edited cells often arrest in late S-phase or G2-phase, alternative ssODN chemistries can improve editing efficiency and cell viability. The final section focuses on the exciting tandem use of ssODNs with zinc finger nucleases to achieve high frequency genome editing. EXPERT OPINION For a decade, changing the genetic code of cells via ssODNs was largely done in reporter gene systems to optimize methods and as proof-of-principle. Today, editing endogenous genes is advancing, driven by a clearer understanding of mechanisms, by effective ssODN designs and by combination with engineered endonuclease technologies. Success is becoming routine in vitro and ex vivo, which includes editing embryonic stem (ES) and induced pluripotent stem (iPS) cells, suggesting that in vivo organ gene editing is a future option.
Collapse
Affiliation(s)
- Ioannis Papaioannou
- UCL Medical School, Division of Medicine (Upper 3rd Floor), Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | | | | |
Collapse
|