1
|
Nguyen-Hoai T, Hohn O, Pezzutto A, Westermann J. Gene Gun Her2/neu DNA Vaccination: Evaluation of Vaccine Efficacy in a Syngeneic Her2/neu Mouse Tumor Model. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2521:129-154. [PMID: 35732996 DOI: 10.1007/978-1-0716-2441-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Genetic vaccination using naked plasmid DNA is an immunization strategy both against infectious diseases and cancer.In order to improve efficacy of DNA vaccines, particularly in large animals and humans, different strategies have been pursued. These vaccination strategies are based on different application routes, schedules and coexpression of immunomodulatory molecules as adjuvants. Our mouse tumor model offers the possibility to investigate Her2/neu DNA vaccines in different settings, that is, intramuscular or intradermal application with or without coexpression of adjuvants. The immunogenicity of predicted peptides for Her2/neu specific memory T cells were screened and confirmed after intramuscular and intradermal application. Protection from tumor growth in tumor challenge experiments and both T cell and humoral immune responses against Her2/neu peptides are used as surrogate parameters for vaccine efficacy.
Collapse
Affiliation(s)
- Tam Nguyen-Hoai
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | | | - Antonio Pezzutto
- Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Jörg Westermann
- Department Hematology, Oncology and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
Gowhari Shabgah A, Al-Obaidi ZMJ, Sulaiman Rahman H, Kamal Abdelbasset W, Suksatan W, Bokov DO, Thangavelu L, Turki Jalil A, Jadidi-Niaragh F, Mohammadi H, Mashayekhi K, Gholizadeh Navashenaq J. Does CCL19 act as a double-edged sword in cancer development? Clin Exp Immunol 2021; 207:164-175. [PMID: 35020885 PMCID: PMC8982982 DOI: 10.1093/cei/uxab039] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/08/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is considered a life-threatening disease, and several factors are involved in its development. Chemokines are small proteins that physiologically exert pivotal roles in lymphoid and non-lymphoid tissues. The imbalance or dysregulation of chemokines has contributed to the development of several diseases, especially cancer. CCL19 is one of the homeostatic chemokines that is abundantly expressed in the thymus and lymph nodes. This chemokine, which primarily regulates immune cell trafficking, is involved in cancer development. Through the induction of anti-tumor immune responses and inhibition of angiogenesis, CCL19 exerts tumor-suppressive functions. In contrast, CCL19 also acts as a tumor-supportive factor by inducing inflammation, cell growth, and metastasis. Moreover, CCL19 dysregulation in several cancers, including colorectal, breast, pancreatic, and lung cancers, has been considered a tumor biomarker for diagnosis and prognosis. Using CCL19-based therapeutic approaches has also been proposed to overcome cancer development. This review will shed more light on the multifarious function of CCL19 in cancer and elucidate its application in diagnosis, prognosis, and even therapy. It is expected that the study of CCL19 in cancer might be promising to broaden our knowledge of cancer development and might introduce novel approaches in cancer management.
Collapse
Affiliation(s)
| | - Zaid Mahdi Jaber Al-Obaidi
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Alkafeel, Najaf, Iraq,Department of Chemistry and Biochemistry, College of Medicine, University of Kerbala, Karbala, Iraq
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Iraq
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Dmitry O Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha institute of medical and Technical Sciences, Saveetha University, Chennai, India
| | - Abduladheem Turki Jalil
- Faculty of Biology and Ecology, Yanka Kupala State University of Grodno, Grodno, Belarus,College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran,Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Kazem Mashayekhi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Jamshid Gholizadeh Navashenaq
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran,Correspondence: Jamshid Gholizadeh Navashenaq, Bam University of Medical Sciences, Bam, Kerman, Iran. E-mail: ;
| |
Collapse
|
3
|
Nguyen-Hoai T, Kobelt D, Hohn O, Vu MD, Schlag PM, Dörken B, Norley S, Lipp M, Walther W, Pezzutto A, Westermann J. HER2/neu DNA vaccination by intradermal gene delivery in a mouse tumor model: Gene gun is superior to jet injector in inducing CTL responses and protective immunity. Oncoimmunology 2021; 1:1537-1545. [PMID: 23264900 PMCID: PMC3525609 DOI: 10.4161/onci.22563] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA vaccines are potential tools for the induction of immune responses against both infectious disease and cancer. The dermal application of DNA vaccines is of particular interest since the epidermal and dermal layers of the skin are characterized by an abundance of antigen-presenting cells (APCs). The aim of our study was to compare tumor protection as obtained by two different methods of intradermal DNA delivery (gene gun and jet injector) in a well-established HER2/neu mouse tumor model. BALB/c mice were immunized twice with a HER2/neu-coding plasmid by gene gun or jet injector. Mice were then subcutaneously challenged with HER2/neu+ syngeneic D2F2/E2 tumor cells. Protection against subsequent challenges with tumor cells as well as humoral and T-cell immune responses induced by the vaccine were monitored. Gene gun immunization was far superior to jet injector both in terms of tumor protection and induction of HER2/neu-specific immune responses. After gene gun immunization, 60% of the mice remained tumor-free until day 140 as compared with 25% after jet injector immunization. Furthermore, gene gun vaccination was able to induce both a strong TH1-polarized T-cell response with detectable cytotoxic T-lymphocyte (CTL) activity and a humoral immune response against HER2/neu, whereas the jet injector was not. Although the disadvantages that were associated with the use of the jet injector in our model may be overcome with methodological modifications and/or in larger animals, which exhibit a thicker skin and/or subcutaneous muscle tissue, we conclude that gene gun delivery constitutes the method of choice for intradermal DNA delivery in preclinical mouse models and possibly also for the clinical development of DNA-based vaccines.
Collapse
Affiliation(s)
- Tam Nguyen-Hoai
- Deptartment of Hematology, Oncology, and Tumor Immunology Charité; University Medicine Berlin; Campus Berlin-Buch, Campus Benjamin Franklin and Campus Virchow-Klinikum; Berlin, Germany ; Max Delbrück Center for Molecular Medicine; Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Xu H, Xing J, Tang X, Sheng X, Zhan W. The effects of CCL3, CCL4, CCL19 and CCL21 as molecular adjuvants on the immune response to VAA DNA vaccine in flounder (Paralichthys olivaceus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103492. [PMID: 31494219 DOI: 10.1016/j.dci.2019.103492] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 05/21/2023]
Abstract
The magnitude of the immune response induced by DNA vaccines depends on the amount and type of antigen-presenting cells attracted to the injection site. In our previous study, a DNA plasmid encoding the VAA gene of Vibrio anguillarum was constructed and shown to confer moderate protection against V. anguillarum challenge. To augment the protective efficacy of the VAA DNA vaccine and compare the adjuvant effects of CCL3, CCL4, CCL19 and CCL21, four bicistronic DNA plasmids containing the VAA gene of V. anguillarum together with the gene encoding the CCL3/CCL4/CCL19/CCL21 chemokines of flounder were successfully constructed and administered to fish, and the immune response of the animals and the enhancement of immunoprotection by the four chemokines were investigated. Vaccinated with pCCL3-VAA, pCCL4-VAA, pCCL19-VAA and pCCL21-VAA, flounder showed relative percent survivals of 62.16%, 83.78%, 78.38% and 72.97%, respectively, higher than the relative survival of flounder immunized with pVAA (40.54%). Compared with the pVAA group, the percentages of sIgM+, CD4-1+, and CD4-2+ lymphocytes and the levels of specific antibodies increased in pCCL3-VAA, pCCL4-VAA, pCCL19-VAA and pCCL21-VAA injection groups; CCL4 and CCL19 induced significantly higher levels of these parameters than CCL3 and CCL21 did. The amount of V. anguillarum in liver, spleen and kidney of pCCL3-VAA-, pCCL4-VAA-, pCCL19-VAA- and pCCL21-VAA-immunized flounder after V. anguillarum challenge was reduced compared to that in the pVAA group. Moreover, the co-expression of CCL3/CCL4/CCL19/CCL21 up-regulated immune-related gene expression associated with the local immune response. Our results indicate that CCL4 and CCL19 are promising adjuvants for use in VAA DNA vaccine against V. anguillarum.
Collapse
Affiliation(s)
- Hongsen Xu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, 266071, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, 266071, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, 266071, China
| |
Collapse
|
5
|
Gordy JT, Luo K, Kapoor A, Kim ES, Ayeh SK, Karakousis PC, Markham RB. Treatment with an immature dendritic cell-targeting vaccine supplemented with IFN-α and an inhibitor of DNA methylation markedly enhances survival in a murine melanoma model. Cancer Immunol Immunother 2020; 69:569-580. [PMID: 31980915 DOI: 10.1007/s00262-019-02471-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The chemokine MIP-3α (CCL20) binds to CCR6 on immature dendritic cells. DNA vaccines fusing MIP-3α to melanoma-associated antigens have shown improved efficacy and immunogenicity in the B16F10 mouse melanoma model. Here, we report that the combination of type-I interferon therapy (IFNα) with 5-Aza-2'-deoxycitidine (5Aza) profoundly enhanced the therapeutic efficacy of a MIP-3α-Gp100-Trp2 DNA vaccine. METHODS Beginning on day 5 post-transplantation of B16F10 melanoma, vaccine was administered intramuscularly (i.m.) by electroporation. CpG adjuvant was given 2 days later. 5Aza was given intraperitoneally at 1 mg/kg and IFNα therapy either intratumorally or i.m. as noted. Tumor sizes, tumor growth, and mouse survival were assessed. Tumor lysate gene expression levels and tumor-infiltrating lymphocytes (TILs) were assessed by qRT-PCR and flow cytometry, respectively. RESULTS Adding IFNα and 5Aza treatments to mice vaccinated with MIP-3α-Gp100-Trp2 leads to reduced tumor burden and increased median survival (39% over vaccine and 95% over controls). Tumor lysate expression of CCL19 and CCR7 were upregulated ten and fivefold over vaccine, respectively. Vaccine-specific and overall CD8+ TILs were increased over vaccine (sevenfold and fourfold, respectively), as well as the proportion of TILs that were CD8+ (twofold). CONCLUSIONS Efficient targeting of antigen to immature dendritic cells with a chemokine-fusion vaccine offers an alternative to classic and dendritic cell vaccines. Combining this approach with IFNα and 5Aza treatment significantly improved vaccine efficacy. This improved efficacy correlated with changes in chemokine gene expression and CD8+ TIL infiltration and was dependent on the presence of all therapeutic components.
Collapse
Affiliation(s)
- James T Gordy
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Kun Luo
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Aakanksha Kapoor
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emily S Kim
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samuel K Ayeh
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Petros C Karakousis
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard B Markham
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
6
|
Antigenic Targets for the Immunotherapy of Acute Myeloid Leukaemia. J Clin Med 2019; 8:jcm8020134. [PMID: 30678059 PMCID: PMC6406328 DOI: 10.3390/jcm8020134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/10/2019] [Accepted: 01/20/2019] [Indexed: 12/18/2022] Open
Abstract
One of the most promising approaches to preventing relapse is the stimulation of the body’s own immune system to kill residual cancer cells after conventional therapy has destroyed the bulk of the tumour. In acute myeloid leukaemia (AML), the high frequency with which patients achieve first remission, and the diffuse nature of the disease throughout the periphery, makes immunotherapy particularly appealing following induction and consolidation therapy, using chemotherapy, and where possible stem cell transplantation. Immunotherapy could be used to remove residual disease, including leukaemic stem cells from the farthest recesses of the body, reducing, if not eliminating, the prospect of relapse. The identification of novel antigens that exist at disease presentation and can act as targets for immunotherapy have also proved useful in helping us to gain a better understand of the biology that belies AML. It appears that there is an additional function of leukaemia associated antigens as biomarkers of disease state and survival. Here, we discuss these findings.
Collapse
|
7
|
Abstract
DNA vaccines offer many advantages over other anti-tumor vaccine approaches due to their simplicity, ease of manufacturing, and safety. Results from several clinical trials in patients with cancer have demonstrated that DNA vaccines are safe and can elicit immune responses. However, to date few DNA vaccines have progressed beyond phase I clinical trial evaluation. Studies into the mechanism of action of DNA vaccines in terms of antigen-presenting cell types able to directly present or cross-present DNA-encoded antigens, and the activation of innate immune responses due to DNA itself, have suggested opportunities to increase the immunogenicity of these vaccines. In addition, studies into the mechanisms of tumor resistance to anti-tumor vaccination have suggested combination approaches that can increase the anti-tumor effect of DNA vaccines. This review focuses on these mechanisms of action and mechanisms of resistance using DNA vaccines, and how this information is being used to improve the anti-tumor effect of DNA vaccines. These approaches are then specifically discussed in the context of human prostate cancer, a disease for which DNA vaccines have been and continue to be explored as treatments.
Collapse
Affiliation(s)
- Christopher D Zahm
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Viswa Teja Colluru
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Douglas G McNeel
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
8
|
Fry EA, Taneja P, Inoue K. Clinical applications of mouse models for breast cancer engaging HER2/neu. INTEGRATIVE CANCER SCIENCE AND THERAPEUTICS 2016; 3:593-603. [PMID: 28133539 PMCID: PMC5267336 DOI: 10.15761/icst.1000210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human c-ErbB2 (HER2) has long been used as a marker of breast cancer (BC) for sub-categorization for the prediction of prognosis, and determination of therapeutic strategies. HER2 overexpressing BCs are more invasive/metastatic; but patients respond to monoclonal antibody therapy with trastuzumab or tyrosine kinase inhibitors, at least at early stages. To date, numerous mouse models that faithfully reproduce HER2(+) BCs have been created in mice. We recently reviewed different mouse models of BC overexpressing wild type or mutant neu driven by MMTV, neu, or doxycycline-inducible promoters. These mice have been used to demonstrate the histopathology, oncogenic signaling pathways initiated by aberrant overexpression of HER2 in the mammary epithelium, and interaction between oncogenes and tumor suppressor genes at molecular levels. In this review, we focus on their clinical applications. They can be used to test the efficacy of HER(2) inhibitors before starting clinical trials, characterize the tumor-initiating cells that could be the cause of relapse after therapy as well as to analyze the molecular mechanisms of therapeutic resistance targeting HER2. MMTV-human ErbB2 (HER2) mouse models have recently been established since the monoclonal antibody to HER2 (trastuzumab; Herceptin®) does not recognize the rat neu protein. It has been reported that early intervention with HER2 monoclonal antibody would be beneficial for preventing mammary carcinogenesis. MDA-7/IL-24 as well as naturally-occurring chemicals have also been tested using MMTV-neu models. Recent studies have shown that MMTV-neu models are useful to develop vaccines to HER2 for immunotherapy. The mouse models employing HER2/neu will be essential for future antibody or drug screenings to overcome resistance to trastuzumab or HER(2)-specific tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| | - Pankaj Taneja
- Department of Biotechnology, Sharda University, Knowledge Park III, Greater Noida 201306, India
| | - Kazushi Inoue
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| |
Collapse
|
9
|
Tiptiri-Kourpeti A, Spyridopoulou K, Pappa A, Chlichlia K. DNA vaccines to attack cancer: Strategies for improving immunogenicity and efficacy. Pharmacol Ther 2016; 165:32-49. [DOI: 10.1016/j.pharmthera.2016.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
CCL4 as an adjuvant for DNA vaccination in a Her2/neu mouse tumor model. Cancer Gene Ther 2016; 23:162-7. [PMID: 27056671 DOI: 10.1038/cgt.2016.9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 12/28/2022]
Abstract
Chemokines are key regulators of both innate and adaptive immune responses. CCL4 (macrophage inflammatory protein-1β, MIP-1β) is a CC chemokine that has a broad spectrum of target cells including immature dendritic cells, which express the cognate receptor CCR5. We asked whether a plasmid encoding CCL4 is able to improve tumor protection and immune responses in a Her2/neu+ mouse tumor model. Balb/c mice were immunized twice intramuscularly with plasmid DNA on days 1 and 15. On day 25, a tumor challenge was performed with 2 × 10(5) syngeneic Her2/neu+ D2F2/E2 tumor cells. Different groups of mice were vaccinated with pDNA(Her2/neu) plus pDNA(CCL4), pDNA(Her2/neu), pDNA(CCL4) or mock vector alone. Our results show that CCL4 is able to (i) improve tumor protection and (ii) augment a TH1-polarized immune response against Her2/neu. Although Her2/neu-specific humoral and T-cell immune responses were comparable with that induced in previous studies using CCL19 or CCL21 as adjuvants, tumor protection conferred by CCL4 was inferior. Whether this is due to a different spectrum of (innate) immune cells, remains to be clarified. However, combination of CCL19/21 with CCL4 might be a reasonable approach in the future, particularly for DNA vaccination in Her2/neu+ breast cancer in the situation of minimal residual disease.
Collapse
|
11
|
Sadri-Ardalani F, Shabani M, Amiri MM, Bahadori M, Emami S, Sarrafzadeh AR, Noutash-Haghighat F, Jeddi-Tehrani M, Shokri F. Antibody response to HER2 extracellular domain and subdomains in mouse following DNA immunization. Tumour Biol 2015; 37:1217-27. [PMID: 26282003 DOI: 10.1007/s13277-015-3897-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/05/2015] [Indexed: 11/27/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is overexpressed in 15-20 % of breast cancer patients and is an appropriate target for immunotherapy in these patients. Monoclonal antibodies (mAbs) specific to HER2 are currently applied to treat breast cancer patients with HER2 overexpression. Active immunization with HER2 DNA or protein has been considered as a suitable alternative. The aim of this study is to evaluate anti-HER2 antibody response in serum of mice immunized with DNA constructs containing full extracellular domain (fECD) or subdomains of human HER2. Four extracellular subdomains and also fECD of HER2 were cloned into pCMV6-Neo vector. Different groups of Balb/C mice were immunized with HER2 DNA constructs and boosted with HER2 recombinant protein. The anti-HER2 antibody was subsequently determined by ELISA, flow cytometry, and immunohistochemistry. Anti-HER2 antibody was detected only in serum of mice immunized with fECD DNA. None of HER2 extracellular subdomains induced appreciable levels of anti-HER2 antibody. However, boosting with fECD or extracellular subdomain III (DIII) recombinant protein resulted in enhanced anti-HER2 fECD as well as anti-HER2 subdomain antibody responses. In this regard, almost all (99 %) of HER2-overexpressing BT474 cells could be detected by serum antibody from mice immunized with HER2 subdomain DNA and boosted with recombinant HER2 protein by flow cytometry. Similarly, serum of mice immunized with DIII DNA construct and boosted with recombinant DIII protein could also recognize these cells, but to a lesser extent (50 %). Our findings suggest that combination of HER2 DNA and protein immunization could effectively induce anti-HER2 antibody response in Balb/C mice.
Collapse
Affiliation(s)
- Fateme Sadri-Ardalani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Shabani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mohammad Mehdi Amiri
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Motahareh Bahadori
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Shaghayegh Emami
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | | | | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Fazel Shokri
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Gene Gun Her2/neu DNA Vaccination: Evaluation of Vaccine Efficacy in a Syngeneic Her2/neu Mouse Tumor Model. Methods Mol Biol 2015; 1317:17-37. [PMID: 26072399 DOI: 10.1007/978-1-4939-2727-2_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genetic vaccination using naked plasmid DNA is an immunization strategy both against infectious diseases and cancer. In order to improve the efficacy of DNA vaccines, particularly in large animals and humans, different strategies have been pursued. These vaccination strategies are based on different application routes, schedules, and coexpression of immunomodulatory molecules as adjuvants. Our mouse tumor model offers the possibility to investigate Her2/neu DNA vaccines in different settings, i.e., intramuscular or intradermal application with or without coexpression of adjuvants. Protection from tumor growth in tumor challenge experiments and both T cell and humoral immune responses against Her2/neu peptides are used as surrogate parameters for vaccine efficacy.
Collapse
|
13
|
The role of chemokines in breast cancer pathology and its possible use as therapeutic targets. J Immunol Res 2014; 2014:849720. [PMID: 25165728 PMCID: PMC4139084 DOI: 10.1155/2014/849720] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/05/2014] [Indexed: 12/30/2022] Open
Abstract
Chemokines are small proteins that primarily regulate the traffic of leukocytes under homeostatic conditions and during specific immune responses. The chemokine-chemokine receptor system comprises almost 50 chemokines and approximately 20 chemokine receptors; thus, there is no unique ligand for each receptor and the binding of different chemokines to the same receptor might have disparate effects. Complicating the system further, these effects depend on the cellular milieu. In cancer, although chemokines are associated primarily with the generation of a protumoral microenvironment and organ-directed metastasis, they also mediate other phenomena related to disease progression, such as angiogenesis and even chemoresistance. Therefore, the chemokine system is becoming a target in cancer therapeutics. We review the emerging data and correlations between chemokines/chemokine receptors and breast cancer, their implications in cancer progression, and possible therapeutic strategies that exploit the chemokine system.
Collapse
|
14
|
Pimenta EM, Barnes BJ. Role of Tertiary Lymphoid Structures (TLS) in Anti-Tumor Immunity: Potential Tumor-Induced Cytokines/Chemokines that Regulate TLS Formation in Epithelial-Derived Cancers. Cancers (Basel) 2014; 6:969-97. [PMID: 24762633 PMCID: PMC4074812 DOI: 10.3390/cancers6020969] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/19/2014] [Accepted: 03/31/2014] [Indexed: 12/12/2022] Open
Abstract
Following the successes of monoclonal antibody immunotherapies (trastuzumab (Herceptin®) and rituximab (Rituxan®)) and the first approved cancer vaccine, Provenge® (sipuleucel-T), investigations into the immune system and how it can be modified by a tumor has become an exciting and promising new field of cancer research. Dozens of clinical trials for new antibodies, cancer and adjuvant vaccines, and autologous T and dendritic cell transfers are ongoing in hopes of identifying ways to re-awaken the immune system and force an anti-tumor response. To date, however, few consistent, reproducible, or clinically-relevant effects have been shown using vaccine or autologous cell transfers due in part to the fact that the immunosuppressive mechanisms of the tumor have not been overcome. Much of the research focus has been on re-activating or priming cytotoxic T cells to recognize tumor, in some cases completely disregarding the potential roles that B cells play in immune surveillance or how a solid tumor should be treated to maximize immunogenicity. Here, we will summarize what is currently known about the induction or evasion of humoral immunity via tumor-induced cytokine/chemokine expression and how formation of tertiary lymphoid structures (TLS) within the tumor microenvironment may be used to enhance immunotherapy response.
Collapse
Affiliation(s)
- Erica M Pimenta
- Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ 07103, USA.
| | - Betsy J Barnes
- Department of Biochemistry and Molecular Biology, Rutgers Biomedical and Health Sciences, New Jersey Medical School-Cancer Center, Newark, NJ 07103, USA.
| |
Collapse
|
15
|
Bobanga ID, Petrosiute A, Huang AY. Chemokines as Cancer Vaccine Adjuvants. Vaccines (Basel) 2013; 1:444-62. [PMID: 24967094 PMCID: PMC4067044 DOI: 10.3390/vaccines1040444] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/31/2013] [Accepted: 09/26/2013] [Indexed: 02/07/2023] Open
Abstract
We are witnessing a new era of immune-mediated cancer therapies and vaccine development. As the field of cancer vaccines advances into clinical trials, overcoming low immunogenicity is a limiting step in achieving full success of this therapeutic approach. Recent discoveries in the many biological roles of chemokines in tumor immunology allow their exploitation in enhancing recruitment of antigen presenting cells (APCs) and effector cells to appropriate anatomical sites. This knowledge, combined with advances in gene therapy and virology, allows researchers to employ chemokines as potential vaccine adjuvants. This review will focus on recent murine and human studies that use chemokines as therapeutic anti-cancer vaccine adjuvants.
Collapse
Affiliation(s)
- Iuliana D. Bobanga
- Departments of General Surgery, School of Medicine, University Hospital Case Medical Center/Case Western Reserve University, Cleveland, OH 44106, USA
| | - Agne Petrosiute
- Departments of Pediatrics, School of Medicine, University Hospital Case Medical Center/Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alex Y. Huang
- Departments of Pediatrics, School of Medicine, University Hospital Case Medical Center/Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
16
|
Wong JL, Muthuswamy R, Bartlett DL, Kalinski P. IL-18-based combinatorial adjuvants promote the intranodal production of CCL19 by NK cells and dendritic cells of cancer patients. Oncoimmunology 2013; 2:e26245. [PMID: 24228233 PMCID: PMC3820810 DOI: 10.4161/onci.26245] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 01/10/2023] Open
Abstract
The effective accumulation and interaction of mature dendritic cells (DCs) and naïve T cells within lymph nodes (LNs), which are driven by the CCR7-CCL19/CCL21 chemokine axis, are critical for the induction of adaptive T-cell immunity. Human natural killer (NK) cells activated by interleukin (IL)-18 exhibit a unique 'helper' activity in promoting productive DC-T cell interactions, inducing DC maturation and shifting DC-primed T-cell responses toward a TH1 polarization. Here, we demonstrate that such IL-18-activated 'helper' NK cells uniquely stimulate DCs to produce high levels of CCL19 through tumor necrosis factor α (TNFα) and interferon γ (IFNγ), a process that relies on secondary NK-cell activation by additional inflammatory signals including IFNα, IL-15, IL-12 and IL-2. DCs activated by helper NK cells not only promote the efficient CCR7-mediated recruitment of naïve CD8+ T cells, but also stimulate their expansion and expression of granzyme B. Using an ex vivo explant culture system based on LNs isolated from colorectal cancer patients, we found that CCL19 is upregulated in human tumor-associated lymphoid tissues treated with helper NK cell-stimulating factors. Our findings demonstrate the ability of 2 signal-activated helper NK cells to promote the production of the DC- and naïve/memory T cell-attracting chemokine CCL19 in LNs, and provide a rationale for the therapeutic application of IL-18-containing 'combinatorial adjuvants' to facilitate the induction of antitumor immune responses.
Collapse
Affiliation(s)
- Jeffrey L Wong
- Department of Surgery; University of Pittsburgh; Pittsburgh, PA USA
| | | | | | | |
Collapse
|
17
|
Zhang Z, Procissi D, Li W, Kim DH, Li K, Han G, Huan Y, Larson AC. High resolution MRI for non-invasive mouse lymph node mapping. J Immunol Methods 2013; 400-401:23-9. [PMID: 23850992 DOI: 10.1016/j.jim.2013.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 01/24/2023]
Abstract
Mouse models are fundamental to the study and design of new techniques for the cancer diagnosis and treatment. The lymphatic system plays an active role in oncogenesis and metastatic disease progression. However, the in vivo identification of LNs in mice is challenging with conventional imaging modalities since the LN diameter in normal mice is 1-2 mm. Standard dissection techniques are challenging and can only provide endpoint data. Here, we describe high resolution MRI (HR-MRI) approaches for the non-invasive detection of mouse LNs in vivo. We compare in vivo non-invasive HR-MRI methods (without exogenous contrast injections) to the ex vivo dye injection methods for the identification of commonly studied LNs in both normal mice and a mouse model of pancreatic ductal adenocarcinoma (PDAC). We demonstrated the potential to use HR-MRI techniques as a non-invasive imaging assay for visualizing mouse LNs in vivo.
Collapse
Affiliation(s)
- Zhuoli Zhang
- Department of Radiology, Northwestern University, United States; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, United States.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Yan YH, Qi SC, Su LK, Xu QA, Fan MW. Co-delivery of ccl19 gene enhances anti-caries DNA vaccine pCIA-P immunogenicity in mice by increasing dendritic cell migration to secondary lymphoid tissues. Acta Pharmacol Sin 2013; 34:432-40. [PMID: 23334235 DOI: 10.1038/aps.2012.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM To investigate how co-delivery of the gene encoding C-C chemokine ligand-19 (CCL-19) affected the systemic immune responses to an anti-caries DNA vaccine pCIA-P in mice. METHODS Plasmid encoding CCL19-GFP fusion protein (pCCL19/GFP) was constructed by inserting murine ccl19 gene into GFP-expressing vector pAcGFP1-N1. Chemotactic effect of the fusion protein on murine dendritic cells (DCs) was assessed in vitro and in vivo using transwell and flow cytometric analysis, respectively. BALB/c mice were administered anti-caries DNA vaccine pCIA-P plus pCCL19/GFP (each 100 μg, im) or pCIA-P alone. Serum level of anti-PAc IgG was assessed with ELISA. Splenocytes from the mice were stimulated with PAc protein for 48 h, and IFN-γ and IL-4 production was measured with ELISA. The presence of pCCL19/GFP in spleen and draining lymph nodes was assessed using PCR. The expression of pCCL19/GFP protein in these tissues was analyzed under microscope and with flow cytometry. RESULTS The expression level of CCL19-GFP fusion protein was considerably increased 48 h after transfection of COS-7 cells with pCCL19/GFP plasmids. The fusion protein showed potent chemotactic activity on DCs in vitro. The level of serum PAc-specific IgG was significantly increased from 4 to 14 weeks in the mice vaccinated with pCIA-P plus pCCL19/GFP. Compared to mice vaccinated with pCIA-P alone, the splenocytes from mice vaccinated with pCIA-P plus pCCL19/GFP produced significantly higher level of IFN-γ, but IL-4 production had no significant change. Following intromuscular co-delivery, pCCL19/GFP plasmid and fusion protein were detected in the spleen and draining lymph nodes. Administration of CCL19 gene in mice markedly increased the number of mature DCs in secondary lymphoid tissues. CONCLUSION CCL19 serves as an effective adjuvant for anti-caries DNA vaccine by inducing chemotactic migration of DCs to secondary lymphoid tissues.
Collapse
|
19
|
Nguyen-Hoai T, Hohn O, Vu MD, Baldenhofer G, Sayed Ahmed MS, Dörken B, Norley S, Lipp M, Pezzutto A, Westermann J. CCL19 as an adjuvant for intradermal gene gun immunization in a Her2/neu mouse tumor model: improved vaccine efficacy and a role for B cells as APC. Cancer Gene Ther 2012; 19:880-7. [DOI: 10.1038/cgt.2012.78] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|