1
|
Alteration of the Neuromuscular Junction and Modifications of Muscle Metabolism in Response to Neuron-Restricted Expression of the CHMP2Bintron5 Mutant in a Mouse Model of ALS-FTD Syndrome. Biomolecules 2022; 12:biom12040497. [PMID: 35454086 PMCID: PMC9025139 DOI: 10.3390/biom12040497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
CHMP2B is a protein that coordinates membrane scission events as a core component of the ESCRT machinery. Mutations in CHMP2B are an uncommon cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two neurodegenerative diseases with clinical, genetic, and pathological overlap. Different mutations have now been identified across the ALS-FTD spectrum. Disruption of the neuromuscular junction is an early pathogenic event in ALS. Currently, the links between neuromuscular junction functionality and ALS-associated genes, such as CHMP2B, remain poorly understood. We have previously shown that CHMP2B transgenic mice expressing the CHMP2Bintron5 mutant specifically in neurons develop a progressive motor phenotype reminiscent of ALS. In this study, we used complementary approaches (behavior, histology, electroneuromyography, and biochemistry) to determine the extent to which neuron-specific expression of CHMP2Bintron5 could impact the skeletal muscle characteristics. We show that neuronal expression of the CHMP2Bintron5 mutant is sufficient to trigger progressive gait impairment associated with structural and functional changes in the neuromuscular junction. Indeed, CHMP2Bintron5 alters the pre-synaptic terminal organization and the synaptic transmission that ultimately lead to a switch of fast-twitch glycolytic muscle fibers to more oxidative slow-twitch muscle fibers. Taken together these data indicate that neuronal expression of CHMP2Bintron5 is sufficient to induce a synaptopathy with molecular and functional changes in the motor unit reminiscent of those found in ALS patients.
Collapse
|
2
|
Lessons learned from CHMP2B, implications for frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2020; 147:105144. [PMID: 33144171 DOI: 10.1016/j.nbd.2020.105144] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS) are two neurodegenerative diseases with clinical, genetic and pathological overlap. As such, they are commonly regarded as a single spectrum disorder, with pure FTD and pure ALS representing distinct ends of a continuum. Dysfunctional endo-lysosomal and autophagic trafficking, leading to impaired proteostasis is common across the FTD-ALS spectrum. These pathways are, in part, mediated by CHMP2B, a protein that coordinates membrane scission events as a core component of the ESCRT machinery. Here we review how ALS and FTD disease causing mutations in CHMP2B have greatly contributed to our understanding of how endosomal-lysosomal and autophagic dysfunction contribute to neurodegeneration, and how in vitro and in vivo models have helped elucidate novel candidates for potential therapeutic intervention with implications across the FTD-ALS spectrum.
Collapse
|
3
|
Inflammatory markers of CHMP2B-mediated frontotemporal dementia. J Neuroimmunol 2018; 324:136-142. [PMID: 30193769 DOI: 10.1016/j.jneuroim.2018.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/04/2018] [Accepted: 08/14/2018] [Indexed: 12/27/2022]
Abstract
Histopathological studies and animal models have suggested an inflammatory component in the pathomechanism of the CHMP2B associated frontotemporal dementia (FTD-3). In this cross-sectional study, serum and cerebrospinal fluid were analyzed for inflammatory markers in CHMP2B mutation carriers. Serum levels of CCL4 were increased throughout life. Serum levels of IL-15, CXCL10, CCL22 and TNF-α were significantly associated with cognitive decline, suggesting a peripheral inflammatory response to neurodegeneration. CSF levels of sTREM2 appeared to increase more rapidly with age in CHMP2B mutation carriers. The identification of a peripheral inflammatory response to disease progression supports the involvement of an inflammatory component in FTD-3.
Collapse
|
4
|
Serpente M, Galimberti D. Autosomal Dominant Frontotemporal Lobar Degeneration: From Genotype to Phenotype. NEURODEGENER DIS 2018. [DOI: 10.1007/978-3-319-72938-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
5
|
De Conti L, Borroni B, Baralle M. New routes in frontotemporal dementia drug discovery. Expert Opin Drug Discov 2017; 12:659-671. [DOI: 10.1080/17460441.2017.1329294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Laura De Conti
- Biotechnology Development Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders - Neurology Unit, University of Brescia, Brescia, Italy
| | - Marco Baralle
- Biotechnology Development Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
6
|
Cornelius N, Wardman JH, Hargreaves IP, Neergheen V, Bie AS, Tümer Z, Nielsen JE, Nielsen TT. Evidence of oxidative stress and mitochondrial dysfunction in spinocerebellar ataxia type 2 (SCA2) patient fibroblasts: Effect of coenzyme Q10 supplementation on these parameters. Mitochondrion 2017; 34:103-114. [PMID: 28263872 DOI: 10.1016/j.mito.2017.03.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/11/2017] [Accepted: 03/01/2017] [Indexed: 02/05/2023]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is a rare neurodegenerative disorder caused by a CAG repeat expansion in the ataxin-2 gene. We show increased oxidative stress, abnormalities in the antioxidant system, changes in complexes involved in oxidative phosphorylation and changes in mitochondrial morphology in SCA2 patient fibroblasts compared to controls, and we show that treatment with CoQ10 can partially reverse these changes. Together, our results suggest that oxidative stress and mitochondrial dysfunction may be contributory factors to the pathophysiology of SCA2 and that therapeutic strategies involving manipulation of the antioxidant system could prove to be of clinical benefit.
Collapse
Affiliation(s)
- Nanna Cornelius
- Neurogenetics Research Laboratory, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Jonathan H Wardman
- Neurogenetics Research Laboratory, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Iain P Hargreaves
- Pharmacy and Biomolecular Sciences, James Parsons Building, John Moore's University, Liverpool L3 3AF, United Kingdom
| | - Viruna Neergheen
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Anne Sigaard Bie
- Neurogenetics Research Laboratory, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Zeynep Tümer
- Applied Human Molecular Genetics, Kennedy Center, Department of Clinical Genetics, Rigshospitalet, Glostrup, University of Copenhagen, Denmark
| | - Jørgen E Nielsen
- Neurogenetics Research Laboratory, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; Danish Dementia Research Centre, Neurogenetics Clinic, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark; Section of Neurogenetics, Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Denmark.
| | - Troels T Nielsen
- Neurogenetics Research Laboratory, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
7
|
Zhang Y, Schmid B, Nikolaisen NK, Rasmussen MA, Aldana BI, Agger M, Calloe K, Stummann TC, Larsen HM, Nielsen TT, Huang J, Xu F, Liu X, Bolund L, Meyer M, Bak LK, Waagepetersen HS, Luo Y, Nielsen JE, Holst B, Clausen C, Hyttel P, Freude KK. Patient iPSC-Derived Neurons for Disease Modeling of Frontotemporal Dementia with Mutation in CHMP2B. Stem Cell Reports 2017; 8:648-658. [PMID: 28216144 PMCID: PMC5355623 DOI: 10.1016/j.stemcr.2017.01.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 12/23/2022] Open
Abstract
The truncated mutant form of the charged multivesicular body protein 2B (CHMP2B) is causative for frontotemporal dementia linked to chromosome 3 (FTD3). CHMP2B is a constituent of the endosomal sorting complex required for transport (ESCRT) and, when mutated, disrupts endosome-to-lysosome trafficking and substrate degradation. To understand the underlying molecular pathology, FTD3 patient induced pluripotent stem cells (iPSCs) were differentiated into forebrain-type cortical neurons. FTD3 neurons exhibited abnormal endosomes, as previously shown in patients. Moreover, mitochondria of FTD3 neurons displayed defective cristae formation, accompanied by deficiencies in mitochondrial respiration and increased levels of reactive oxygen. In addition, we provide evidence for perturbed iron homeostasis, presenting an in vitro patient-specific model to study the effects of iron accumulation in neurodegenerative diseases. All phenotypes observed in FTD3 neurons were rescued in CRISPR/Cas9-edited isogenic controls. These findings illustrate the relevance of our patient-specific in vitro models and open up possibilities for drug target development. FTD3 neurons show abnormalities in endosomes and mitochondria Parkinson's and Alzheimer's disease core genes are altered in FTD3 neurons Iron homeostasis is perturbed in FTD3 neurons Impairments in FTD3 neurons are rescued in CRISPR/Cas9-edited isogenic controls
Collapse
Affiliation(s)
- Yu Zhang
- Stem Cells and Embryology Group, Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark.
| | | | - Nanett K Nikolaisen
- Stem Cells and Embryology Group, Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | | | - Blanca I Aldana
- Neurometabolism Research Unit, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mikkel Agger
- Stem Cell and Developmental Neurobiology Group, Department of Neurobiology Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Kirstine Calloe
- The Physiology Group, Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | | | - Hjalte M Larsen
- Stem Cells and Embryology Group, Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Troels T Nielsen
- Neurogenetics Clinic & Research Lab, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jinrong Huang
- BGI-Shenzhen, 518083 Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, 518083 Shenzhen, China
| | - Fengping Xu
- BGI-Shenzhen, 518083 Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, 518083 Shenzhen, China
| | - Xin Liu
- BGI-Shenzhen, 518083 Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, 518083 Shenzhen, China
| | - Lars Bolund
- Danish Regenerative Engineering Alliance for Medicine (DREAM), Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Morten Meyer
- Stem Cell and Developmental Neurobiology Group, Department of Neurobiology Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Lasse K Bak
- Neurometabolism Research Unit, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Helle S Waagepetersen
- Neurometabolism Research Unit, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Yonglun Luo
- Danish Regenerative Engineering Alliance for Medicine (DREAM), Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Jørgen E Nielsen
- Neurogenetics Clinic & Research Lab, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | | | | - Poul Hyttel
- Stem Cells and Embryology Group, Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Kristine K Freude
- Stem Cells and Embryology Group, Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark.
| |
Collapse
|
8
|
Götzl JK, Lang CM, Haass C, Capell A. Impaired protein degradation in FTLD and related disorders. Ageing Res Rev 2016; 32:122-139. [PMID: 27166223 DOI: 10.1016/j.arr.2016.04.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/21/2016] [Accepted: 04/23/2016] [Indexed: 12/12/2022]
Abstract
Impaired protein degradation has been discussed as a cause or consequence of various neurodegenerative diseases, such as Alzheimer's, Parkinson's and Huntington's disease. More recently, evidence accumulated that dysfunctional protein degradation may play a role in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Since in almost all neurodegenerative diseases, protein aggregates are disease-defining hallmarks, it is most likely that impaired protein degradation contributes to disease onset and progression. In the majority of FTD cases, the pathological protein aggregates contain either microtubuleassociated protein tau or TAR DNA-binding protein (TDP)-43. Aggregates are also positive for ubiquitin and p62/sequestosome 1 (SQSTM1) indicating that these aggregates are targeted for degradation. FTD-linked mutations in genes encoding three autophagy adaptor proteins, p62/SQSTM1, ubiquilin 2 and optineurin, indicate that impaired autophagy might cause FTD. Furthermore, the strongest evidence for lysosomal impairment in FTD is provided by the progranulin (GRN) gene, which is linked to FTD and neuronal ceroid lipofuscinosis. In this review, we summarize the observations that have been made during the last years linking the accumulation of disease-associated proteins in FTD to impaired protein degradation pathways. In addition, we take resent findings for nucleocytoplasmic transport defects of TDP-43, as discussed for hexanucleotide repeat expansions in C9orf72 into account and provide a hypothesis how the interplay of altered nuclear transport and protein degradation leads to the accumulation of protein deposits.
Collapse
|
9
|
Spencer B, Kim C, Gonzalez T, Bisquertt A, Patrick C, Rockenstein E, Adame A, Lee SJ, Desplats P, Masliah E. α-Synuclein interferes with the ESCRT-III complex contributing to the pathogenesis of Lewy body disease. Hum Mol Genet 2016; 25:1100-15. [PMID: 26740557 DOI: 10.1093/hmg/ddv633] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/30/2015] [Indexed: 01/17/2023] Open
Abstract
α-Synuclein (α-syn) has been implicated in neurological disorders with parkinsonism, including Parkinson's disease and Dementia with Lewy body. Recent studies have shown α-syn oligomers released from neurons can propagate from cell-to-cell in a prion-like fashion exacerbating neurodegeneration. In this study, we examined the role of the endosomal sorting complex required for transport (ESCRT) pathway on the propagation of α-syn. α-syn, which is transported via the ESCRT pathway through multivesicular bodies for degradation, can also target the degradation of the ESCRT protein-charged multivesicular body protein (CHMP2B), thus generating a roadblock of endocytosed α-syn. Disruption of the ESCRT transport system also resulted in increased exocytosis of α-syn thus potentially increasing cell-to-cell propagation of synuclein. Conversely, delivery of a lentiviral vector overexpressing CHMP2B rescued the neurodegeneration in α-syn transgenic mice. Better understanding of the mechanisms of intracellular trafficking of α-syn might be important for understanding the pathogenesis and developing new treatments for synucleinopathies.
Collapse
Affiliation(s)
| | - Changyoun Kim
- Department of Neuroscience and Department of Medicine, College of Medicine, Seoul National University, Seoul 110-799, Korea
| | | | | | | | | | | | - Seung-Jae Lee
- Department of Medicine, College of Medicine, Seoul National University, Seoul 110-799, Korea
| | | | - Eliezer Masliah
- Department of Neuroscience and Department of Pathology, University of California, San Diego, San Diego, CA 92103, USA and
| |
Collapse
|
10
|
Clayton EL, Mizielinska S, Edgar JR, Nielsen TT, Marshall S, Norona FE, Robbins M, Damirji H, Holm IE, Johannsen P, Nielsen JE, Asante EA, Collinge J, Isaacs AM. Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology. Acta Neuropathol 2015; 130:511-23. [PMID: 26358247 PMCID: PMC4575387 DOI: 10.1007/s00401-015-1475-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022]
Abstract
Mutations in the charged multivesicular body protein 2B (CHMP2B) cause frontotemporal dementia (FTD). We report that mice which express FTD-causative mutant CHMP2B at physiological levels develop a novel lysosomal storage pathology characterised by large neuronal autofluorescent aggregates. The aggregates are an early and progressive pathology that occur at 3 months of age and increase in both size and number over time. These autofluorescent aggregates are not observed in mice expressing wild-type CHMP2B, or in non-transgenic controls, indicating that they are a specific pathology caused by mutant CHMP2B. Ultrastructural analysis and immuno- gold labelling confirmed that they are derived from the endolysosomal system. Consistent with these findings, CHMP2B mutation patient brains contain morphologically similar autofluorescent aggregates. These aggregates occur significantly more frequently in human CHMP2B mutation brain than in neurodegenerative disease or age-matched control brains. These data suggest that lysosomal storage pathology is the major neuronal pathology in FTD caused by CHMP2B mutation. Recent evidence suggests that two other genes associated with FTD, GRN and TMEM106B are important for lysosomal function. Our identification of lysosomal storage pathology in FTD caused by CHMP2B mutation now provides evidence that endolysosomal dysfunction is a major degenerative pathway in FTD.
Collapse
Affiliation(s)
- Emma L Clayton
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Sarah Mizielinska
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Troels Tolstrup Nielsen
- Neurogenetics Research Laboratory, Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Marshall
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Frances E Norona
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Miranda Robbins
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Hana Damirji
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Ida E Holm
- Laboratory for Experimental Neuropathology, Department of Pathology, Randers Hospital, 8930, Randers NØ, Denmark
- Institute of Clinical Medicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Peter Johannsen
- Memory Clinic, Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen E Nielsen
- Neurogenetics Research Laboratory, Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Memory Clinic, Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Section of Neurogenetics, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Emmanuel A Asante
- MRC Prion Unit, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - John Collinge
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- MRC Prion Unit, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Adrian M Isaacs
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
11
|
Frontotemporal Lobar Degeneration: Genetics and Clinical Phenotypes. NEURODEGENER DIS 2014. [DOI: 10.1007/978-1-4471-6380-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
12
|
Klöhn PC, Castro-Seoane R, Collinge J. Exosome release from infected dendritic cells: a clue for a fast spread of prions in the periphery? J Infect 2013; 67:359-68. [PMID: 23911964 DOI: 10.1016/j.jinf.2013.07.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/11/2013] [Accepted: 07/23/2013] [Indexed: 11/18/2022]
Abstract
Prion diseases are incurable transmissible neurological disorders. In many natural and experimental prion diseases, infectious prions can be detected in the lymphoreticular system (LRS) long before they reach the brain where they cause a fatal rapidly progressive degeneration. Although major cell types that contribute to prion accumulation have been identified, the mode of prion dissemination in the LRS remains elusive. Recent evidence of a remarkably fast splenic prion accumulation after peripheral infection of mice, resulting in high prion titers in dendritic cells (DCs) and a release of prions from infected DCs via exosomes suggest that intercellular dissemination may contribute to rapid prion colonization in the LRS. A vast body of evidence from retroviral infections shows that DCs and other antigen-presenting cells (APCs) share viral antigens by intercellular transfer to warrant immunity against viruses if APCs remain uninfected. Evolved to adapt the immune response to evading pathogens, these pathways may constitute a portal for unimpeded prion dissemination owing to the tolerance of the immune system against host-encoded prion protein. In this review we summarize current paradigms for antigen-sharing pathways which may be relevant to better understand dissemination of rogue neurotoxic proteins.
Collapse
Affiliation(s)
- Peter-Christian Klöhn
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | | | | |
Collapse
|