1
|
Kyriakidou A, Kyriazou AV, Koufakis T, Vasilopoulos Y, Avramidis I, Baltagiannis S, Goulis DG, Kotsa K. Association between variants in TCF7L2, CTRB1/2, and GLP-1R genes and response to therapy with glucagon-like peptide-1 receptor agonists. Postgrad Med 2024; 136:218-225. [PMID: 38453649 DOI: 10.1080/00325481.2024.2328513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
OBJECTIVES The factors determining the response to treatment with glucagon-like peptide-1 receptor agonists (GLP-1- RAs) have not been clarified. The present study investigated the association between polymorphisms in TCF7L2, CTRB1/2, and GLP-1 R genes and response to GLP-1 RAs regarding glycemic control and weight loss among Greek patients with type 2 diabetes mellitus (T2DM). METHODS Patients (n = 191) treated with GLP-1 RAs for at least 6 months were included. Participants were genotyped for TCF7L2 rs7903146 (C>T), CTRB1/2 rs7202877 (T>G) and GLP-1 R rs367543060 (C>T) polymorphisms. Clinical and laboratory parameters were measured before, 3, and 6 months after treatment initiation. The patients were classified into responders and non-responders according to specific criteria. RESULTS Carriers of at least one rs7903146 'T' allele and rs7202877 'G' allele presented similar glucose control and weight loss response to GLP-1 RAs with the respective homozygous wild-type genotypes [odds ratio (OR): 1.08, 95% confidence interval (CI): 0.5, 2.31, p = 0.85 and OR: 1.35, 95% CI: 0.66, 2.76, p = 0.42; OR: 1.4, 95% CI: 0.56, 3.47, p = 0.47 and OR: 1.28, 95% CI: 0.55, 2.98, p = 0.57, respectively]. Regarding the GLP-1 R polymorphism, all participants were homozygous for the wild-type allele; thus, no comparisons were feasible. Female sex (p = 0.03) and lower baseline weight (p = 0.024) were associated with an improved glycemic and weight loss response, respectively. CONCLUSION There is no evidence suggesting a role for the variants studied in response to GLP-1 RA therapy in people with T2DM. However, specific demographic and clinical factors may be related to a better response to treatment with these agents.
Collapse
Affiliation(s)
- Artemis Kyriakidou
- Division of Endocrinology and Metabolism - Diabetes Center, 1st Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Angeliki V Kyriazou
- Division of Endocrinology and Metabolism - Diabetes Center, 1st Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propaedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Yiannis Vasilopoulos
- Department of Biology, Section of Genetics, Cell Biology and Development, University of Patras, Patras, Greece
| | - Iakovos Avramidis
- Diabetes Center, Department of Internal Medicine, G. Papanikolaou General Hospital, Thessaloniki, Greece
| | | | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism - Diabetes Center, 1st Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
2
|
Fang Y, Zhang J, Ji L, Zhu C, Xiao Y, Gao Q, Song W, Wei L. GLP1R rs3765467 Polymorphism Is Associated with the Risk of Early Onset Type 2 Diabetes. Int J Endocrinol 2023; 2023:8729242. [PMID: 38131033 PMCID: PMC10735718 DOI: 10.1155/2023/8729242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 01/19/2023] [Accepted: 04/18/2023] [Indexed: 12/23/2023] Open
Abstract
Objective To investigate the relationship between glucagon-like peptide-1 receptor gene polymorphisms and susceptibility to early onset type 2 diabetes. Methods Samples from 316 type 2 diabetes patients with early onset type 2 diabetes (n = 137) and late-onset type 2 diabetes (n = 179) and 145 nondiabetic individuals were analyzed. Multiplex PCR combined with resequencing Hi-Reseq technology was used to detect single nucleotide polymorphisms of the glucagon-like peptide-1 receptor gene, and the allele frequency, genotype distribution, and clinical parameters were analyzed between each diabetes subgroup and the control group. Results Sixteen single nucleotide polymorphisms were identified in the exonic region of the glucagon-like peptide-1 receptor gene according to the minor allele frequency (MAF > 0.05) in the participants. Among these, the glucagon-like peptide-1 receptor rs3765467 (G⟶A) mutation was statistically associated with early onset type 2 diabetes. Compared with that of the GG carriers, carriers of genotype AA at rs3765467 had a decreased risk of early onset type 2 diabetes after adjusting for sex and body mass index. In the dominant model, the frequencies of the rs3765467 AA + GA genotype were significantly decreased in the early onset type 2 diabetes group, and carriers of genotype AA + GA at rs3765467 had a decreased risk of early onset type 2 diabetes after adjusting for sex and body mass index. Moreover, fasting C peptide levels were significantly higher in GA + AA genotype carriers than those in GG genotype carriers. Conclusion The glucagon-like peptide 1 receptor rs3765467 polymorphism was significantly associated with age at type 2 diabetes diagnosis and thus may be used as a marker to screen and detect individuals at risk of developing early onset type 2 diabetes.
Collapse
Affiliation(s)
- Yunyun Fang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Shanghai 200233, China
| | - Jingjing Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, 999 Hucheng Huan Road, Lingang New City, Shanghai 201306, China
| | - Linlin Ji
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Shanghai 200233, China
| | - Chaoyu Zhu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Shanghai 200233, China
| | - Yuanyuan Xiao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Shanghai 200233, China
| | - Qingge Gao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Shanghai 200233, China
| | - Wenjing Song
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Shanghai 200233, China
| | - Li Wei
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
3
|
Golovina EL, Grishkevich IR, Vaizova OE, Samoilova IG, Podchinenova DV, Matveeva MV, Kudlay DA. [Genetic aspects of type 1 glucagon peptide agonists clinical efficacy: A review]. TERAPEVT ARKH 2023; 95:274-278. [PMID: 37167150 DOI: 10.26442/00403660.2023.03.202150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
A review of publications devoted to the analysis of genetic polymorphisms of the gene encoding the glucagon-like peptide type 1 receptor and some other genes directly and indirectly involved in the implementation of its physiological action is presented. The aim of the study: to search for information on genes polymorphism that can affect the effectiveness of glucagon-like peptide type 1 agonists. The review was carried out in accordance with the PRISMA 2020 recommendations, the search for publications was based on PubMed databases (including Medline), Web of Science, as well as Russian scientific electronic source eLIBRARY.RU from 1993 to 2022. The several genes polymorphisms (GLP1R, TCF7L2, CNR1, SORCS1, WFS1, PPARD, CTRB1/2) that may affect the course and therapy of type 2 diabetes mellitus, metabolic syndrome and obesity, was described. Single nucleotide substitutions in some regions of these genes can both decrease and increase the clinical efficacy of the treatment of diabetes mellitus and metabolic syndrome with the help of type 1 glucagon-like peptide agonists: exenatide, liraglutide. Data on the role of genetic variations in the structure of the products of these genes in the effectiveness of other type 1 glucacone-like peptide agonists have not been found.
Collapse
Affiliation(s)
| | | | | | | | | | | | - D A Kudlay
- Sechenov First Moscow State Medical University (Sechenov University)
- NRC Institute of Immunology FMBA of Russia
| |
Collapse
|
4
|
Erfanian S, Mir H, Abdoli A, Roustazadeh A. Association of gastric inhibitory polypeptide receptor (GIPR) gene polymorphism with type 2 diabetes mellitus in iranian patients. BMC Med Genomics 2023; 16:44. [PMID: 36882778 PMCID: PMC9990261 DOI: 10.1186/s12920-023-01477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
INTRODUCTION Gastric inhibitory polypeptide receptor (GIPR) encodes a G-protein coupled receptor for gastric inhibitory polypeptide (GIP), which was demonstrated to stimulate insulin secretion. Relation of GIPR gene variation to impaired insulin response has been suggested in previous studies. However, little information is available regarding GIPR polymorphisms and type 2 diabetes mellitus (T2DM). Hence, the aim of the study was to investigate single nucleotide polymorphisms (SNPs) in the promoter and coding regions of GIPR in Iranian T2DM patients. MATERIALS AND METHODS Two hundred subjects including 100 healthy and 100 T2DM patients were recruited in the study. Genotypes and allele frequency of rs34125392, rs4380143 and rs1800437 in the promoter, 5' UTR and coding region of GIPR were investigated by RFLP-PCR and Nested-PCR. RESULTS Our finding indicated that rs34125392 genotype distribution was statistically different between T2DM and healthy groups (P = 0.043). In addition, distribution of T/- + -/- versus TT was significantly different between the both groups (P = 0.021). Moreover, rs34125392 T/- genotype increased the risk of T2DM (OR = 2.68, 95%CI = 1.203-5.653, P = 0.015). However, allele frequency and genotype distributions of rs4380143 and rs1800437 were not statistically different between the groups (P > 0.05). Multivariate analysis showed that the tested polymorphisms had no effect on biochemical variables. CONCLUSION We concluded that GIPR gene polymorphism is associated with T2DM. In addition; rs34125392 heterozygote genotype may increase the risk of T2DM. More studies with large sample size in other populations are recommended to show the ethnical relation of these polymorphisms to T2DM.
Collapse
Affiliation(s)
- Saiedeh Erfanian
- Department of Biochemistry and Nutrition, Jahrom University of Medical Sciences, Jahrom, Iran.,Department of Advanced Medical Sciences and Technologies, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Hamed Mir
- Department of Biochemistry and Nutrition, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Amir Abdoli
- Department of Parasitology, School of medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Abazar Roustazadeh
- Department of Biochemistry and Nutrition, Jahrom University of Medical Sciences, Jahrom, Iran. .,Department of Advanced Medical Sciences and Technologies, Jahrom University of Medical Sciences, Jahrom, Iran. .,Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran. .,Ostad motahhari Blvd, Jahrom University of Medical Sciences, 74148-46199, Jahrom, Iran.
| |
Collapse
|
5
|
Akhlaghipour I, Bina AR, Mogharrabi MR, Fanoodi A, Ebrahimian AR, Khojasteh Kaffash S, Babazadeh Baghan A, Khorashadizadeh ME, Taghehchian N, Moghbeli M. Single-nucleotide polymorphisms as important risk factors of diabetes among Middle East population. Hum Genomics 2022; 16:11. [PMID: 35366956 PMCID: PMC8976361 DOI: 10.1186/s40246-022-00383-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/23/2022] [Indexed: 12/16/2022] Open
Abstract
Diabetes is a chronic metabolic disorder that leads to the dysfunction of various tissues and organs, including eyes, kidneys, and cardiovascular system. According to the World Health Organization, diabetes prevalence is 8.8% globally among whom about 90% of cases are type 2 diabetes. There are not any significant clinical manifestations in the primary stages of diabetes. Therefore, screening can be an efficient way to reduce the diabetic complications. Over the recent decades, the prevalence of diabetes has increased alarmingly among the Middle East population, which has imposed exorbitant costs on the health care system in this region. Given that the genetic changes are among the important risk factors associated with predisposing people to diabetes, we examined the role of single-nucleotide polymorphisms (SNPs) in the pathogenesis of diabetes among Middle East population. In the present review, we assessed the molecular pathology of diabetes in the Middle East population that paves the way for introducing an efficient SNP-based diagnostic panel for diabetes screening among the Middle East population. Since, the Middle East has a population of 370 million people; the current review can be a reliable model for the introduction of SNP-based diagnostic panels in other populations and countries around the world.
Collapse
|
6
|
Glucagon-like Peptide-1 Receptor Agonists in the Management of Type 2 Diabetes Mellitus and Obesity: The Impact of Pharmacological Properties and Genetic Factors. Int J Mol Sci 2022; 23:ijms23073451. [PMID: 35408810 PMCID: PMC8998939 DOI: 10.3390/ijms23073451] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are a new class of antihyperglycemic drugs that enhance appropriate pancreatic β-cell secretion, pancreatic α-cell (glucagon) suppression, decrease liver glucose production, increase satiety through their action on the central nervous system, slow gastric emptying time, and increase insulin action on peripheral tissue. They are effective in the management of type 2 diabetes mellitus and have a favorable effect on weight loss. Their cardiovascular and renal safety has been extensively investigated and confirmed in many clinical trials. Recently, evidence has shown that in addition to the existing approaches for the treatment of obesity, semaglutide in higher doses promotes weight loss and can be used as a drug to treat obesity. However, some T2DM and obese patients do not achieve a desired therapeutic effect of GLP-1 receptor agonists. This could be due to the multifactorial etiologies of T2DM and obesity, but genetic variability in the GLP-1 receptor or signaling pathways also needs to be considered in non-responders to GLP-1 receptor agonists. This review focuses on the pharmacological, clinical, and genetic factors that may influence the response to GLP-1 receptor agonists in the treatment of type 2 diabetes mellitus and obesity.
Collapse
|
7
|
Trifonova EA, Popovich AA, Makeeva OA, Minaycheva LI, Bocharova AV, Vagaitseva KV, Stepanov VA. Replicative Association Analysis of Genetic Markers of Obesity in the Russian Population. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421050136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Incretin Hormones in Obesity and Related Cardiometabolic Disorders: The Clinical Perspective. Nutrients 2021; 13:nu13020351. [PMID: 33503878 PMCID: PMC7910956 DOI: 10.3390/nu13020351] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
The prevalence of obesity continues to grow rapidly worldwide, posing many public health challenges of the 21st century. Obese subjects are at major risk for serious diet-related noncommunicable diseases, including type 2 diabetes mellitus, cardiovascular disease, and non-alcoholic fatty liver disease. Understanding the mechanisms underlying obesity pathogenesis is needed for the development of effective treatment strategies. Dysregulation of incretin secretion and actions has been observed in obesity and related metabolic disorders; therefore, incretin-based therapies have been developed to provide new therapeutic options. Incretin mimetics present glucose-lowering properties, together with a reduction of appetite and food intake, resulting in weight loss. In this review, we describe the physiology of two known incretins—glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), and their role in obesity and related cardiometabolic disorders. We also focus on the available and incoming incretin-based medications that can be used in the treatment of the above-mentioned conditions.
Collapse
|
9
|
Tomas A, Jones B, Leech C. New Insights into Beta-Cell GLP-1 Receptor and cAMP Signaling. J Mol Biol 2019; 432:1347-1366. [PMID: 31446075 DOI: 10.1016/j.jmb.2019.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Harnessing the translational potential of the GLP-1/GLP-1R system in pancreatic beta cells has led to the development of established GLP-1R-based therapies for the long-term preservation of beta cell function. In this review, we discuss recent advances in the current research on the GLP-1/GLP-1R system in beta cells, including the regulation of signaling by endocytic trafficking as well as the application of concepts such as signal bias, allosteric modulation, dual agonism, polymorphic receptor variants, spatial compartmentalization of cAMP signaling and new downstream signaling targets involved in the control of beta cell function.
Collapse
Affiliation(s)
- Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK.
| | - Ben Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Colin Leech
- Department of Surgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
10
|
Musambil M, Siddiqui K. Genetics and genomics studies in type 2 diabetes: A brief review of the current scenario in the Arab region. Diabetes Metab Syndr 2019; 13:1629-1632. [PMID: 31336532 DOI: 10.1016/j.dsx.2019.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/12/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Type 2 diabetes (T2D) is a polygenic and multi-factorial complex disease, the challenge to find genetic markers that could explain the risk of development of this disease still remains unresolved. The Arab region is one among the populations with a high prevalence of T2D and a large number of studies have been carried out in exploring the genetic factors associated with T2D risk. AIM To summarize the recent developments in the Arab world based on the recent studies that had looked into genetic factors associated with the development of T2D in the Arab populations. METHODS A systematic literature search was conducted to identify studies published between 2015 and 2018 reporting genetic factors or polymorphisms associated with the risk of T2D in the Arab world. The online databases PubMed and Web of Science were used to perform the literature search. CONCLUSION The present study has evaluated 14 studies published during the year 2015-2018. Studies from Egypt, Iraq, Jordan, Oman, Qatar, Saudi Arabia, Tunisia, and United Arab Emirates had been explored studying the associations of GIPR, ADIPOQ, FTO, (GRCh38.p12), MLXIP, AKNAD1, KCNJ11 CDKAL1, CDKN2A/2B, TCF7L2, ACE, SNAP25, ELMO1, VDR, KCTD8, GABRA4 and PRKD1 genes with T2D development.
Collapse
Affiliation(s)
- Mohthash Musambil
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Khalid Siddiqui
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|