1
|
Kusznir EA, Hau JC, Portmann M, Reinhart AG, Falivene F, Bastien J, Worm J, Ross A, Lauer M, Ringler P, Sladojevich F, Huber S, Bleicher K, Keller M. Propensities of Fatty Acid-Modified ASOs: Self-Assembly vs Albumin Binding. Bioconjug Chem 2023; 34:866-879. [PMID: 37145959 DOI: 10.1021/acs.bioconjchem.3c00085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We conducted a biophysical study to investigate the self-assembling and albumin-binding propensities of a series of fatty acid-modified locked nucleic acid (LNA) antisense oligonucleotide (ASO) gapmers specific to the MALAT1 gene. To this end, a series of biophysical techniques were applied using label-free ASOs that were covalently modified with saturated fatty acids (FAs) of varying length, branching, and 5'/3' attachment. Using analytical ultracentrifugation (AUC), we demonstrate that ASOs conjugated with fatty acids longer than C16 exhibit an increasing tendency to form self-assembled vesicular structures. The C16 to C24 conjugates interacted via the fatty acid chains with mouse and human serum albumin (MSA/HSA) to form stable adducts with near-linear correlation between FA-ASO hydrophobicity and binding strength to mouse albumin. This was not observed for the longer fatty acid chain ASO conjugates (>C24) under the experimental conditions applied. The longer FA-ASO however adopted self-assembled structures with increasing intrinsic stabilities proportional to the fatty acid chain length. For instance, FA chain lengths smaller than C24 readily formed self-assembled structures containing 2 (C16), 6 (C22, bis-C12), and 12 (C24) monomers, as measured by analytical ultracentrifugation (AUC). Incubation with albumin disrupted these supramolecular architectures to form FA-ASO/albumin complexes mostly with 2:1 stoichiometry and binding affinities in the low micromolar range, as determined by isothermal titration calorimetry (ITC) and analytical ultracentrifugation (AUC). Binding of FA-ASOs underwent a biphasic pattern for medium-length FA chain lengths (>C16) with an initial endothermic phase of particulate disruption, followed by an exothermic binding event to the albumin. Conversely, ASO modified with di-palmitic acid (C32) formed a strong, hexameric complex. This structure was not disrupted when incubated with albumin under conditions above the critical nanoparticle concentration (CNC; <0.4 μM). It is noteworthy that the interaction of parent, fatty acid-free malat1 ASO to albumin was below detectability by ITC (KD ≫150 μM). This work demonstrates that the nature of mono- vs multimeric structures of hydrophobically modified ASOs is governed by the hydrophobic effect. Consequently, supramolecular assembly to form particulate structures is a direct consequence of the fatty acid chain length. This provides opportunities to exploit the concept of hydrophobic modification to influence pharmacokinetics (PK) and biodistribution for ASOs in two ways: (1) binding of the FA-ASO to albumin as a carrier vehicle and (2) self-assembly resulting in albumin-inert, supramolecular architectures. Both concepts create opportunities to influence biodistribution, receptor interaction, uptake mechanism, and pharmacokinetics/pharmacodynamics (PK/PD) properties in vivo, potentially enabling access to extrahepatic tissues in sufficient concentration to treat disease.
Collapse
Affiliation(s)
- Eric-André Kusznir
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jean-Christophe Hau
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Michaela Portmann
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Anne-Gaëlle Reinhart
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Fabio Falivene
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jessica Bastien
- Roche Pharma Research and Early Development, Therapeutic Modalities, RMR, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jesper Worm
- Roche Pharma Research and Early Development, Therapeutic Modalities, RMR, Roche Innovation Center Copenhagen, F. Hoffmann-La Roche Ltd., Fremtidsvej 3, 2970 Hoersholm, Denmark
| | - Alfred Ross
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Matthias Lauer
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Philippe Ringler
- Biozentrum, University of Basel, Spitalstrasse 41, CH - 4056 Basel, Switzerland
| | - Filippo Sladojevich
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sylwia Huber
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Konrad Bleicher
- Roche Pharma Research and Early Development, Therapeutic Modalities, RMR, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Michael Keller
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
2
|
Saher O, Zaghloul EM, Umek T, Hagey DW, Mozafari N, Danielsen MB, Gouda AS, Lundin KE, Jørgensen PT, Wengel J, Smith CIE, Zain R. Chemical Modifications and Design Influence the Potency of Huntingtin Anti-Gene Oligonucleotides. Nucleic Acid Ther 2023; 33:117-131. [PMID: 36735581 PMCID: PMC10066784 DOI: 10.1089/nat.2022.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Huntington's disease is a neurodegenerative, trinucleotide repeat (TNR) disorder affecting both males and females. It is caused by an abnormal increase in the length of CAG•CTG TNR in exon 1 of the Huntingtin gene (HTT). The resultant, mutant HTT mRNA and protein cause neuronal toxicity, suggesting that reduction of their levels would constitute a promising therapeutic approach. We previously reported a novel strategy in which chemically modified oligonucleotides (ONs) directly target chromosomal DNA. These anti-gene ONs were able to downregulate both HTT mRNA and protein. In this study, various locked nucleic acid (LNA)/DNA mixmer anti-gene ONs were tested to investigate the effects of varying ON length, LNA content, and fatty acid modification on HTT expression. Altering the length did not significantly influence the ON potency, while LNA content was critical for activity. Utilization of palmitoyl-modified LNA monomers enhanced the ON activity relatively to the corresponding nonmodified LNA under serum starvation conditions. Furthermore, the number of palmitoylated LNA monomers and their positioning greatly affected ON potency. In addition, we performed RNA sequencing analysis, which showed that the anti-gene ONs affect the "immune system process, mRNA processing, and neurogenesis." Furthermore, we observed that for repeat containing genes, there is a higher tendency for antisense off-targeting. Taken together, our findings provide an optimized design of anti-gene ONs that could potentially be developed as DNA-targeting therapeutics for this class of TNR-related diseases.
Collapse
Affiliation(s)
- Osama Saher
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Eman M Zaghloul
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden.,Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Tea Umek
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden
| | - Daniel W Hagey
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden
| | - Negin Mozafari
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden
| | - Mathias B Danielsen
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark, Odense, Denmark
| | - Alaa S Gouda
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark, Odense, Denmark.,Department of Chemistry, Faculty of Science, Benha University, Benha, Egypt
| | - Karin E Lundin
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden
| | - Per T Jørgensen
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark, Odense, Denmark
| | - Jesper Wengel
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark, Odense, Denmark
| | - C I Edvard Smith
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden.,Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
3
|
Evéquoz D, Verhaart IEC, van de Vijver D, Renner W, Aartsma-Rus A, Leumann CJ. 7',5'-alpha-bicyclo-DNA: new chemistry for oligonucleotide exon splicing modulation therapy. Nucleic Acids Res 2021; 49:12089-12105. [PMID: 34850138 PMCID: PMC8643641 DOI: 10.1093/nar/gkab1097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 01/16/2023] Open
Abstract
Antisense oligonucleotides are small pieces of modified DNA or RNA, which offer therapeutic potential for many diseases. We report on the synthesis of 7′,5′-α-bc-DNA phosphoramidite building blocks, bearing the A, G, T and MeC nucleobases. Solid-phase synthesis was performed to construct five oligodeoxyribonucleotides containing modified thymidine residues, as well as five fully modified oligonucleotides. Incorporations of the modification inside natural duplexes resulted in strong destabilizing effects. However, fully modified strands formed very stable duplexes with parallel RNA complements. In its own series, 7′,5′-α-bc-DNA formed duplexes with a surprising high thermal stability. CD spectroscopy and extensive molecular modeling indicated the adoption by the homo-duplex of a ladder-like structure, while hetero-duplexes with DNA or RNA still form helical structure. The biological properties of this new modification were investigated in animal models for Duchenne muscular dystrophy and spinal muscular atrophy, where exon splicing modulation can restore production of functional proteins. It was found that the 7′,5′-α-bc-DNA scaffold confers a high biostability and a good exon splicing modulation activity in vitro and in vivo.
Collapse
Affiliation(s)
- Damien Evéquoz
- Alpha Anomeric, 140 Bis, Rue de Rennes, 75006 Paris, France
| | - Ingrid E C Verhaart
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Davy van de Vijver
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|