1
|
Guen YL, Delecourt G, Gall TL, Du H, Illy N, Huin C, Bennevault V, Midoux P, Montier T, Guégan P. Neutral Block Copolymer Assisted Gene Delivery using Hydrodynamic Limb Vein Injection. Macromol Biosci 2024; 24:e2300568. [PMID: 38512438 DOI: 10.1002/mabi.202300568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Three different amphiphilic block copolymer families are synthesized to investigate new opportunities to enhance gene delivery via Hydrodynamic Limb Vein (HLV) injections. First a polyoxazoline-based family containing mostly one poly(2-methyl-2-oxazoline) (PMeOx) block and a second block POx with an ethyl (EtOx), isopropyl (iPrOx) or phenyl substituent (PhOx) is synthesized. Then an ABC poly(2-ethyl-2-oxazoline)-b-poly(2-n-propyl-2-oxazoline)-b-poly(2-methyl-2-oxazoline) triblock copolymer is synthesized, with a thermosensitive middle block. Finally, polyglycidol-b-polybutylenoxide-b-polyglycidol copolymers with various molar masses and amphiphilic balance are produced. The simple architecture of neutral amphiphilic triblock copolymer is not sufficient to obtain enhanced in vivo gene transfection. Double or triple amphiphilic neutral block copolymers are improving the in vivo transfection performances through HLV administration as far as a block having an lower critical solution temperature is incorporated in the vector. The molar mass of the copolymer does not seem to affect the vector performances in a significant manner.
Collapse
Affiliation(s)
- Yann Le Guen
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA Team, Brest, F-29200, France
- CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, Brest, 29200, France
| | - Gwendoline Delecourt
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne University, UMR 8232 CNRS, Paris, 75005, France
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA Team, Brest, F-29200, France
| | - Haiqin Du
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne University, UMR 8232 CNRS, Paris, 75005, France
| | - Nicolas Illy
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne University, UMR 8232 CNRS, Paris, 75005, France
| | - Cécile Huin
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne University, UMR 8232 CNRS, Paris, 75005, France
- University of Evry, Essonne, Evry, 91000, France
| | - Véronique Bennevault
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne University, UMR 8232 CNRS, Paris, 75005, France
- University of Evry, Essonne, Evry, 91000, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, Orléans, 45100, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA Team, Brest, F-29200, France
- CHU de Brest, Service de Génétique Médicale et de Biologie de la Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, Brest, 29200, France
| | - Philippe Guégan
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne University, UMR 8232 CNRS, Paris, 75005, France
| |
Collapse
|
2
|
Girardin C, Maze D, Gonçalves C, Le Guen YT, Pluchon K, Pichon C, Montier T, Midoux P. Selective attachment of a microtubule interacting peptide to plasmid DNA via a triplex forming oligonucleotide for transfection improvement. Gene Ther 2022; 30:271-277. [PMID: 35794469 DOI: 10.1038/s41434-022-00354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/20/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022]
Abstract
In nonviral gene therapy approaches, the linkage of signal molecules to plasmid DNA (pDNA) is of interest for guiding its delivery to the nucleus. Here, we report its linkage to a peptide (P79-98) mediating migration on microtubules by using a triplex-forming oligonucleotide (TFO). pDNA of 5 kbp and 21 kbp containing 6 and 36 oligopurine • oligopyrimidine sites (TH), respectively, inserted outside the luciferase gene sequence were used. TFO with a dibenzocyclooctyl (DBCO) group in 3' end comprising some Bridged Nucleic Acid bases was conjugated by click chemistry with the peptide carrying an azide function in the C-terminal end. We found the formation of 6 and 18 triplex with pDNA of 5 kbp and 21 kbp, respectively. A twofold increase of the transfection efficiency was observed in the hind-limbs upon Hydrodynamic Limb Vein (HLV) injection in mice of naked P79-98 -pDNA of 21 kbp. This work paves the way for the selective equipping of pDNA with intracellular targeting molecules while preserving the full expression of the encoded gene.
Collapse
Affiliation(s)
- Caroline Girardin
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France
| | - Delphine Maze
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France
| | - Cristine Gonçalves
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France
| | | | - Kevin Pluchon
- Univ Brest, INSERM, EFS, UMR 1078, GGB - GTCA Team, F-29200, Brest, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB - GTCA Team, F-29200, Brest, France. .,Service de Génétique Médicale et Biologie de la Reproduction, Centre de référence des maladies rares 'Maladies neuromusculaires', CHRU de Brest, F-29200, Brest, France.
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and University of Orléans, 45071, Orléans cedex 02, France.
| |
Collapse
|
3
|
Savid-Frontera C, Viano ME, Baez NS, Reynolds D, Matellon M, Young HA, Rodriguez-Galan MC. Safety levels of systemic IL-12 induced by cDNA expression as a cancer therapeutic. Immunotherapy 2022; 14:115-133. [PMID: 34783257 PMCID: PMC8739399 DOI: 10.2217/imt-2021-0080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/14/2021] [Indexed: 02/03/2023] Open
Abstract
Aim: The aim of this work is to utilize a gene expression procedure to safely express systemic IL-12 and evaluate its effects in mouse tumor models. Materials & methods: Secondary lymphoid organs and tumors from EL4 and B16 tumor-bearing mice were analyzed by supervised and unsupervised methods. Results: IL-12 cDNA induced systemic IL-12 protein levels lower than the tolerated dose in patients. Control of tumor growth was observed in subcutaneous B16 and EL4 tumors. Systemic IL-12 expression induced a higher frequency of both total tumor-infiltrated CD45+ cells and proliferative IFN-γ+CD8+ T cells along with a lower frequency of CD4+FOXP3+ and CD11b+Gr-1+ cells. Conclusion: This approach characterizes the systemic effects of IL-12, helping to improve treatment of metastases or solid tumors.
Collapse
Affiliation(s)
- Constanza Savid-Frontera
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Maria E Viano
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Natalia S Baez
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Della Reynolds
- Cancer & Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201 USA
| | - Mariana Matellon
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Howard A Young
- Cancer & Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201 USA
| | - Maria C Rodriguez-Galan
- Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| |
Collapse
|
4
|
Kenjo E, Hozumi H, Makita Y, Iwabuchi KA, Fujimoto N, Matsumoto S, Kimura M, Amano Y, Ifuku M, Naoe Y, Inukai N, Hotta A. Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice. Nat Commun 2021; 12:7101. [PMID: 34880218 PMCID: PMC8654819 DOI: 10.1038/s41467-021-26714-w] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
Genome editing therapy for Duchenne muscular dystrophy (DMD) holds great promise, however, one major obstacle is delivery of the CRISPR-Cas9/sgRNA system to skeletal muscle tissues. In general, AAV vectors are used for in vivo delivery, but AAV injections cannot be repeated because of neutralization antibodies. Here we report a chemically defined lipid nanoparticle (LNP) system which is able to deliver Cas9 mRNA and sgRNA into skeletal muscle by repeated intramuscular injections. Although the expressions of Cas9 protein and sgRNA were transient, our LNP system could induce stable genomic exon skipping and restore dystrophin protein in a DMD mouse model that harbors a humanized exon sequence. Furthermore, administration of our LNP via limb perfusion method enables to target multiple muscle groups. The repeated administration and low immunogenicity of our LNP system are promising features for a delivery vehicle of CRISPR-Cas9 to treat skeletal muscle disorders.
Collapse
Affiliation(s)
- Eriya Kenjo
- grid.419841.10000 0001 0673 6017T-CiRA Discovery, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan ,Takeda-CiRA Joint Program, Fujisawa, Kanagawa Japan
| | - Hiroyuki Hozumi
- grid.419841.10000 0001 0673 6017T-CiRA Discovery, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan ,Takeda-CiRA Joint Program, Fujisawa, Kanagawa Japan
| | - Yukimasa Makita
- grid.419841.10000 0001 0673 6017T-CiRA Discovery, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan ,Takeda-CiRA Joint Program, Fujisawa, Kanagawa Japan
| | - Kumiko A. Iwabuchi
- Takeda-CiRA Joint Program, Fujisawa, Kanagawa Japan ,grid.258799.80000 0004 0372 2033Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Naoko Fujimoto
- Takeda-CiRA Joint Program, Fujisawa, Kanagawa Japan ,grid.258799.80000 0004 0372 2033Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Satoru Matsumoto
- Takeda-CiRA Joint Program, Fujisawa, Kanagawa Japan ,grid.419841.10000 0001 0673 6017Drug Product Development, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Maya Kimura
- grid.419841.10000 0001 0673 6017Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Yuichiro Amano
- grid.419841.10000 0001 0673 6017Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Masataka Ifuku
- Takeda-CiRA Joint Program, Fujisawa, Kanagawa Japan ,grid.258799.80000 0004 0372 2033Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Youichi Naoe
- Takeda-CiRA Joint Program, Fujisawa, Kanagawa Japan ,grid.258799.80000 0004 0372 2033Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Naoto Inukai
- grid.419841.10000 0001 0673 6017T-CiRA Discovery, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan ,Takeda-CiRA Joint Program, Fujisawa, Kanagawa Japan
| | - Akitsu Hotta
- Takeda-CiRA Joint Program, Fujisawa, Kanagawa, Japan. .,Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
5
|
Newby GA, Liu DR. In vivo somatic cell base editing and prime editing. Mol Ther 2021; 29:3107-3124. [PMID: 34509669 PMCID: PMC8571176 DOI: 10.1016/j.ymthe.2021.09.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
Recent advances in genome editing technologies have magnified the prospect of single-dose cures for many genetic diseases. For most genetic disorders, precise DNA correction is anticipated to best treat patients. To install desired DNA changes with high precision, our laboratory developed base editors (BEs), which can correct the four most common single-base substitutions, and prime editors, which can install any substitution, insertion, and/or deletion over a stretch of dozens of base pairs. Compared to nuclease-dependent editing approaches that involve double-strand DNA breaks (DSBs) and often result in a large percentage of uncontrolled editing outcomes, such as mixtures of insertions and deletions (indels), larger deletions, and chromosomal rearrangements, base editors and prime editors often offer greater efficiency with fewer byproducts in slowly dividing or non-dividing cells, such as those that make up most of the cells in adult animals. Both viral and non-viral in vivo delivery methods have now been used to deliver base editors and prime editors in animal models, establishing that base editors and prime editors can serve as effective agents for in vivo therapeutic genome editing in animals. This review summarizes examples of in vivo somatic cell (post-natal) base editing and prime editing and prospects for future development.
Collapse
Affiliation(s)
- Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02142 USA.
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02142 USA.
| |
Collapse
|
6
|
Le Guen YT, Pichon C, Guégan P, Pluchon K, Haute T, Quemener S, Ropars J, Midoux P, Le Gall T, Montier T. DNA nuclear targeting sequences for enhanced non-viral gene transfer: An in vitro and in vivo study. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:477-486. [PMID: 33898102 PMCID: PMC8053784 DOI: 10.1016/j.omtn.2021.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/14/2021] [Indexed: 11/25/2022]
Abstract
An important bottleneck for non-viral gene transfer commonly relates to translocation of nucleic acids into the nuclear compartment of target cells. So-called 3NFs are optimized short nucleotide sequences able to interact with the transcription factor nuclear factor κB (NF-κB), which can enhance the nuclear import of plasmid DNA (pDNA) carrying such motifs. In this work, we first designed a consistent set of six pDNAs featuring a common backbone and only varying in their 3NF sequences. These constructions were then transfected under various experimental settings. In vitro, cationic polymer-assisted pDNA delivery in five human-derived cell lines showed the potential advantage of 3NF carrying pDNA in diverse cellular contexts. In vivo, naked pDNAs were hydrodynamically delivered to muscle hindlimbs in healthy mice; this direct accurate comparative (in the absence of any gene carrier) revealed modest but consistent trends in favor of the pDNAs equipped with 3NF. In summary, the results reported emphasize the implications of various parameters on NF-κB-mediated pDNA nuclear import; under specific conditions, 3NF can provide modest to substantial advantages for pDNA gene transfer, in vitro as well as in vivo. This study thus further underscores the potential of optimized nuclear import for more efficient non-viral gene transfer applications.
Collapse
Affiliation(s)
- Yann T Le Guen
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, 45071 Orléans, France
| | - Philippe Guégan
- Institut Parisien de Chimie Moléculaire, Team Chimie des Polymères, UMR 8232 CNRS, Sorbonne University, 75252 Paris, France
| | - Kévin Pluchon
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France.,Department of Cardiovascular and Thoracic Surgery, Brest University Hospital La Cavale Blanche, 29200 Brest, France
| | - Tanguy Haute
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Sandrine Quemener
- University of Lille, EGID, INSERM, CHU Lille, Institut Pasteur de Lille, U1011, 59019 Lille, France
| | - Juliette Ropars
- CHRU de Brest, Service de Pédiatrie, Centre de Référence des Maladies Rares "Maladies Neuromusculaires", 29200 Brest, France.,Univ Brest, INSERM, UMR 1101, LaTIM, 29200 Brest, France
| | - Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, 45071 Orléans, France
| | - Tony Le Gall
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France
| | - Tristan Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB-GTCA, 29200 Brest, France.,CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Centre de Référence des Maladies Rares "Maladies Neuromusculaires", 29200 Brest, France
| |
Collapse
|
7
|
Andreana I, Repellin M, Carton F, Kryza D, Briançon S, Chazaud B, Mounier R, Arpicco S, Malatesta M, Stella B, Lollo G. Nanomedicine for Gene Delivery and Drug Repurposing in the Treatment of Muscular Dystrophies. Pharmaceutics 2021; 13:278. [PMID: 33669654 PMCID: PMC7922331 DOI: 10.3390/pharmaceutics13020278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/07/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
Muscular Dystrophies (MDs) are a group of rare inherited genetic muscular pathologies encompassing a variety of clinical phenotypes, gene mutations and mechanisms of disease. MDs undergo progressive skeletal muscle degeneration causing severe health problems that lead to poor life quality, disability and premature death. There are no available therapies to counteract the causes of these diseases and conventional treatments are administered only to mitigate symptoms. Recent understanding on the pathogenetic mechanisms allowed the development of novel therapeutic strategies based on gene therapy, genome editing CRISPR/Cas9 and drug repurposing approaches. Despite the therapeutic potential of these treatments, once the actives are administered, their instability, susceptibility to degradation and toxicity limit their applications. In this frame, the design of delivery strategies based on nanomedicines holds great promise for MD treatments. This review focuses on nanomedicine approaches able to encapsulate therapeutic agents such as small chemical molecules and oligonucleotides to target the most common MDs such as Duchenne Muscular Dystrophy and the Myotonic Dystrophies. The challenge related to in vitro and in vivo testing of nanosystems in appropriate animal models is also addressed. Finally, the most promising nanomedicine-based strategies are highlighted and a critical view in future developments of nanomedicine for neuromuscular diseases is provided.
Collapse
Affiliation(s)
- Ilaria Andreana
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy;
| | - Mathieu Repellin
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (F.C.); (M.M.)
| | - Flavia Carton
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (F.C.); (M.M.)
- Department of Health Sciences, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy
| | - David Kryza
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
- Hospices Civils de Lyon, 69437 Lyon, France
| | - Stéphanie Briançon
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, University of Lyon, INSERM U1217, CNRS UMR 5310, 8 Avenue Rockefeller, 69008 Lyon, France; (B.C.); (R.M.)
| | - Rémi Mounier
- Institut NeuroMyoGène, University of Lyon, INSERM U1217, CNRS UMR 5310, 8 Avenue Rockefeller, 69008 Lyon, France; (B.C.); (R.M.)
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy;
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (F.C.); (M.M.)
| | - Barbara Stella
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy;
| | - Giovanna Lollo
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
| |
Collapse
|