1
|
Tang K, See W, Naidu R. Neuroprotective properties of zinc oxide nanoparticles: therapeutic implications for Parkinson's disease. Biosci Rep 2024; 44:BSR20241102. [PMID: 39501749 PMCID: PMC11554912 DOI: 10.1042/bsr20241102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/14/2024] Open
Abstract
Parkinson's disease (PD) significantly affects millions of people worldwide due to the progressive degeneration of dopamine-producing neurons in the substantia nigra pars compacta. Despite extensive research efforts, effective treatments that can halt or reverse the progression of PD remain elusive. In recent years, nanotechnology has emerged as a promising new avenue for addressing this challenge, with zinc oxide nanoparticles (ZnO-NPs) standing out for their extensive therapeutic potential. ZnO-NPs have shown remarkable promise in neuroprotection through several key mechanisms. The multifaceted properties of ZnO-NPs suggest that they could play a crucial role in intervening across various fundamental mechanisms implicated in PD. By targeting these mechanisms, ZnO-NPs offer new insights and potential strategies for managing and treating PD. This review aims to provide a thorough examination of the molecular mechanisms through which ZnO-NPs exert their neuroprotective effects. It highlights their potential as innovative therapeutic agents for PD and outlines directions for future research to explore and harness their full capabilities.
Collapse
Affiliation(s)
- Kim San Tang
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Wesley Zhi Chung See
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
2
|
Guo X, Dou Y, Liu S, Du Y, Guo R, Yue Y, Xu Y, Liu X, Xu Y. Elevated Expression of ADAM10 Induced by HPV E6 Influences the Prognosis of Cervical Cancer. Genet Test Mol Biomarkers 2023; 27:165-171. [PMID: 37257180 DOI: 10.1089/gtmb.2022.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
Objective: To explore the abnormal expression of ADAM10, its cause, and its clinical value in the prognosis of cervical lesions. Methods: The abnormal expression of ADAM10 was explored using the Gene Expression Profiling Interactive Analysis database, and the abnormal expression in cervical lesions was verified using immunohistochemistry (IHC). The transfection effect of shRNA was evaluated using real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The expression of ADAM10 in cells was analyzed using western blotting. Results: ADAM10 was highly expressed in multiple cancers. As the disease progressed, the expression of ADAM10 gradually increased (p < 0.05). Patients with higher expression of ADAM10 had poorer survival outcomes than those with lower expression levels (p < 0.05). The expression levels of ADAM10 decreased after expression levels of E6 was inhibited. Conclusion: ADAM10 is highly expressed in cervical cancer; the higher the expression levels, the worse the survival outcome. HPV E6 is the critical driver of the elevated expression of ADAM10 in cervical cancer.
Collapse
Affiliation(s)
- Xuewang Guo
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yu Dou
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shuiqingqing Liu
- Department of Gynecology Taizhou Women's and Children's Hospital, Zhejiang, China
| | - Yue Du
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ruimeng Guo
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yingying Yue
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yu Xu
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xueying Liu
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yanying Xu
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Iemmolo M, Ghersi G, Bivona G. The Cytokine CX3CL1 and ADAMs/MMPs in Concerted Cross-Talk Influencing Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24098026. [PMID: 37175729 PMCID: PMC10179166 DOI: 10.3390/ijms24098026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Neuroinflammation plays a fundamental role in the development and progression of neurodegenerative diseases. It could therefore be said that neuroinflammation in neurodegenerative pathologies is not a consequence but a cause of them and could represent a therapeutic target of neuronal degeneration. CX3CL1 and several proteases (ADAMs/MMPs) are strongly involved in the inflammatory pathways of these neurodegenerative pathologies with multiple effects. On the one hand, ADAMs have neuroprotective and anti-apoptotic effects; on the other hand, they target cytokines and chemokines, thus causing inflammatory processes and, consequently, neurodegeneration. CX3CL1 itself is a cytokine substrate for the ADAM, ADAM17, which cleaves and releases it in a soluble isoform (sCX3CL1). CX3CL1, as an adhesion molecule, on the one hand, plays an inhibiting role in the pro-inflammatory response in the central nervous system (CNS) and shows neuroprotective effects by binding its membrane receptor (CX3CR1) present into microglia cells and maintaining them in a quiescent state; on the other hand, the sCX3CL1 isoform seems to promote neurodegeneration. In this review, the dual roles of CX3CL1 and ADAMs/MMPs in different neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (MH), and multiple sclerosis (MS), are investigated.
Collapse
Affiliation(s)
- Matilda Iemmolo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giulio Ghersi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giulia Bivona
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, University of Palermo, 90133 Palermo, Italy
| |
Collapse
|
4
|
Analysis of mRNA and Protein Levels of CAP2, DLG1 and ADAM10 Genes in Post-Mortem Brain of Schizophrenia, Parkinson's and Alzheimer's Disease Patients. Int J Mol Sci 2022; 23:ijms23031539. [PMID: 35163460 PMCID: PMC8835961 DOI: 10.3390/ijms23031539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia (SCZ) is a mental illness characterized by aberrant synaptic plasticity and connectivity. A large bulk of evidence suggests genetic and functional links between postsynaptic abnormalities and SCZ. Here, we performed quantitative PCR and Western blotting analysis in the dorsolateral prefrontal cortex (DLPFC) and hippocampus of SCZ patients to investigate the mRNA and protein expression of three key spine shapers: the actin-binding protein cyclase-associated protein 2 (CAP2), the sheddase a disintegrin and metalloproteinase 10 (ADAM10), and the synapse-associated protein 97 (SAP97). Our analysis of the SCZ post-mortem brain indicated increased DLG1 mRNA in DLPFC and decreased CAP2 mRNA in the hippocampus of SCZ patients, compared to non-psychiatric control subjects, while the ADAM10 transcript was unaffected. Conversely, no differences in CAP2, SAP97, and ADAM10 protein levels were detected between SCZ and control individuals in both brain regions. To assess whether DLG1 and CAP2 transcript alterations were selective for SCZ, we also measured their expression in the superior frontal gyrus of patients affected by neurodegenerative disorders, like Parkinson’s and Alzheimer’s disease. Interestingly, also in Parkinson’s disease patients, we found a selective reduction of CAP2 mRNA levels relative to controls but unaltered protein levels. Taken together, we reported for the first time altered CAP2 expression in the brain of patients with psychiatric and neurological disorders, thus suggesting that aberrant expression of this gene may contribute to synaptic dysfunction in these neuropathologies.
Collapse
|
5
|
Najafi S, Tan SC, Raee P, Rahmati Y, Asemani Y, Lee EHC, Hushmandi K, Zarrabi A, Aref AR, Ashrafizadeh M, Kumar AP, Ertas YN, Ghani S, Aghamiri S. Gene regulation by antisense transcription: A focus on neurological and cancer diseases. Biomed Pharmacother 2021; 145:112265. [PMID: 34749054 DOI: 10.1016/j.biopha.2021.112265] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Advances in high-throughput sequencing over the past decades have led to the identification of thousands of non-coding RNAs (ncRNAs), which play a major role in regulating gene expression. One emerging class of ncRNAs is the natural antisense transcripts (NATs), the RNA molecules transcribed from the opposite strand of a protein-coding gene locus. NATs are known to concordantly and discordantly regulate gene expression in both cis and trans manners at the transcriptional, post-transcriptional, translational, and epigenetic levels. Aberrant expression of NATs can therefore cause dysregulation in many biological pathways and has been observed in many genetic diseases. This review outlines the involvements and mechanisms of NATs in the pathogenesis of various diseases, with a special emphasis on neurodegenerative diseases and cancer. We also summarize recent findings on NAT knockdown and/or overexpression experiments and discuss the potential of NATs as promising targets for future gene therapies.
Collapse
Affiliation(s)
- Sajad Najafi
- Student research committee, Department of medical biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yazdan Rahmati
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yahya Asemani
- Department of Immunology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - E Hui Clarissa Lee
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Sariyer 34396, Turkey
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc, 6 Tide Street, Boston, MA 02210, USA
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Sepideh Ghani
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|